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Abstract In this paper, we consider the globally smooth solutions of diagonaliz-
able systems consisted of n-equations. We give a sufficient condition which guarantees
the global existence of smooth solutions. The techniques used in this paper can be
applied to study the globally smooth (or continuous) solutions diagonalizable nonstrict
hyperbolic conversation laws.
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1. Introduction

It is wellknown that the classical solutions of Cauchy problems for quasilinear
hyperbolic systems, generally speaking, exist only locally in time and will oceur singu-
larities in finite time, even if the initial data are sufficiently smooth and small ([1]-[3]).
However, there are certain examples of globally defined classical solutions ([4]). Hence
it is of interesting to determine the conditions which guarantee the existence of globally
classical solutions, _

Under the case of diagonalizable 2 x 2 systems, systematic results have been obtained
([5]-[8]). The diagonalizable systems consisted of n-equations (n > 2) were studied first
by D. Hoff ([9]). By using an inequality given by Rozdestvenskii in [10], paper [11] also
gets the same results as that of [9] under less restrictions on the initial data. The
method used in [9] and [11] require that the systems under consideration are strictly
hyperbolic., :

In this paper, we also consider the globally smooth solutions of diagonalizable sys-
tems consisted of n-equations. We give a sufficient condition (2.6) and two of its more
applicable cases (2.31), (2.32) which guarantee the global existence of smooth solutions.
In our analysis, we do not require the systems considered are strictly hyperbolic, and
when the systems considered are strictly hyperbolie, the result in [9] or [11] is direct
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corollary of our results. Our analysis also indicates that our function transformation is
a generalization of the function transformation proposed by P. Lax in [3].

The technigues used in this paper can also be applied to study the globally smooth
{or continuous) solutions to diagonalizable nonstrict hyperbolic conservation laws. As
an example, we consider the globally smooth (or continuous) solutions to isentropic gas
dynamics systems in Euler coordinates.

2. An Existence Theorem of Globally Smooth Solutions
for the Diagonalizable Systems of n-Equations

Consider the Cauchy problem
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where r = (fr'i”,- . ,r':“}) , t € Ry, x € R, n-positive integer, and

={(tan)[Ir® <M, 0<4<T, Jo| <00, k=120 }  (22)

Suppose that
(i) 7 (x) € CY(R), and
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where M, N are posiiive constants, T is any given positive number.

We have the following theorem

Theorem 2.1  Assume that the k-th characteristic field for the equation of the
Canchy problem (2.1) and corresponding initial date satisfy

.., AR dré“{m
= > =
(1i1) 5rlF) > 0, ey 0, k=12

and conditions (1) and (i1) are satisfied.
If there exist n functions p(®) (1":”?- X ,r{”JJ (k=1,2,--.,n) satisfying

pt*) (*r':]:',- > ,Tl:ﬂ}) e CHR™), p'¥) (T':”1 fe 11":'”:') = () (2.5)
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where J" E-:}?":j-\] » Py 5"1":3:' k, 1=12,.--,n,

then t.h.e Cauchy problem (2.1) admits a unique global smooth solution.
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Proof According to the well-known result on the existence of local smooth so-
lutions to the Cauchy problem for first order quasilinear hyperbolic system ([12]), for
the diagonal system (2.1), there exists a constant ¢; such that on the domain

R(t)) = {(t,x) |0 <t < ty, |o] < +oo}

the Cauchy problem (2.1) possesses a unique smooth solution r(f,x) = (r{]:'_. P ,r':"'“:')

(t,2) provided that the initial datum ro(x) = (Tg ied ,TE'”:') (x) is a smooth function

with bounded Clinorm. Where ¢; depends only on the €-norm of the initial data.
To complete the pmc:lf of Theorem 2.1, we only necd to get the a priert estimates on
p(i) pf) (3= 1,220 _

