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Abstract The decay properties of global solutions for the Benjamin-Ono equation
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1. Introduction

In this paper, we study the decay properties of global solutions for Benjamin-
Ono (BO) equation of high order. In [1-3], the authors establish the existence and
uniguenecss of global solutions for the BO equation and its high order approximate
form. The decay properties of the solution to the BO equation in Sobolev spaces
J. = H"(R)n L*(R) are also obtained in [1]. Our aim in the present paper is to
discuss the decay properties of the solution for the BO equation of high order and an
[orio’s type result is derived. Before starting our work we introduce the definition of a
weighted Sobolev space.

Definition 1.1 Define J, . = H*(R) N L(R) with the following norm

115, = IFIZ + 1A Zes  f € Jos

where H*(R) is the usual real Sobolev space and L2(R) is the collection of all measurable
functions f: B — R such that

£z = f{l + z2)7| fl¥dz < +co

For simplicity, we write J, = J, .. Obviously, J., C J, and J,, C H® if r < 5.
Using the main result of Appendix A in [1] we can easily prove the following
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Theorem 1.1 If f € Jo;, v < 5, then 285 f € L? for all nonnegative integers
o, 4, 0 < a+ 3 < r; and there exists a constant Cap > 0-such that

||'E'|35:f|££j||ﬂ = G-:x.,ﬂ”f”..i’,. = Gn::,ﬁ”.f”.i"r,ar

Since the ideas and methods involved here are the same as those of [2], we shall only
indicate the main points without going into much details in establishing our results.
For further information on the BO equation of high order and symbols used here, we
refer the reader to [2]. For convenience, we would like to list the following frequently
used symbols in this paper as follows:

Eu(&:1) = UKP[_f#fq = déia}thf’}ﬁ” = E,(&,8)0(¢)

The following two are the initial value problems for the BO equation of high order and
its parabolic regularization.

Gu = —8,(u® + 3uHu, + 3H (uu,) — dusy)

ul(z,0) = @lx) (1:1)
i = —rluﬁ'iu — (v’ + 3uHu, + JH(uiy) — dug,), 0<p<1
u(x,0) = p(x) | (1.2)

2. Main Results and Their Concise Proof

In this part we establish an Iorio’s type result for problems (1.1}, (1.2}). The results
show that the presence of higher order local dispersive term (and even higher order local
dissipative terms) are not necessarily capable of taming the slow decay of solutions. In
this case, the slow decay would be the effect of the non-local nonlinear terms.

Theorem 2.1 Let p € (0,1) be fized, ¢ € Jo 4. Then there exist a constant T' > 0
(depending only on ||¢|| 1, ), and e unique function u, € C([0,T']; J24) such that

L
= e fu Syt = 7)0% (ud + B H(Ocwy) + 3H (uuday)) dr

Proof First consider the following complete metric space

Da(T) = {f; f € C{[0,T; Jp,4), 1£(2) — Sp()ll s < 2l gy 2 € [0,T]}
The topology of I5 4(T) is induced by %122]) | £(t) — glt}||.r, . for f(2),g(t) € [4(T)

Define mapping A4 as follows:

AFD) = 5,000 — [ Sult =710 (F +3£HS, + 3H( 1)) dr
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Up to now, what we need is to prove that there exists a small positive constant T"
such that for this 7, mapping 4 is contractive in [z 4(T) with T replaced by T". The
proof is carried out in the following three steps.

a) First we show that Af € C([0,T]; J24). According to (2], Af € C([0,T]; H*). So
it suffices to point out Af € C ([0,7]; L3). To this end, consider

AF(6,t) = Bu&000 =~ [ Bu(e+ryie(F +3/TL+ 30T )dr  (21)
By using Leibniz formula we get
FAT(E,1) = [pel)E + pal&)t] Bulls )d + pa(EEL(, )06 B(E) + Bp(é, )OFH(€)
= [ [po(@)e = 2 + @)t = )] B, t = (P + 37T
+ 3BT - [ p@)t - 1BuE.t - 10 GEP + 3/HT
+ EH'{?}E}MT — f; E,. (&t — T}aﬁfg{ﬁ +3fHf, + Eﬂ'mx]]jdr

where p;(£) are polynomials in £ of degree j. Using Theorem 2.1 of [2] we get

I

—

|ps©)2Eute e, < Z(Hmm ) el

=0

3
2)  |lpa(E)tEL(E, £)0e@ + p2(E)tEL(E, t)llo < Ct Y (1 + {%t}"'i’) lell.z,45

=0
3) |Bute
9 | [ pe@)e =2 Bue ¢ = e+ 3£ HT + SHFNar|
<o - }Z (1+ (att —)~5) (U1, + 11, ) dr,
) | [ Butet =)t = ipa(@10ceP) + mi©ePlar|

