J.Partial Diff. Eqs. 8(1995), 1-35
©International Academic Publishers Vol.8, No.1

CONDENSATION OF LEAST-ENERGY SOLUTIONS OF A
SEMILINEAR NEUMANN PROBLEM*

Pan Xingbin
Center for Mathematical Sciences, Zhejiang University, Hangzhou 310027, China)
. ¥ B
(Received Mar. 15, 1992; revised Dec. 28, 1992)

Abstract This paper is devoted to the study of the least-energy solutions of a
singularly perturbed Neumann problem involving eritical Sobolev exponents. The con-
densation rate is given when n > 4 apd an asymptotic behavior result is obtained.
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1. Introduction

This paper is devoted to the study of the condensation behavior of the least-energy
solutions, as d — 0, of the following singularly perturbed semilinear Neumann problem

dAuw —uw 44" =0 in 2

u >0 i {2} (1.1)
Gk n 90
Y == 0
i E:}E
where A = Z vl i5 the Laplace operator, {2 1s a bounded smooth domain in B™,
= b

n+ 2

n = 3, v is the unit cuter normal to 312, T = and d > 0 is a constant. By a

s
least-energy solution of (1.1) we mean a (classical) solution of (1.1) which minimizes

the “energy” functional
Ta(u) = E{ri! ul® +uf) - bt el
% 0.l 2 5 Tl

where u4 = max(u,0), among all the solutions of (1.1). Such problems have been
studied by many authors, see, e.g., (1], [2] and references therein.

It was proved in [3] that the least-energy solution ug of (1.1) must exhibit “singular
point-condensation” character on the boundary 812 as d — 0. That is, ug — 0 in 2
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as d — 0, the (global) maximum of ug in 11 is assumed exactly at one point Fy which
must lie on the boundary A and ||ugl| poorny — o0 as d — 0. :

The purpose of this paper is to establish the condensation rate and the location
of the condensation points of ug as d — 0, and give a detailed description of the
convergence under various scalings, in the case when n > 4. Throughout this paper,
wuy will always denote a least-energy solution of (1.1), g and Py will always denote the

maximum and the maximum point of w4 In 00, respectively, i.e. ug(Pa) = ||uallze=(m) =
2

n—3

ag. Let J'jd = {J:!;f
Before stating our main results, we recall Theorem 3.1, in [3] as follows. Let

Hilzx) = 1+—|f:|2— : z e R" (1.2)
S n(n — 2) adlize i '
which is a solution of
AU+ UT =0 (1.3)
in B" satisfying U(0) = 1. Let
n 2/n :
8 =nln— 2w [f‘ (5) /F{TL}] (1.4)
which is the best Sobolev constant in R™ in the following sense:
S = inf U | 7 u|’dz : v € Hy(2) and j; |E|r de = 1} (1:5)
0 !

Denote Bs(P) = {x € R®: [z — P| < é}.

Theorem A [3] Let uy be o least-energy solution of (1.1). Then for d sufficiently
small the mazimum of ug in Q is attained ezactly at one point Py which must lie on
the boundary 942, and we have

(i) ||luwallposqpy — oo as d — 0;

(ii) ug — 0 everywhere in 1 asd—0;

(i) d=% fpuit'dz — %5’42 as d — 0.
Furthermore, for any £ > 0 there erist two positive consiants dy = do(R2,2) and R =
R(12,2) such that for 0 < d < dg the following estimates hold:

ug(z) I [M
Naeall pos oy B0/d

(v) walw) < Ceexp (—’}'ﬂi[ﬂf)x’"ﬂ} for all z € Q\B, gg(Fa). |
where U is given by (1.2), ¥y is o diffeomorphism straightening a boundary portion of
82 around Py (as described in Section 2), ((z) = min {?m,dist (:r:, annn Bvqﬁ{f}d})}J
and C, vo.mo are positive constants only depending on 2.

Remark 1.1 From the proof of Lemma 3.35 in [3] we actually see that, for any
§ > 0 and any = > 0 there is a dy > 0 such that for 0 < d < dp the estimate (v) holds

in 2\B_z(Pa).

(iv) <e forallz € 2N By gp(Pa);
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Let K (z) be the fundamental solution of —A +1in R" and
1
G(z) = ~waln(n = 2)|*?K(z), =€ R™ {0} (1.6)

where w,, is the area of the unit sphere in B". Now we state the main results of this
paper as follows.

Theorem 1.1 Assumen > 4 and 7 is strictly conver. Assume uy is the least-
energy solution of (1.1). Then the following estimates hold:

! uglx) x—Fy
B S e T € 12,
Y ITM”LW{:.?} g ﬁﬂfﬁJ s

where U is given in (1.2) and C > 0 onty depends on £2:
(ii) for any 6 > 0 and & > 0 there is dy = 0 such that for 0 < d-< dp,

gl poop pyug(z) — G [% @’d(ﬂ"]J <& forallz € Q\B_.(Py)

where G(z) is given by (1.6) and @, s a diffeomorphism straightening a boundary
portion around Fy (as described in Section 2}

'L
i g A=
i L= 2 (n—1)(n-3) (_T}’?T_)”E (?)
(111} éli% ﬁllﬂd“ff_ﬂﬂ{ﬂ} = H(Fﬂ} 'I:ﬂ. e Ej{ﬂ 1 {H 71 = r 41
: 2
where H(Fy) is the mean curvature of 312 at Py € 80 (related to the iner normal),

Fy is the limit point of {Pa}. Moreover when n > 6 we haye H(Fy) = max H(P).
. - &

Remarks In 2, p.843], W.-M. Ni and L. Takagi conjectured that the least-energy
solution g atiains the maximum near a point 7 € 312 where the mean curvature i (P)
of the boundary 82 at P is the largest. In other words, condensation must happen at
the maximum point of the mean curvature, In the subcritical case, i.e. when replacing

Tin (1.1) by p with 1 < p < :+§
M. Ni and I. Takagi in [4]. In the critical case, our Theorem 1.1 proves the conjecture
when n > 6. Moreover, part (iii) of Theorem 1.1 also means that the mean curvature
of the boundary has an important effect on the condensation rate.

Combining part (iv) of Theorem A with part (ii) of Theorem 1.1, we see that Uy
has two boundary layers around the maximum point Py. The behavior of g inside
the small boundary layer with scale Bav'd can be described wvia the function {7, while
outside the large one with scale /g it can be described wia the fundamental solution
K{(z).

The outline of this paper is as follows. In Section 2 we give a precise estimate for
the energy of uy as d — 0 and then prove the following result.

Lemma 1.1 Assume n > 4 and B4 = ||¢;d[fgif({§i'23. Then

 and n > 3, the conjecture has been proved by W.-

=

i
lim sup — « : I
1;:_.u.p B4 53 (1.7)
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By virtue of Lemma 1.1 we prove part (i) of Theorem 1.1 in Section 3. In Section
4 we prove parts (i1) and (iii) to complete Theorem 1.1.

Remark 1.2 From the estimate (2.57) in Section 2 we easily see that, when
n = 6 part (iii) in Theorem 1.1 is true for general domains, without the assumption of
convexity, see Corollary 2.1. We shall also see that when n > 4, the convexity condition
of £} can be replaced by the following weaker version:

Let Py be the limit point of { Py} as d — 0. We assume that all principal curvatures
of df} at Fy (related to the inner normal) are positive.

Remark 1.3 In this paper we frequently use the methods and ideas developed by
Professors Wei-Ming Ni and Izumi Takagi in their early works, see [4] and references
therein. We also use the techniques and estimates from A. Bahri [5], A. Bahri and J.
M. Coron [6] and O. Rey [7].

2. Proof of Lemma 1.1

Throughout this section we set

Viz) = 4= Fualz) (2.1)
Then Vy satisfies 1
ﬂVd—dVdr{ Vi=10 in J?
vy \#2)
=0 on 12
Em
and for any given p > 0,2 > 0, from Remark 1.1
(n=2) '*mt:(ﬂf}‘
Valz) < Ced™" 7 ex [— 2.3

for all 2 € 2\B_ (Fq) and d sufficiently small.

Next, we recall several facts in [1] and [2] concerning a diffeomorphism which
straightens a portion of the I}mmﬂar}' df? around a given point P € 9f2. Through
the translation and rotation of the coordinate system we may assume that P is at the
origin and the inner normal to &7 at P points in the direction of the positive x,-axis.
Then there exists a smooth function ('), ' = (z1, -, Ts—1), defined in |2'| < &,
such that

(i) $(0) = 0, v¥(0) = 0;

(i) 82NN = {(2',24) € N : @, = ¥(2')} and 20N = {(2),@0) € N : z,, > ¥(z"},
where IV is a neighborhood of P.