{ﬂf{:—f}2(1+{w~ D4) 1£13, 0,

6) H f Bu(6.t = 7)(t = Dlpa(0 S TT2) + pa(© /Al |

<C fu ““‘”‘En (1 + (@ptt = 7)~5) [1£13, ,dr,

7) For 8:(i€H(f f2)) = tH(f f2) — 266()F [z + i€H(zf f2), £6(E)F fr = 0,
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and [|H(f f2)llo < |12flollf]l4, we have
[G B (&, — 7)(t — 7)[ps(€)Be (€ Hf ) + pa(€)e H{f ) ldr

0

t 4 , :
<C [(t=n 3 (1+ @t - r)4) 11, 0

=0

1)

8) H fﬂ : E (¢t —T)3EFE + 36H(f ) + 3¢ fHT,)dr

<0 ['S (1+ ute - ) (1713, + 1915, )
F=0

From the estimates obtained above we see that for every fixed g > 0 there exists a
Ti = 0 such that :
|Suell s = [l@llz

and

Af(t) € C([0,T1]; J2.4)
b) For T} described above we have for f-& I 4(T1)

1F (&)l gz = 11 () = Su(Bio+ Su(Bell sy < 1F(E) = Su()ellgo,s +1Su(theoll sy < 200l 52

¢) Define ;
BI() = [ Sult—)0u(fS + 3/ Hx + 3H(f f2)dr

For f,g € I3 4(T1) we can obtain

¢ |
1Bl < pallelsn,) [ (14 (aut = r)73) dr

and J
1Bf = Boll s < 22l S = gl [ (14t =)75) dr

From c) we know that there exists 7' > 0 such that the mapping A is strictly
contractive in the complete metric space Iz 4(T"). This concludes the proof.

We are now ready to state the following conclusions.

Theorem 2.2 Let p € (0,1) be fixed. The solution u, of the integro-differential
equation in Theorem 2.1 s the unique solution satisfying (1.2) such that uw, € C{]0,T"];
Ja4) and S, € C([0,T]; L?). :

Theorem 2.3 Let p € (0,1) be fired, p € Joy4, ond u, € C([0,T); Jo4) be the
solution of (1.2). Then z®uy,zu, € C((0,T]; H) for s = 0, u, € C((0,T); H") for
r = 4 and Sy, € C((0,T]; H?) for g = 0.

Corollary 2.1  Let p € (0,1) be fized, ¢ € Ja4, u, € C([0,T]; Ja2 4) be the solution
of problem (1.2). Then for t € (0,T], 278 u,(t) is continuous and tends to zero as
lz| = co, where j,m =0,1,2. -+
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Theorem 2.4 Suppose that p € (0,1), @ € Jou and w, € C([0,T); Jo4) solves
problem (1.2). Then
ﬂu#{fjllig <C, ¥telo,T]

where C' depends only on |||l s, and T.

Proof For simplicity, write u = w,. From [2] we know that for every T = 0, [Ju|4
is bounded on [0, T, uniformly for g € (0,1) and its majoration on [0, T] depends only
on ||w|l4. We now consider ¢ > 0

d :
—”’tt{ﬂ}”iz == Eflfl + z2) 2y {—;;E:i'iu - 8 (?z‘q + 3ulHu; + 3H (nu, ) — iﬂ_ﬁu) } dax
dt 2
a) 2 f u{~udbu - 8, (v + JuHu, + 3H(uu,) - 40%) Y da < €, p € (0,1),
bl 4 f:cgu {—;rﬂ:u — Oy (ua + Julu, + 3H (uuz) - cic’:iﬁu)} dx
£x :
< C (Ilull}s +1), 4 € (0,1).

In'order to estimate R = [z%u {~pdiu — 8; (v® + 3uHu, + 3H (uwwy) — 48%u) } du,
we need the following two statements:
1) Under the assumptions of Theorem 2.4 we have

leuzall? < C(llull 3 +1)
In fact,
f:r *ugzd:r: = fﬂﬁ'z (JL ugi)dx = '?’fuuﬂf.!n: -I-fifiuuz,:d?:-rfﬂ: wﬂ“wdm
< Cfllully +1), we (0,1
Similarly
lousll?s < Clllullgz +1), n € (0,1)
ii) Under the assumptions of Theorem 2.4 we have
< H (95p(w)) = H (s*3lp(u)), =H(2,p(u)) = H{zdsp(w)

where p(u) is a polynomial of u. In fact,

= 2262 o
2 H (82p(u)) = lfi.{mfiy: l{f -a0}p(u)dy + zy9yp(u }u{y}

i Y= ™

= —xdyplu(y)] |18 —yd,pluly)] |E oo toluly)] 172 +H [:fﬂgp{ﬂ})
=H (i:géﬁ‘ip{u])