Hence around the point P, 812 can be represented as

'.-.:.—

T, = (z) = Z a;xt + O(|z'|*) (2.4)
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where v, - - -, &tp—1 are the principal curvatures of 312 at P (related to the inner normal)
and

r—1

_Zﬂli'“

15 the mean curvature of a7 at P.

H(P) =

For y € B™ with |y| sufficiently small we define amapxz = @(y) = (DP1(y), - -

by

i — ¥ _5 : (%)
= UYn :
Yn + P(Y),

Then the differential D¢ of ¢ is
4
dz;Ox; (v )y
dﬂf
s ——(7')
3]

by —
Dd(y) =

where ¢&;; is the Kronecker symbol.

Since w71(0)

—Jﬂifﬂ] (2.5)
Pn(y))
j=1,-,m—1
(2.6)
=
il
maT_(y’}
v (2.7)
1
1<:,j75n-1
= 0, D®(0) = the identity map.

Thus ¢ has an inverse mapping y = @ () for |z] < 6. We denote &1 by ¥(z) =

(¥ (z), -
and dfNN =

established in [2; Lemma A. 1] that near y = 0,

detDP(y)=1—-(n—-1)H(FP

Jin + O(Jy]?)

. (x)). Without loss of generality we may assume that 2NN = & (B;}'J
¢ (BY), where B = Bs(0)N [y, > 0] and BY

= Bs{0) N [y = 0]. It was

(2.8)

Obvionsly the functions ¥, ¢ and 1 depend smoothly on the point P € 92 and the

number § may be chosen independent of P.

Let £y be the maximum point of ¥V which must lie on 842 when d is sufficiently
small by Theorem A. Let ¥ be the diffeomorphism straightening a boundary portion
of @12 around Fy (we denote it by & instead of ¥ to simplify Ilut&tmn) Let ¢ = &1,

Define

i 595#(:&} d Py y}

Gij(y) =

y LT -
Higi= 5 t@{y}}g—i{@tyn

iy 9Tk

Define for y = (v, yn)
e {ﬁ‘ij('!f]
L) el gyl i ?
(=15t Gy, ~ga)
H-a'..:l'{,y} - { 7 (y)
(—1)%nthing¥ (y!, —y)

¢ 9

By; (2.9)
y € B (2.10)

if y Eﬁ (2.11)

if (y', —yn) € By, :

if y € BJ; o

if (4, —yn) € By
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We easily check that
> 9ix(y)g™ (y) = &,
k=1

Let
Va(y) = Va(®(y)), we€By; (2.13)
. Va(y) if y € Bj;
Valy) = { o §C s — (2.14)
Fd[y ?_yﬂ} if r:y r_yn} = Bﬂ-ﬁ

Then V) satisfies in Bas\[yn = 0]
. T e
AgVy — El"d+lfjf:=l] (2.15)

where

RYRIALE
du,—t(gﬁ.} Z lﬂn (ﬁf’ldﬂttgﬂ'}g jayj)

By the proof of [1; Lemma 4.3] we know that Vy is a weak solution of (2.15) in Bas.
Define the measure dg on B; by dg = y/det(gi;)dy and denote

i Ou O
(w7, ?t' f g
Bs ;5= i ‘}yz- dy;

|57 ully = 4/ (e, )

Then we have

|7 Vall2 = 2 [ | Valtdi
& Bg a2

WVallfy = [ Vidg=2[ Vi
B, &( B )N47

”VJHEEL = -[35 fJ:IT-f.ld'g =2 ./:Fliﬁa:lﬂ.ﬂ Vdf+]d_'r

From (2.3) we have for all small d

Valy) < cd™ "% exp {—ET?T] (2.16)

for |y| = pv/d with v = 0 independent of d. Especially
2—‘“!"5 P Illlvﬁ'_
Valy) < ed™ "7 e:-;p ] O(e™"v%) on @B; (2.17)

when d is sufficiently small.
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=
i

—

Let H*(Bs) = {V € W"?(B;) -

L V(y',~¥n) = V(¥',4n)} and H3(Bs) = H*(Bs) 0
Wy “(Bs). Define the prn_}e-;tmn B

WL2(Bs) — Wy'*(Bs) by letting u = PV be the
solution of
Agu = A,V in By
w=10 on Jd5;
From (2.11) (2.12) we see that det(g:;(y', —un)) =

= det(g:;(%"s ¥n)) and (A )u(y', —y.) =
(Agu)(y’, —yn). Hence P(H*(B;s)) C Hj(Bs). Let

rn—2
: o [T=raE b At
Uly)= |1+ —]."'!| . , Upelyl=e" :'EU (?j :I)
n(n — 2) '

=

for e > 0 and z € B} = B; N [y, = 0]. Define

M= {ﬂFUIFE 1€ Rl,;a: = BE1E 2 []}

which is an (n + 1)-dimensional submanifold of Hf(Bs). Ohserve that for any V €
H*(B;), = = («',0) € BY,

d
V, v —PU =i} 2.18
(V95 PUs), (215)
since :
= OV @ ( . ) f L e ( R )
T PU . | dg = — - PU..1d
‘/;iﬁ”[!-'n <] ”Z: ¥ d.t':l"z '531-":.' Oy 1 4 B} i_.;.Z=1 7/ Sy Oy; \ Oz g

by (2.11) (2.12). Now for x € B, ¢ > 0, we define

de

=R <'?V:u¢-.?£PUm.s> =0, 1 ‘:_-':iﬂ'i‘l—'l} (2.19}
-5':13;' q

For x = (z',0) with || sufficiently small, denote

d
B = {V € Hy(Bs) : (WV,TPU,,), = <?V:?_PUIFE>
i

©re(y) = Ure(y) — PUs.(y) (2.20)

Then A, . = 0 and @z = Us . on 88;. By the maximum principle we have as e — ()

0 < oAyl =0 (E“T_ﬁ) in Bj

(2.21)
19 ey ol gz, -2 =0 (% (222
oWr el ||¥Pee L;'H’ [E}_‘Tiiﬁ}z,s L;"‘] Sy (E ) { . dj
see, e.g. [7; Proposition 1]. Denote
ha(y) = Va(y) = PVa(y) (2.23)
Then we have from (2.17)
0 < hg(y) = O (e"¥4) in B, (2.24)
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By Green formula
|7 Valls = Il 7 (PVll, + O (e77/¥4) (2.25)

Let
dist{ PV ] s ] [royk
ist(PVy, M) jnf, | 7 (PVy) — well,

T

Lemma 2.1 When d is sufficiently smafl. dist(PV, M) is assumed by CyPl,, .,
€ M. Let fg= PV — CyPU,,.,. Then fy € Bz c, Moreover, as d — 0,
(1) @4 = (2,0), |oy] = O (Buv/d),
i o Ed
(i) lim =E|t

d—0 B+/d
Proof We follow the line in [6] and [7]. Let

Waly) = (82v3) """ V2 (Bav/dy)

From Theorem A, Wy(y) — U(y) in C2_(R") as d — 0 and

Il ﬁrd“iz,:,q”ﬁdﬁ} —+ 8" = v U”iﬂ(ﬂnj
Hence || 7 W, — ?UH!-'E':H&I'l.Ed"-"?} —+ 0. By the invariance of the norm || 57 V|| z in the
rescaling, || 7 V — VU s,vallzss) = 0. Noting gi;(y) = &; + O(|y|), we have
| 7 Vi — Uy g,valls =0 asd—0 (2.26)
From (2.22) (2.25) we have
dist(PVy, M) < || 7 PVa — GPUy 5 ally — 0 (2.27)

For d sufficiently small, let { CPU, . } be the minimizing sequence of dist{ PV, M).
From (2.16), (2.27) we easily see that {C;} is bounded, {x;} C BE;E and {z;} is bounded
between two positive constants 0 < a(d) < e; < A(d). Therefore dist(PVy, M) is
achieved by C4PU,, ., with Cy € R}, 2, = (x!,0) € By, 4 > 0. Hence we can write

PVy=CiPU. ..+ 1, (2.28)
with || 7 fall; — 0 as d — 0, which implies
IV PVallg = CHIPUz, 1% + o(1) (2.29)
(2.25) (2.26) (2.29) imply
I Vs govalls = CaIlPUz, e 12 + 0(1) (2.30)

From (2.16) (2.28) we see that ¢4 < C, hence |1PU,, .,y is bounded away from zera.
Note that || 7 U, o =l12 = S™/2 + 0(1). (2.30) implies C, is bounded and

Ca <vUﬂ.ﬁdv’E1 ?PUI.:{:EJ}ﬂ Z S”fﬂ T {?(1} {2-3”
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Using the Green formula
(Tt TPUsses), = = [, (AUt 5,2 PUssaal
= — fﬂ& (AU, 5.2+ Oy ¥ Up.py/al PUcssaty
) fﬂ (AUy 5,3 PUrcydy +o(1)
2 fB Vg el Unacay + (1)
< >/-B-.‘.~ Up gvalzasady +o(1)  (since PUy, o, < Us,e,)

I [ £d : ,-'3':{‘.;’{& 1

2

|za|? + o(1)

_|_
Bav'd y = cafav'd

by the estimate in [5]. Together with (2.31), the above estimate implies |2/)* = |24]* =
O(Bav/'dey) and
C1favVd < g4 < Co84Vd

for some positive constants €'y, Cb. From (2.22) (2.30), (2.31) we have Cy — 1 asd — 0,
and

./;3 Ry Uﬂuﬁd‘v@ 5 ?Umdﬁdizd?f R ]
&

Ed
Y _ :
Since CyPU,, .. is the minimizer of dist(PVy, M), we know that f; = PV, —
CaPUs, ¢, must lie in E . Now Lemma 2.1 is complete.

In the following we estimate f;. From (2.11) (2.12) and (2.8), computation shows
that, for V' € H*(B;),

— 1.

Hence

17 VIE= [ 19 V@)L~ (= DH(Pa)lyal + Oyl

n—1 i BV 2
42 .;.;-Pf =N 9.3
g i(Pa) 35|J|(ay_) y (2.32)

)

and for p = 1,
J,, W@Pdg = [ IVGIP{L - (n = DEPDlunl + OQulDdy  (2.33)

where H(Fy) and o;(Fy), 1 < § < n — 1, are the mean curvature and the principal
curvatures of 802 at Py. In particular if V(y) = V(|y|), then

2 4 i1y rr 2
| 7 VIl; =wn T V()2 dr
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2(n—1)2 T H(Py) [0, ! .
K T | (4 O(r )V (r) dr (2.34)
(n+1)I ( )

n
[ V@IPdg =an [V @)Par
Hg {
4r T H(Py) [f

- (n—l) 1+ O(r)) |V (r)|Pdr [2.35)
i
.
From (2.34), (2.35) we have, for small d, as ¢ — 0,
| O(="2) if n > 4
i 1
7 Vo2 = 5™ = anti () H(P) + { © (sﬂ mgj) a4 (2.36)
Ofe) if n = 3
where
£ ifn >4
£
k= { lng— ifn=3
and
n=1
- 18
no1 (n—1)*(n — 2)? n-1 ( 2 )
s | — >
G, =4 T 2 S [n(n — 2)] = Fn) ifn > 4
G iffRe=:3
f U7+ (y)dg = $™2 — b H(Py)e + O(e?) (2.37)
Bzt
where
(n + 1)
by = 207 [n(n — 2))° F{E}
[ Uso(w)d = Cutafe) + ofta(e)
where :
= ifn >4
g5l :
Ex2(e) = ¢ " log = ifn=4
&) ifn=23
and
4 1
T_ }Eﬂlf? ifn >4

gl 128 [ lf T —
127 16—
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ni2

Hbuﬂ..w‘:”‘]:ﬁm"in+2} (f Lﬂ}ﬂf{ﬂ-'_z}(y}dg) 2 = O{(EE(E):I {255]

where
e? ifn=>==56
1 243
La(s) = 4 £° (lﬂg :) fn=>a6
EE f3<n<s
[ P19 Voo (w)Pdg = Oea(c)) (2:39)
&

Lemma 2.2 Lef f3 be given in Lemma 2.1. Then as d — 0,

2
v fally+ 5 [, fhdg = 0 (6%(c0) + 6a(ea) + e 4) (2.40)

Proof Since fy € E; . we have {?fd.,‘-‘;?PUmd:Ed}g = 0. Multiplying (2.15) by f4
we get

Voere i _ , 3

|| i .i'rri”:g; 2 _f f&jdﬂ + _f EGII'IP['III.-I.E;' + ha) fadg = f {CJPD.:BJ:.EJ +:hy 4+ fd} fadg
i) Bg i Bg By

Let o = min{3, 7 + 1}. Then from (2.24),

j (CaPUs, -, + ha + £2)" fadg =CF f (PUsys,) fudg + 5 'r f (PUs,.,) " f2dg

O (Il 7 fallg) + 0 (e77/¥4)
Since fq € EY, . C Hj(B;) and |24 = O(=y),
0= {Vfa0: VPUssea}, = = fﬂa JaBgPUsyeqdg
= [H : fadgUsye,dg = (7 fa, WUz,
= f Vit PUgeady + f O(yD 7 fall 7 U eldy
=~ [ JotUspeudy + f O(zal + [y = 2l)| 7 full 7 Usnyeqldy

f . Zacaly + [ Oleat |y =l full 9 Uangeoldy
v A4

Hence by (2.39)
[, (PUzucdads <O [ UL, | ldy

g [D{Ed}” V Uy e ”LE{EE}
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1/2
¥ Um O(ly — z4]?) g?{fwdﬁdy) JH v fallg
= (0(ea) + 0 (&"(=)) ) | 7 falls
=0 (&”2{&1]) | 7 fall, (2.41)
and by (2.38)

_L PUT,;,“JJF{{HH = ”U;J:d,-r.lr”Liﬂf[ﬁﬂ'i}”fi”LF'H — G{‘fﬂ{t_d”” W fd”g 1:2.-'12]
5 # .
Using (2.24) we obtain
1 == T =,
19 lly + 5 [ fhdo = €37 [ (PUL e~ fhdg
s

=0(8") (ca) + és(ca) + D7 fully + O (I v £ul])  (2.43)

By the next lemma, whcn d is sufficiently small, the left-hand term in (2.43) is larger
than 7 (H W f::.!i? e o fBE fdd.g) + O (e ( He2 pesls d)? where 7 > 0 is independent of d.

Therefore we have
P |
IV fall+ 5 [, fd0 =0 (&0 + Sea(ea) + %) 19 sl
&
O (Ifallg) + 0 (572 + & 7/¥)

which gives the estimate (2.40).
Lemma 2.3 Let fj be given in Lemma 2.1. Then there exists a positive constant
¢ = 0 such that for d sufficiently small,

I fall2 + f fidg2 (r+m) [ UZLfidg+O (2 + ) (240

Proof First we note that, for any V € H*(By), z = (2',0) € B, (2.18) holds.
Let

. & gy :
P{ﬂ:d,ﬁ'd?j = SPEH{FU-F#:C&!B\_EPL‘:!H#d’a_iriPD-TrI-Erﬁl w1 = '.Tl}

Define the inner product in E; g4 DY

{uu) = f V- yudy
By

and let o, .- ., be the orthonormal bases of V(xq,£q). Let

n-+2

fa=3Y alel + 7,
=1 i
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where (?d,qa:ﬂ} —0,1<i<n+2 By[7; Appendix D]

Jo |9 TPy 2 G+ [ UZ LTy

for d sufficiently small, where o' = 0 is independent of d. Hence

b

E —.
Jo, |V faltu =3 (ot) + [ 19 Tabtdy 2 46 [ UZ2 Fiay

=]

SiHCE fd = PI:I:_-; — CJPUIJ,EJ = i:lrd - f&d o G&iLrIJ,E,J + Cd?md Egr fL'UII]l I:E.lﬁ}: {2.22}? {E.E"l}
and Lemma 2.1, we choose n > 0 sufficiently small and estimate

|9 Fall? > fﬂ |7 fal2dy - G f |:u||vfd|*riy
A
zf |wd|9dy—r:mf e o
By lw]=n ly| =

3—*{1—‘531?!)[ | 7 fal d:-:.f+D{ N2 e ’w’*f)

where (' does not depend on d. Choose 7 sufficiently small we obtain

1 I\h T T =
19 fall? > (T it :?-p)f UZzL Ty + 0 (372 + e VR) i3k

Next denote f3 = fafll @ fd“LE{B_gj:-fd = fi/l v fallr2(ss). Define

T.l"I}EE = _ E"TI_D:,E&/‘
d
a
il"l"u+1 o aEPU'?d:-fd/

’i'_,'fi'g_[_g e PUI“:,E'.H:.JF” W P'Uiﬂd 1 ”L?I:HJ;}

)

Ta! £d

L2(Bg) )

fv PU,,.,

L*{By)

Woting:. P o2 =" 8 — @y e,, from (2.22) we can obtain the estimates for i
l1<j=n+2 asin [7, Appendix B] and
n—2

fv”*w-fdy—ﬁﬁa(ef )y 1%ii <t

Then we can write
n+2

fa=Y btiui=fi, tleR! (2.46)
=1

For1 <i < n+ 2, from (2.46) we have

o

Zb“‘f vl 7 pldy

=1

f 7 fa - 7iddy =
By
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Since 0 = (v /o, Vi), = I, Vha-Vuidy+ 5, OuD)| 7 full 7 ¥ldy and [ag] = || =
O(ea),

/ w fi - uddy = fﬂ Olly))| 7 fall 7 vl dy
A

y ! 1/2
< Cll 7 fall 2y (fﬁ ly || T?’i';'fﬁ’!ﬂ-'-y) = O(eq)
&

Hence we have b = O(ey), 1 <i<n+4 2.