The second identity can be proved similarly.
Now we turn to the estimate for R as follows:
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Ri) —u [z *udiudz < 12p |f&53u2d$| + 12 | [ 2t ung dx| < Cp (||’u:¢[ﬁ§ + l),
Ry) | [ o'udy(uv?)de| = 3| [ s'uu.dz| < ||u||L:-,

R3) | [z u(uHuy)dz| < C“uHLE,

Ry4) Using statements i), ii) we get

IS : :
[.’I:EHH (zzﬂf{uz}) fi:{:J + 2 [/ zluH (:.L'Eu.i} dx

1 1 .
< 2lugell o el 25 + 2zl (luelo + louzallo) a2l lzuallo

< C (llellzz +1),

j::‘*u(H(uz}]Hd:ﬂ <

Rs) | etudludz| < C (Jlull2, + 1).
2
From Bi-Rs5) we obtain

f;rqﬂ [—;uf:a;{u — Bp(u® + 3uHu, + 3H (uug) — 45~§u] dr < C (||u1|§§ i 1) , e (0,1)

Therefore ]
2 12 2
(@2, < O (lullts +1), ¢>0, we (o) (2:2)

Applying Gronwall's inequality to (2.2) yields the result of the theorem.

Corollary 2.2 Let u € (0,1), ¢ € Joy. Then there erists a unigue u, €
C([0,00); J2,4) such that du, € C([0,00); H®) and u, satisfies problem (1.2).

Employing the same arguments as uqed in [1,2] we can easily establish

Theorem 2.5 Let ¢ € Jpq with ||¢|lo < v2/3. Then there exists a UNIGUE Uy ©
C([0,00); Jp,4) such that yug € C([0,00); H') and ug satisfies problem (1.1).

Corollary 2.3 Lef ¢ € Jo,, 5 2 3, |lello < v2/3. Then there ezists a unigque
up € C([0, 00); Ja3) such that Syug € C([0, o0):; H*7%) and uy satisfies problem (L)

The final result of this section shows that there exists an upper limit for the rate of
decay of the solutions of the 4-BO equation of high order, which is similar to that of
the u-BO equation [1]. Precisely speaking, we have

Theorem 2.6 Let u > 0 be fired and u € ([0,T]; J5 4) solve problem (1.2). Then
u(t) =0, vt € (0, 7). _

Proof First assume u > 0. Applying BE' to both sides of (2.1). we know that

A I fﬂ(g, T}cﬁ( {;)m;«n

where f; € L2(R). We now consider fcf Eu(6,t— T}Ei}g (Hﬁijh) dr. Since HHEJM =
-1, £ <0

~ih(£)E*u?, h(¢) = { 1. 0 obtain

3 (ih(€)€7u?) = i[6"(£)€%? + 68'(€)€u? + 66()a?] + ih(¢) €082 + 6£02u” + 60;u?]
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EE—FE

It is easy to see that _,I'ﬂt E. (&1 — T) fadr € L*(R). Obviously

o —1 [/{:r — y)*8; (u*)dy + 6 f{:ﬂ — y)8, (u®)dy + ﬁfuzdy]

Accmdmg to CDI‘DHEI‘}" 2.1 and the fact J3 4 C Jo 4, we know that fz = 14i [ v2dz. So
fg = 14:6(& ]u? — 1diu? (0). From the properties of Dirac distribution, we derive

¢ P ! P
: f EL (&t = r)é(E)usdr = f S{E)u(0)dr
] |

If %2(0) # 0, then

fn 8(e)a(0)dr = fﬂ ' S(E)aR(e)dr = fn : ( f Iﬁciz) i
e U:‘E'frf}ﬁ[ﬂ}dﬁ*) = fnt (f uzd:.-:) dr = C(t), t >0

where F'~! denotes the inverse Fourier transform and C(4) > 0. But F~1 (834 )= ﬂ
g

Therefore

—% f[; B e f“‘-'i"}-_-f;.{i'}ri’.":] € L2 and 0 < C(t) ¢ L*(R.), which leads to a contradiction.

This shows C(t) =0, ¢t > 0, ie., [u®dz = 0. Consequently, u = 0, ¥¢ € (0, T].
For p = 0, it is easy to prove the theorem by using the fact that 1 ¢ H® for s € R,
Theorem 2.7 Let p = 0 be fized in problem (1.2). Assume that u € C([0,T); Jy)
satisfies problem (1.2). Then u(t) = 0, ¥t € (0, 7).
Remark For ¢ € J3, o # 0, problem {1.1) has no solution in C([0, T]; Ja).
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