: 3 n+2 ;

iy i :

f U, bdfddy = f,:; L;d -51.:! fa = Z IEF?'-!;'J:? dy
=1

Tet+2 n-7

- [ vz édfdrﬂy—z_ze:-f [, Uiiddastay + 3 v [ Uk tutay

1,9=1

1-1—-—2 1 1
| i F] 2 =
f Dﬂd Ei-m?dy % z t‘j{” (f Ua.: -Lla: fd{'iy) (f U;du;ld (ﬂl’r}d) dﬂ")
b s

1,2 1/2
+ 30 0(e8) ([ vmh (o) ) " ([ vzt ()" )

]
0

2fn
=]:Eﬁ Lriﬂ_jdfddy + Z ey (f D,EIE!'JIL!I'I;) || L deLE{H‘,-;} ; ” 7 ﬂl";r”Lﬂ[Er,.;}

n+42 2."
2 7+1 i ¥
+ Z (}[Ed} (/ U*-:I.:'d"i*f) ” W ?n"*':::#“L?(B,, ] ” W w;f” L2( Bs)

ij=1

= j UI7L fldy + O(y)
= [, Vi dday+ [ OGubUzA Fay + 0(ea)
rT 1t FT 2 i
= Jy, Vet Fity + O ([ Uzt n) 19 fullioy + Ofea)
= [ Uik iy + O
&
since |xg| = O(e4). Therefore

[ Uik Tiay > [ Uz sy + 0l @ fuliaga, (2.47)

From (2.45) (2.47) we obtain (2.44).
Now we need another characterization of the least- -energy solution wy. Define for
Ve Wh3 2\ {0}
| = F”i?(ﬂ-] ik dyvfifi[ﬁ]
VIZ o

LV )=
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Then ug is the least-energy solution of (1.1) if and only if Vy = d~ "1 ud is the minimizer
of Iy in WL2(2)\{0}, module a constant multiple. Define for V & H*(Bs)

IO+ Vi,
||V||i;+l

Fe
E

Then we have from (2.3)

1 2/n -k
Ta(Vy) = (Ej Tg(Va) + 0O (E_?"ﬂﬁ)
Lemma 2.4 There exists 5 > 0 independent of d such that as d — 0,
i = 1
78) 21aUese) + (19 flli+ 5 [ fido)

+ﬂ(”%ﬁy+gﬁﬁﬂ”?mm+a( *+eﬂﬂj (2.48)

Proof Write ¥y4(y) = fa+ ha — caipa, ... Then
Vi = Callzy e, + tha
From Lemma 2.2, (2.22), (2.25) we have
1
I a2 + Efﬂ Yidg =0 ( 2% (ea) + Ea'[&‘d} +e ﬂvr)
&
: 1 ,,
” W Vd”g p E ./;:f Vf{ﬂj HG{E” v '["'Ftdv‘-*d”g + 'Cd/ Idﬁdd
A
2Ly :

+ |l 7 fallz + E{f fidg + = j;ﬁ Usgeafady

+D( ﬂ)+ﬂ{—ﬂﬂ)

" 1
=Ci |19 naedy+ 5 [, U2t +11w s+ 3 [ sid
B
( lefﬂfi}) | =7 fallg + (} (Ed S *rhf’")
f ‘i:-':':d‘!—'ialdl!? =-[ (Cdr-"r:r.‘d.,-id = h T,a'-'h{:]T-l-ldﬂ
By Hg
:C;-H j;? U;j’;ddg? +(r+1)C; f Uzyeafadg

1 T T or
+57 00 [ Uz g + 01 9 full)

rl.-u'ﬂ
+ G ( d - Em‘:r"lllv’_)
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Hence

1 - Tlr+1)
1+ - f L=t fody
|IVi|lLv+1 GEHUI#;EJHEH{ ECJHUE.,! eall’ ---|1-1 relea &

- —2/{T+1)
+0 (& Ca) I v Jals+ 0 (19 fall5) +0 (27 “_Tﬁ@)}

1
= T [ 1 = f L‘I Ii
C'EHU%'.EJ ”i;q-l { ff{,-'md ".:!| ‘T|'_|1_1 Kol Ed .fd,' g

+0 (&) IV fals +0 (Il 7 fd”i)”*’( & “_M)}

Then

e 1 1
TV =E U ) £ 2+—f 24
a2d) Ct‘%“UTd £¢||Lr+' ||?fd||§, d J g Jadg

e ’Tf{:[Ucd,r:d]f r—1 1/2
U B Usieuta +G( (€a)

d,Edl LT-|-1

+ Eéa(-fd}) v fall +© (|| v fd”g) +0 (EF a Ehﬂﬁ)

Since I4(U,,.,) — § and ||U, seallzris = S as d — 0 by (2.36) (2.37), using Lemma
2.3 we obtain i

e o 1; .
alVa) 2TuUeye) +5 (I Sal+ 5 [ fida)
By
2 1 - -
+0 (6177 (e0) + 36(ca)) I v Jully + 0 (€35 + e=/¥3)

Now we estimate Iy(Us, . ). Since x4 = (x4, 0) and |zj| = O(zq4), from (2.32), (2.36)
we have :

19 Usscaly = [ 19 Vs 1= (0 = DH (o)l + Olfza + 312}y
P12
n—1 ’ 2
Al

+2) o(Fa) [ |y (ﬁ) d

i=1 - Bg{za) | dy; - ¢
=S"% — anH(Pa)éi(ea) + O(¢a(ca)
From (2.33), (2.38)

f Usigeady = f oy [D0el {1 = (2 = DH(PY gl + O(|7a + y/*) }dy

Ej.lf

= Cnlalea) + o(&2(za))
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m (2.33), (2.37),
[, Uit = [ UL~ (n = H(Rlgnl +Olza + 91"y

= §2 — b H(Py)ea + O (&3)

(n—2)b,

1 it 2
= 5 {1+ ey H{Pj}5d+ﬂ(5d)}

WeaedZom

Hence

 LUiied) = 5 = puH(Pa)6s(ea) + gnta(ed) + O6a(e) + 0 (36alea) ) (2.49)

I"(E‘-}l) _3- |
STeF U ifn e

F(n +1)

where

b= T =2

—-5

ifn=23

ﬂ‘rn.

and g, = GL;S_T.
From (2.40) (2.48) (2.49) we have

Ia(Vy) 28 — poH(Pa)a(eq) + %‘?ﬂf?(ﬁd} +0 (%EE{EdJ)
2 S :
+ O ( 1"{2{-5&} + —'!:_:3 {Ed]) (EF + E“Tf”q) (2.50)

Proof of Lemma 1.1 When n > 4, suppose (1.8) is not true. Then [y = o{+/d)
as d — 0. Since —2— — 1, we have
v/d

( 3 (ea) + Eﬁ(fd])? = (Ed + %Ea{t"d))z
=0 (3+ 28(e)

’ﬂ ﬂditf-l-.ﬂd) if > 6

3 4/3
:':-‘S'(ﬁd lﬂgﬁd{]) ifim= 6
r:::-[ﬁ%pr “ﬂd ifn=>5

- o (A

Hence

22" [4(Va) =LalVa) + O (7Y 2 § — p, H(Py) fu/d + 453
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+ 0 (Buv/d+ B7) + O (e=V9) (2.51)

Next choose Fy € A2 so that H(Fy) > 0, and choose 5 > 0 sufficiently small. Let %
be the diffeomorphism straightening a portion of boundary df? around £ and define

Valz) = Up gl $olx) ) ()
where @(x) is a cut-off function. Since Vy is the minimizer of Iy we have when n > 4
M1y (Vg) < 2™ (V) = Ty(Up pa) + O(d?)
== Sl — Pn II':PD:IIH‘E 3o '?:15'[’2"1 + 'Dl::d]
= 8§ — g P H(Py) — gnn)d + o(d) (2.52)

Fix 5 > 0 so that p, H(Fy) = 2¢.n. From (2.51) {2.52) we have
[pnH(Pa) + ﬂﬂ”ﬁdﬁ — ga 35 = gand + old) + (F ’”"’F) = ggr e d

when d is sufficiently small. This is a contradiction because we assume Jy = ::r{'-fﬁ}
Now proof of Lemma 1.1 is complete.
Lemma 2.5 Assume n > 6 and Fy is a limit point of {Py} as d — 0. Then

H(Po) = g H(P)

Proof Since — 1 as d — 0, when n > 6 we have

“w’_

' 1 ;
({é’ (ea) + EEEEE:-!]) =0 (:‘ﬁd + ﬂﬁ)
From (2.50) we have
I(Va) 2 S = poH(Pa)Bavd + 483 + 0 (Bav/d + 53 (2.53)
since e=7/V4 = 5 (3?) from Lemma 1.1. Assume H(P) < max H(P). Let P e an.
o i3 £
with H(P) = LTIIE%% H(F). Let ¥ be the diffeomorphism straightening a portion of
boundary @62 around P and define
Valw) = Uy g, ya(Tla)(a)
where (x) is a cut-off function. Then we have
EEIIHI;I{L{:{'}I E EEJ'I‘JII&[FJ:I — fd{u[hﬁ..!vqj <+ ) (ﬁﬁ{-ﬂ)
= —pﬁH(Flﬁdvﬂ-}- t]r-,.“"?ﬁ + ) (ﬁéd)

Hence

[d(Va) < S — puH(P)Buvd+ a3 + 0 (f3d) + 0 (V) (2559)
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From (2.53) (2.54) we have
pu(H(P) — H(Py))Bavd < o (B3 + faV/d)
‘Hence vd = o{/34). Using this conclusion to (2.53) we have
Io(Va) 2 S+ quBi +0(B3) > S

when d is sufficiently small, Obviously f{;[f’d} < 5, we reach a contradiction.
Corollary 2.1 When n > 6, part (il1) of Theorem 1.1 holds _fd*r any smooth
bounded domain 2 in B".
; Proof Fix d > 0 and introduce a function f; defined hy

falB) = puH(Pa)Vd — g 5°

Set iy = {Eﬂ?u}_lPﬂH{Pd}ﬁ~ Then ?gﬂxfd{ﬂj = fa(B3) = {4qn}_1{PnH{Pd}}2d- From

(2.57) we have
I4(Vg) = 8 — fu(B3) +ol(d), asd—0 (2.55)

On the other hand, let ¥; be the diffeomorphism straightening a portion of boundary
df? around Py and define Vg(z) = UD.J:'.I; vl Palx))i:(x), where () is a cut-off function.
Then we have

Eﬁfﬂfd'(vd} E Eifnf{j{vd} = Id(U[},,ﬂJﬁ} - ﬂ'{t‘f} =5 - fd {ﬂ,}} + ﬂ[:liﬂ

Therefore

Ig(Va) £ S = fu(B3) +o(d), asd—0 (2.56)
From (2.55), (2.56) we see that
falBa) = fa(53) + o(d)
and hence 4;/57 — 1 as d — 0, Thus

vid 20y
—
Ba  puH(P)

Remark 2.1 When n > 6, from Corollary 2.1 we compute

since H(P;) — H(P)

Fiiia )i G)w" S |1~ 6aH(Po)’d] + o(d), asd— 0 (2.57)

where

n+1) :
2
it

(3)

(2.58)

5 (n - 2)3(n —4) F(
" an(n = 1)(n - 3)2 r
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Note that

1
17 Vi (o) + 51V 1T

Ve WREN\L0
| IVIEZ (20}

I,_rgli F-:i} == i]lf
r+l{ﬂ:|

2

| 7 i3 s+ lell3,,
= inf{ erﬁ-l’“ﬂ’ LN . e W22 /VEN{0)
|':|‘§I Lr"‘"l:."?_,lr"."'?j

(2.57) gives the asymptotic estimate of the best Sobolev constant for the imbedding

4 2 i T T
1Wol2 [_J S [—], as the domain — expands to infinity.

vd vd vd

3. Uniform Estimates

This section 15 devoted to the proof of Theorem 1.1 (1), under the assumption that
12 1s strictly convex. Recall that Py € 902 when d is sufficiently small. Without loss of
generality we may assume Fy — Fy as d — 0, ) € 2. From the convexity condition,
the i — 1 principal curvatures a;(F), 1 < 7 < n — 1, are all positive. Hence we may
assume o;(Fy) > ag > 0 for all small d and y = 1,--+ ,n = 1.

When 12 # (0], by rescaling the coordinate system we may assume og > 1.
Then through translation and rotation of the coordinate system we assume that Py =
(0,---,0,—=1), and the inner normal to 842 at P, points in the direction of the positive
In-axis. Now we denote the new domain by f2;. Choose & > 0 such that around the
point Py = (0,---,0,—1), 824 can be represented by

1 1—1 -
@ = thalz’) = =1+ = Zi aj(Py)z? + O([2']*), 2] < 26 (3.1)
__‘.':
Now we hawve
balz') = —1 4 % 2% || < 26 (3.2)

and [y M Bag(FPy) € B(0). Observe that 0, varies smoothly in d, and § can be chosen
independent of d,
Next we define a map F: By — R% by

F[$:1:€n} =% (_“ 4’ ?r[l F Ellj:l ) (33]

(14 20)? + [ (1 + 20)? + [

F(B1) = R, F(Fs) = o0, F(8B1) = 8B} U {cc}. The inverse map F~1: R* — B is

given by
FY (o ) = 4y dlif (3.4)
' (24+yn) + W12 (24 ya)? + |y '
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Denote 27 = F(fl3 N Bag(Fy)), Ty = F(824 1 Bys(Py)\{Ps}). Let Vy be defined in
(2.1) and define for y € 27 U Iy :

n—2

Valy) =47 [+ m)?+ 7] 7 Va(F'y) (3.5)
Computation shows that
T _E —r il - &= .
v Vg —16d~1 [{2 )+l P] Va+Vi=0 in2; (3.6)
51:’}; mn—2 £
b Vig= I 3.7
CEEmp O e R 357
where :
baly) = (2 + yn)on + > yiv] (3.8)
.

and v*(y) = (v},---,v}) is the unit outer normal to Ty. In fact for y = F(x),
: =1 :
(14 @) + |22 =16 [(2 + ) + [§'[7] (3.9)

et u(y) =4~ [[2 + 1) + Y] E ST Thert we can write Vy(z) = u(y)Va(y) with
y = F(z). '

aT"':-,r BV.ﬂ EF;; T Bu(y]l E}Fk
:;1[ DICILES A ami] G0
et
AVi(x) =u(y) ; V=) v Ale) 5
F_ ) E,F'Fd
+ u(y) Z AFy {I}Eﬂ + 2 HEI VF(z) - vE(z)5— Sox P
o n Tt 3211-
+Valy) 5 AF( r} ” -+ E; VE(x) v F(z) Syﬁm] (3.11)
From (3.3), (3.9)
2 166,
v Fia): VRE) = ety 1<ki<n (312
8(n—2
AFy(z) = = +ij2 sz:flilz' 1<kzn—1 (3.13)
AR 8(n—2)(1+x,) (3.14)

[(1+ 2,)2 + |2')2)°
Plugging (3.12), (3.13) and (3.14) into (3.11) we find

16 L A TE
M eV &




22 Pan Xinghin Vaol.8

Now from (2.2) we have

16 > AT S
f{l Fon)2 ¢ [ WAV ) - quVa+uly) Vg =0
Since lg)igs— [{2 + ) + 7] = > . we obtain (3.6).

[(1+x,)? + |l;|ﬁ]
Let v({z) be t,he unit outer normal to 3§23 N Bas(Py) and v*(y) be the unit outer

normal to I'y with y = F(z). Then

v (x) = %[fl-i-xﬁlg +: |3;f]2] g agﬁjﬂ :

v(@) - VFi(z) = 1 [(1+ 20 + 2] 3 V() - VRE)E )
i=1

T3 : e(w)
i [lnrl T -:-E‘:1'|::IE i 13‘3”2} UrlY
Since
<A/ PR ou(y)
= T et
G szi [. . A k)
4 . SF:I = Fuly)
= — +V
{1 + 1“1.1}1 e |I.r|3 [ﬂ{?f} TR -+ ,_{I':y:] hE
we hawve e
7" 1. 8 Er :
ﬂ.,f +: uly) gg?} V=10 "on: I’
Since i
1 Buly) n—2 n—
uly) v 2+ga)? + [{3 o sz; ‘“’”‘“‘J

we obtain (3.7).
- Next we estimate by(y). Computation shows

5 aF,! _
v} (8) = 7 [(2+ ) + Iy Zu @) =), 1<i<n
where F1 = (Ff11'--,F,f]J and ¥ = F(r). Hence
n—1
baly) = (2 + ym)vy + 3 yiv?
i=1
il aF {y A, ari
- 4 [{E + El'n 'yj] ] Z U.‘E{T 2 o yu} Ar _Zl {ﬂy{
n—1

= =2+ ga)en(z) = 3 mevilz)

i=]
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= 4 . n—1
= m + |z [{1 + 2n)un(z) + E Trvy(x)
Since at Fy = (0,---,0,-1),v(Py) = (0,-+-,0,-1), we can choose § > sufficiently
small (and independent of d) so that by (3.1)
n—I1
(L4 za)un(z) + > zmpup(z) = O (|':z:"[E + (14 ;rn}?)
k=1
Hence
[ba(y)| < O,  uniformly on Ty (3.15)

By computation

4 % 1 3]
WDFE) =~ || = (et e

Since F reverses the orientation, from (3.5) (3.16)
VIt ()dy = f Vit (y)d 3.17
fostos e A2} )y (3.17)

From [3; (3.34)], for any ¢ > 0 there exist dg > 0 and R > 0 such that when 0 < d < dy

f Vit z)ds < ¢ (3.18)
Ba\By s Fa)
Hence
fﬂ_jﬁﬂ o Vi (y)dy <e (3.19)
AR

where Qp = (0,.--,0,-2).
Now we denote Wy(z) = El-é-ud{ﬁ; + Bav'dz). We shall prove

{1 — Fy
Bavid
_whem U is given in {1.2), Reral]mg (2.3), Lemma 1.1, and noting

Wal2) = ($avd) ™ Vi (Pat 5/ 2)
(.Hd"“r) ( V' .ﬁd\rzu - 1) |
(ﬁaf )= e "V ( (Pt 0uE))
(ﬁdv"— )T -7 g)

where y = F(Fy + f4v/dz), we only need to prove that, there exist R > 0 and C > 0,
both independent of d, such that for all |z| = R and d > 0 sufficiently small,

V4 (F (Fd + ﬁd‘fﬁﬁ)) =C (,Efdvﬁ) = (3:21}

Wa(2) = CU(2), =z¢€ (3.20)
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that is,
PR n—i
Valy) < Cey? forallye 270 B%{Qﬂ] (3.22)
£d

where =5 = B4v/d.

In the following we set

Wl =7 2 Vi (Ed) (3.23)
and 2y = £4023, Iy = e4y. We only need to prove that, there exists x> 0 such that
Wa(z) <C for all z € 2,1 B,(0) (3.24)
Obviously Wy satisfies
AW, — 1664 Wi+ Wo=0 in (3.25)

(224 + ) + |2/

W 4 (n— 2)eq z ) = . s
o + l:EE“d % .‘-;‘1.1:}2 T :z*;']"ibd (a Wﬁ[ —{ on Fd {52&']

where v is the unit outer normal to Iy and by (3.15)

b (i)‘ < ondy (3.27)
£4

(n— 2)eg
{EE{[ "I' .-E:ﬂ 2 ""E"' |£_.r|:2

— 2 ¥ - o i
bd( ) u When z € ') and 1 —w-, (2 4+ 3 )* + |3 ﬁ;tmdfrum
Sd d

Denote I'jt = {z €ly:(2ea+ 2,02+ |]* < :“‘iEd}- When z ¢ T'f',

= ¥ =
16c4 _ 166sv'd _ 16d
(3:9); |z — Pl =(1 ¥z:)* + |22 2 e 1 AG‘U by Lemma 1.1, where

Cy = 0 does not depend on d, and » = F~'y. From Remark 1.1 we can find dy(A) = 0
such that for 0 < d < dp(A4), ug(x) < e~ Tolz—Fal/Vi  Henee

n—2

Valy) = 4°F [::zwﬂ}zwl] " Vila)

2 3 —1/2
= 4 [(E +1"n]£ + |y sz] ‘e 470/ Vd [{E + y*.-a}z + |’.i3|'j|2i|

< d™F eIl Vd
since yn > 0. By Lemma 1.1, when 4 is Sufﬁﬂicﬂtl}’ small,
Wae) =3 T Va(2) < (0a/d) 7 a- el
= {dﬂﬁg]‘{“‘ﬂme_z"“f""& £ 0 (n=2)/2 j—(n—2)2,~290/VE < o—(3/2)10/V3

Hence on Fj we have, since z, > 0,

(n— 2)egq TRl e (n— 2)C, g
byl — || W o ik = (8 2o/ v d
e AT e (5) | et < e
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< (n — 2)C,

4o~/ < .~/
4G, & =

(3.28)

Now we prove (3.24) by using the arguments in [3; Lemma 2.13]. Before starting
‘the proof we make some remarks. .

First, we note that, there exists ug = 0 independent of d so that 82, B, {0).C I
Second, we observe that, {2, N B, (0),0 < d < do} satisfies the uniform cone
condition. In fact, from (3.1), (3.4), (3.9), I'; can be represented by

4—lyl? 13~ 16y}
= -1+ — E +
(2 + )2 + [y]2 2 =[G+ + PP Y
where g{y) {J( L Hence
e . Hen
i (24 3n)? + I[P

n—1
C+v) + PR+ ym) =23 ap? +3(y)
i=1

where G(y) = O ([[2 + 1) + |¢')?] 1;2)_ Letting y = E_i in the above equation we

i d
- obtain the representation z, = z,(z") of Iy N B, (0):

rn—1
(224 + 2,)% + |2'|2(22q + 20) = 224 Z ajzf - Fl2) (3.29)
i=1

where f. (z) = Eﬁﬁ (Ei) =) (E_Fi [(2eq + 2,02 + [zrfg] 1;2) From (3.29),
: i

n—I1 E‘cj:
g+ 2, < Esd; crjl?ﬂ‘]-,j +0 (<3)
for 2 € I'y M By, (0). Hence
0< 2, <Ceq on Iyn B, (0) (3.30)

Forl<i<n—1, z€ Iyn B, (0),

dz.,  degloy — 1)z — 222,

dz; 3(2eq + 20)2 + |2/|2 + O(za) 0 (3.31)
(3.30) (3.31) imply that
iz : =
"EET EG'._IEE-ETL—I,EEFdI']B#ﬂ([]L{],‘:d{dﬂ (3.32)

Thus we obtain the second observation above. (3.30) also implies that 2, N B, (0)
converges to Bf in C%, 0 < a < 1.
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Now we claim that we can use Sobolev imbedding theorems in 2; N B, (0), with
the Sobolev constants independent of d. Moreover, when g is sufficiently small,

[ ds <1, dz < 1 (3.33)
FyM By (0) 2418y, (0)

In the following we let n denote a smooth cut-off function and b > 1 denote an
arbitrary number, both to be specified later. We use ¢ to denote a rencral positive
constant which is independent of d, but varies from line to line, Multiplying (3.25) by

uzwd, where supp n C B,,,(0), we compute, by Green's identity and (3.28)

| f W;“’ﬂry} f nEWd&Wdfiy
ﬂ'd En'.

a ind AT
- f TWh) oW ady - ﬁ W 4y
i v
2 2 arrh+1
'FI |?Wdld?“3 | wn|tW T dy
12

_'[n_j_iff W*’— ds — e=10/vd [ ﬂzﬂd,ﬂ
Fi

Hence
i — —— 2 —r
f Wy 'I?Wdlzdyi Ef- Wy dy + f Wt o nlldy
T2 L

2(n — 2)C.,
Ly

By Sobolev ineguality
2

&1
‘Ej: ?(ﬂwd?)
L+ 2y 2

1 e Al l )
<506+ I}Efﬂ VW, | v-ﬂf’alzdwﬂﬁ} I*:?erWﬂ“dH[ﬂ Wit dy (3.35)
p o =g . o

_+_

An T}W

2
o fﬂ Wy
i

where Ag is independent of d, see the remark above. Let
n—1
n—2

jnw+ v (WW:E_I )

1
§(b+1}lf. |?Wd|2dy‘|‘2/ |'w Wy dy +f Wy dy (3.36)

k=

Then

2
Al

dy+ [ i',rzﬁf'd; ey
LN

=/
L2k( [, rmﬂu v Sy

and
9

= fd 2
Ag |lg W 2 < f
£ L3TynB,,) i

v (??W%l]

ffy—|—f_ nwd dy
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1 = g o A
= (s 1}2f el e |?Wd|2dy+2_é [«;rnﬁwg"dﬁ/_ 2 dy (3.37)
#] Ty

M

where A, Ay are independent of d.

i 2
Eix A = 24 E‘f,;{T ol . Then for 0 < d < d(A), from (3.28), (3.33) and from

(3.34), (3.37) with b= 7,

—r_], = 2 =2 4 grerT+1
ﬂ Wy | Walkdy < —f_ nﬂwde?;+—if_ |7 "W, dy
Sig T Sy Ty

—i——[f_ 1*; |'{?Wd|2dy+‘2fh |?:r;r|2'1-ﬁ+!f.!y
d

+ zf W, dy| + e~(r+lim/va

Henee

o % q
f_ Wy v Wl dy <= f
Ih T A5k

o

Eﬁ’ﬂfdyrr-( +2)/ |7 0P Wo dy
+2/ Wi dy + 26T/ Vi
1?4

Then from {3.35)

_+_

<At + l}zf, P Wytdy + Eﬂf, | P Wy dy
L+1{424) f2a 2

+2(r + 1)?f Wy dy + (r + 1)fe~(T+U0/VE (3 3g)
fig

From (3.19) we can choose 5g > 0 such that for all 0 < d < dy,

f Wt dy < [ Ao ]m (3.39)
(240 By, (0) dgstd = 8(r +1)2 -
By Holder inequality |
2 T 2 Tt : =il |2
4r + 1) f W2 dy < 4(r + 1) f Witay| g
2 TN By (D) Lr+1(52.)
e
< 2w
2 L)

Then by (2.38)

_ET. :I
'-’i'“’j:_

: .
\ Tl 1)3f W dy
L7+1(f2,) o

% ‘“’fg |V P W dy + 2(r + 1)Pe~ IV (3 49
of

Ag
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1
Fix '0'< ©< 7o Let i be a smooth cut-off function supported in B4.(0), n =1 in

1
By (0),0<p<1land |7y < - From (3.39) (3.40)

where C only depends on n, Ay and r. The same reasoning gives

___r4l 2

W *

1 o =
: < ::?(1 i 2) [ Wty + Ce~ IV < ¢ (3.41)
L7+ 1,nBs, ) L 2aMB g (0)

e |12 |
W2 < (3.41)'

L{I'yNBa,)

In the following we shall use an iteration process to establish (3.24). Let 5 be a
smooth cut-off function supported in Bo.(0) which will be specified later in each step
of the iteration process. I'irst we use Holder inequality to obtain

2/q 9

- L, b G
]: '.rﬁ EFI_EJ'-'J!’;[.I' < (-/; Wﬁ: l]liil'.-"zdy) K
12 2408y, Lralla=2) )
: : 2q 2n :
where ¢ = : ; < =71+ 1. For any £ > (,
4 2 g—=2 mn=2 y
et Lo TS bl
HT}WH,* <e T;rﬁfﬁh +e77 ||nW 2
L2afla=21(f2,) L2/ a=20{ {1, L2(524)
n—2
where o = o By (3.41)
Sl b1 |2 3 bii |2
f_ Wy dy < Ce? [[nW £ 5 ¢ +r:'5-'i“-*}' W, = (3.42)
i, LT+1{{14) L2(§34)

From (3.34) (3.35) (3.42)

2 b1 |12

W prembt1
W, B L e 2 T e
L7+ (1) 14

mE{n—E}C’ (b+1) f Wit

< 2(b+ 1)Ce?

o
Lm+1{{1,)

...L_ 2

+ 3(b+1)Ce (72

LA )

2(b + 1)e— 0/ Vd f P Whds ' (3.43)
"'rld :

Ao

Choose ¢ = | ———
00Se £ [4C(b+1]

1/2
] . Then we have

b1 || 2

AN 2
"HW({E

< gt
L+ 2)

+C(b +1) fr W dS + O(b + 1)e~0/ V4 f PWadS  (3.44)
a PI"

b1
W,  +C . | wnPW dy
Lﬂliﬂg} -ﬂ.i
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Also by Holder inequality and (3.41)

oWt | Wity
ﬂ'.,{ ﬂdﬂﬂzr

Then by (3.34) (3.44)

L
124

ka1 (|2

2fn S
<ol

_ bpa )2
)
L

LT+1(ﬂdJ Lr+1( 1)

S e, b1 112 4c?
Wl | o Waltdy <4C(b+ 1) _ +—/_ | o 025 dy
L

nW ¢
S e

+4C? fr W5 S + agte V3 f WhdS  (3.45)
d Iy

Now for v < 2 < 1 < 2r we choose 5 so that » = 1 in B,,(0), » = 0 in R™\ B, (0),
2
D<p<1land|vnl = - From (3.36) (3.45)
2

!
. 1/k
Ap f ['/ nw, = dﬂ}
L2%=( Pﬂl"‘lﬂp e
4@*1 b+ 1 .
20 }3 i3 +zcﬂ{a+1}2f i wotds
(ri—a)" L2(24NB,, ) Fy

+ 20 (b + 1]“e—w’ﬂf_ﬁ 2 WodS
I

Since f’&‘* afly e Bv’ﬂ_.mm} Gl B C e B,,, by Holder inequality and (3.33)

2
”‘“WJS{f 27
ffgﬂ 4 _( 4

Hence for another constant O,

)%

b )12 L Clo+ 1)% -
L2 (FynB,, ) '[T‘l =7 EJ L3( 24N By, )
2b/ (b-+1) R
+emb+1? ||[WE HWf ; ] (3.46)
LA(TunB.,) LT anBey )

Let h=504+1. Then we have

n-+2

e Ch™3
”H :i”f_lkh{f-dr-lﬁfzj E[F

2
+ ORIl

Observe that, we only need to prove for 0 < d < d;

]i_hnlﬂf |IW,¢fFLhmdnEr} < 00

—Jfﬂ dlim[mnﬂ :,+Gh “Wdﬂm,:rdﬂg )

(3.47)
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Suppose this conclusion is not true, then for a sequence d; — 0,
Iminf [|Wy; || a0, ) — 00
Thus we may assume, for such d = d;, there is hy > 0 so that when h > ha,

"ﬁfd”ﬂ{ﬁdnﬁ.} > 1. Hence

| “Lh“ N8, 11133{||Wd||j£n{ﬁ_,ﬁ3“]:,a ”ﬁn;dﬁlf"‘l:f?,;ﬁ_&,]} [3.48}

Thus after replacing C' by 2C, the last term in (3.47) can be omitted.
Next for v < r3 < rg, choose 5 so that n = 1 in By (0), n = 0 in A™\ B,,(0},
i}

ﬂiniland|?n|£T . Let o« = ngandh=h+l. From (3.33) (3.44)

(3.45) and the remark before (3.48),

HW’f“fkhm MBry ) {ﬂwﬂl Lk (2408, )
ch* r |
E(rz }an‘iﬁLkm ng, ) T CHlIWalljs pog, o (3.49)

il + 5 From (3.47) (3.48) (3.49)

Let rq =

Wl punians,yy + Wallincrn,. J

o
s .l .k
E {':’J. ik TEJE [”Wd”-'r;k{fa.:fﬂﬂrj:l + “PI.- d”L’hl:PdﬁBrl j:’

Henee
25

R g
[llwd”LEhEﬂJerH :,"" ”H -:IJ LLh(pdﬂHP ]J = |:||WLE|| .‘:h(@dﬁﬂﬂ }"‘ ”Wrtnfk.l Yy NBr,)

L
h

t 1
C e ; ;
< o] 7 ey H Il (3.50)

where By = ry, s = r3. Define

N B) = [IWally 7 gy + Il "HRJ]

Leth=hm=(r+1)F" R=Ry=r(14+2""),m=01,2 - By standard iteration
process we obtain from (3.50)

lim sup N (I:T + 1)};*”"‘.1}Rm+1) < ON({T+1,2r)

LR B

From (3.39), [3.50} we see that ﬂ"{:r + 1,2r) € C. Hence

sup W s {R.inF.r y S hmaup N ({T + 1) Rm+l) =C

H‘..II"IB

Now Theorem 1.1 (i) is complete.




Condensation of Least-Energy Solutions of a Semilinear Neumann Problem 31

4. Condensation Rate

First we shall prove Theorem 1.1 (i1). Let
1
Walz) = —ug (Fﬁg S ﬁdvﬁz) (4.1)
e

From Theorem 1.1 part (i),
n-F;.

Walz) < CU(Z); =€ T (4.2)
Now we define Vy(z), V,(y) by (2.1), (2.13), (2.14) and define
Walz) = (8avd) * Va(BuVdz), =€ By (4.3)

Let g = inf |D @q(y)| and My = sup|D Pa(y)|. Then 0 < mg < ma < Mg < My for all
5 By
small d and hence
mnﬁd‘sﬁlzi < ’S'F'd (ﬂd\ﬂz) - Pdl 5 ﬂffﬂﬁd\fﬁ|z|

for all z € By, g By (4.2), for z € Bﬁfﬁ S
Wile) = (ﬁdﬁ) =5 v, (ﬁduﬁz) - (,ﬂdvﬁ)% Vy (aﬁd (ﬁ{; fiz))
= (ﬁd"ﬂ'ﬁ)% Vi (Pd + (@d (.ﬁdﬁﬁz} - Pd)j = Wy [

3vd
< TaxX W3 < CUlmalz]) < CmE"U(z
S oAz d(2) < CU(mg|z|) < Cmy "U(z)
Hence §
Wylz) < CU(z), z€ Bﬁfﬂwﬁ (4.4)
Let Ga(z) = a23Wy (5 ) Then for z € By, 3, by (4.4)
i
_n-2
2 Izi2 ;
Galz) £ C’adU C|3; + s (4.5)

Hence on any compact subset of R*\{0}, {G,} is uniformly bounded. Let g;; and g*
be defined in (2.9)-(2.12) and define

9%{3} = Gij (ﬂ:—!?) ; ﬂij{:f:] = g (vﬁz) (4.6)
Then set,
5 1 L i ' i
Ay = 3 (g%) El az; ( det (ﬂif:)y:g azj) (4.7)
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From (2.15) (4.3) We have
ﬂ'ﬁd"ﬁrd = {:-'{1 =1 Sj&; = () E‘i-‘gj

in B3, ; Ja\lza = 0], and G, is a weak solution of (4.8)in B 8 From (4.5), after passing
to a subsequence we have

Gq— G in CL.(R™\{0})
and 0 < G(z) < C*|2|2™ for z #.0, where G satisfies
_AG+G =0 in R"\{0} (4.9)

since g%[z} —+ &5 in CE_(R").
For any ¢ € C§°(R"), by (4,4), (4.8]

fﬁ G()[(-A +1)p(2)]dz = lim f Ga(2)[(—A + 1)p(z)])dz

"35,.'-.!3
= lim @(2)[—AgGy + Gyldz = lim ,de w(z)GT(2)dz
a—0 Hﬁf'l-"q 4—0 H-F'v"r'
={£i11a_§§&§ff Z)WI (ﬁi) de. = hm J”"‘E ‘hf o Baz)WI(2)dz

.sp.-" H-E,l'ﬁ‘!,\.-'?

=p(0) [ U7(2)dz = ~wnln(n — 2)]"%p(0)
i .
since Wy — U/ in CL_(R"™). Hence
] ¥ I} v
[—A4+1)G(z) = Hwn[?n[n —- 23*25(2) in R™\{0}

where & 18 the Dirac measure. Hence

1
G(2) = —waln(n - 2K (z)

where K(z) is the fundamental solution of —A + 1 in B™.

Next we prove Theorem 1.1 (iii). Although we only need to prove (iii) when n = 5,6,
the following estimates are valid for any n > 4. Assume F; € 812, Py — Py as d — 0.
When n > 6, by Lemma 2.5, H(I}) = max H(P) > 0. When n = 5,6, by the

assumption that 12 is a strictly convex domain we also have H(F) = 0.
From (1.1) and Pohozaev identity

/,rg ugdz —[ (x — Py, v) [—| 7 ug|® — ---—:q_j.z."r"'l - %ud ds (4.10)

T

As in Section 2 we assume Py = 0. Let IV be a neighborhood of Fy and § = 0 be chosen
so stall that (4.4) holds for all small d. From (2.4)

1 n—1
z-v(@)dS = |- azf +o(la|?)| dal, || <6
. =1
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where o; = o;(Fy), i =1, .- ,n — 1, are the principle curvatures of 8 at Py
1 n—1
Pl=——Sa
HiF)= ; a

Now we shall estimate each term in (4.10). In the following we shall use (4.2), (4.4)
frequently without mentioning, and use H. O. T. to denote higher order terms, which
may vary from line to line.

d d bt
IE f iT-:_P," : EdS:— — 1_2 Elfif+HqD-T-
157 ey 2 Jiet|<s (E ;ﬂxt) Y
1 oaie]
=—dz .:E;f .Lf| v H,;Fd:}:j + H.O.T.
4 ; j=f| <4
fabin n—1 :
=307 S i [ 02V Valy)D 28 Paet(D By )y + HOT,
i=1 y
T r—1 : 2
—_d3 . 2| o7 Valy")|3d 1T
ek ;aifly’l*iﬁyzlv a(y)"dy + H
=1g,q47 E cr-f 7| 7 Wal2)Pde’ + H.O.T.
+ =1 JIl<s/sava”

R
=26:"E Y L 22| g U()*d' + HO.T.
i=] b

1 i 22 TE 2k
. A H (P Bad 4 e o il B R By
Tz wn—1H(Py)Ba ﬂ/ﬂ Bl v 2]} dr + HO.T

SN g i | n+1
—an{n =3 m(n ) (i1 0) B
+ H.O.T, (4.11)

i
— T T"'l
I_g _/;;5} om I':m .Fd, vjud {-’I]tﬂg

ek Z m[ ziult(z)ds' + HO.T.
s X

iy X ’
=Y ai [ VI D By dy + HOT
o5

e—1

n—2 a1
=——fud 2 Zi‘ﬂif

in 2| <6/ Bavd EEW;H bl O
=1 i

i—1
= e gﬁddkﬁﬂ Z Ctz_'f EEUT-FI{EI}EIEEI LG,
-1

i=1
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nin —2)

r(n-—l)r(n+l)
n—2 ntl D 2 et ,
=——[n(n - 2)*F T wn 1 H(Py)34d™S + HO.T. (4.12)

T o—2 5}3 =0 & e i
=" ud"F o H(By) fﬂ i e R ¢

From (4.2) we can choose R > 0 so that
ug(Pa+ x) < C(Bad)"T |2]*™, || > RVE

—— _— — I F .-.r - i -
= aﬂ{l Py, v)ui(z)dS = f’l-fﬁ (Z (ki ) ug(z )dz' + HO.T

;'l,'.

<C f |of Pud(Py + o')dz’ + C 2|43 (Py + o')dz’ + H.OT,
||« Rvd Rvid<|z'| <4
: el T F-fr’d:s*iﬁv"'_f &' |us( Py + ') dx'
S PP+ 2 a1
=REE [ WG
|2*|< e/ Ba
2t Wity o o 2 net
< C’R,ﬁﬁd 7 ki B BT D A 0 dr < CRA3d ?
: Fri—1 n{n — 2)
' Pud( Py + Nde' < C d “_Ef B=2m g
~Aﬁﬁw5mlj iPat )i <oy [ o]
. 08~ %d%")  ifn>5
<C(Bady*2 [ vt = 1
Rvd 0 (ﬁgdﬁ log E) if n =5
Hence
: O (r,’;‘ﬁ*h’) ifn>5
Iz = {J: Py, v)ul(x)dS = : e
O (,ﬁﬁw“ + G3d® log E) ifn=>5
=0 ( ,r_agﬂ«:%) (4.13)

Iy = ];? ul(z)de = 47 L . VA(y)det(DBy(y))dy + HOT.
F

Ef8ave

—In(n ~ 2))3 r(z)

9 Ln
P “nBid? + HOT. (4.14)

—3243 fH . Wi(dz+ HOT. = 5243 f U2)dz + HO.T.
Ry
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Hence I3 = o(ly} as d — 0. From (4.11)-(4.14)

2
i
- 3 n 1 1 A%

r n—1 r n+1
ik —z}]ﬁaﬂ} 2 ( 2 o 1 H(P)fad™F £ HOT
1 * I'(n) e et e ¥

Hence

1+ 1
%F(T

*(3)
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