The system of -:*.haracteristir: equations for the problem (2.1) is as follows

B R (T ) R

2K) ([]”@El']) — gk}

dr(®) (ﬂ, (%) (t’ ﬁf-‘fj))' _
dt G e (2.7)2

+ ( ( ﬁ(kjl) {k} (ﬁ{k])
(2.7)1, (2.7), gives

r®) (1,20 (1, 88) ) = i (5V) (2.8)
Differentiating (2.7)y, (2.7)2 on both side with respect to %) we gel that
d (amtﬂ::l) (axiﬂ : axlk) ¢ m.:;‘:) Sk . 93k} : gpik)
gam |~ \ "8z T Srort) T agth) | ap T 5 T 9B 56
d (3"‘_‘:”“]) SR R s T )
aBk) 3 =g apt*Hi=a

Therefore we obtain

%) t [ GALk) axE gl
ap® ~ P fu Ox +§E ) B ar
- F OA®) P (8 7 xR, aalkl  gpl)
: [J_-i- 5,1{!:} (.'5 )e:-:p —[] o —|-j?ézk 5-00) b 20) ds o dr | (2.10)

From (2.8)-(2.10) and the assumption (iii), we have

or(®
&I

Ir®)| < m, >0, (k=1,2,,n) (2.11)

Gy-(k)
dr

Now we turn to estimate the upper bound of
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Arlk)

Differentiating (2.1) on both sides in z, setting w'* =

ﬂw{k} I[k: a}‘{k} s
RS SIE) 0k, (30 (R) o (k) _ o 6
g (&2, ""3' +Z*"‘ i e 0, (k=125 ,n)(2.12)

Making the transformation

w® = pk) («rflh L }T.':nj) A8 k=12, ,n (2.13)
we get
B (A0 £ AW L5 (5 (AW - 261
7=1
: 15 Sk
¥ ;Eklpf;ﬂ»])?,mzmﬁm b p)2(k) — (2.14)
Let al%) = i:}fp["‘;’ (’r{”, “e 1?":“}') , 08 = gyup ptk) (fr':”, “e ,?"{“]). From (2.5), we have
rell rER)
0 <a® <o) < 400 (2.15)
Hence

0 < zf-k]{ﬂ,:r:} = w':k][ﬂ,_:c] [p{k} (T':l}1 “e ,_,i-":”:') [ﬂ,:':]]_l < M (u:":j“]) i AL

where =
C = Max {M (uﬁﬂ) } >0
l=tsn :
Let
28t 3) = 80 (t,2) + C+ d (2 + e Let) [L?, k=1,2,--+,n (2.16)

where d = 113*1,&3{ sﬁp |z{k}{t,:r;} . €1, L are positive constants to be decided below.
Then, 641¢t, =) satisfy the following initial-boundary problem

p®) (6 + 26()) + p®) (¢, Let + 2208) d/ L2

ANk a Gt :
+ 2080 4 Z( A (p4)” 4 pWpIAD 4 p0) (B (XM

Fo

( m)? AP (5 = 50)) 2 = g (2.17)

SCINES m) +E

68)(0,2) = 2®(0,2) - ¢ — d (2 + ¢, Le') /L* <0
69t L) = (1, £L) - C - d(L1+ﬂ1Le*) e i e L e

n— 1

We conclude that §%)(t, ) decided by (2.17) satisfy
§¥)(t,z) <0 on (t,)€ (0,T) x (=L, +L) (2.18)
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for any given T' = 0.

Otherwise, let £ = sup {f. | 6t 2) <0, k=1,2,---,n,¥z € (—L, L]}, then, 0 <
t < +co. We have from continuity that, without loss of generality, there exists (£, %)
with ~L < T < L, such that 6*)(%,) = 0, 60)(£,T) < 0 (j # k) and 8" (%, 7) = 0,
ﬁr‘h}[t x) = 0, namely

(67 + 30} | >0 (2.19)
(k) _ 500)
(6¢) - ) a0 (2.20)
Now we choose ¢ sufficiently large satisfying
erL +222% >0 on (0,t) x (=L, L) (2.21)

In virtue of (2,5), (2.6), (2.11)-(2.13), (2.19)—(2.21), we conclude that the left side
of (2.17); is strictly positive. This is a contradiction. (2.18) is proved.
(2.17), (2.19) gives

#® (g, 20) < C+d (mﬁ. +- clLe*‘-) fL% (o, z0) € (0,T) x (=L, L) (2.22)

we have
Ktz < C (2.23)

by letting L — +oc.
From (2.5), (2.13) and (2.23), we have

Ay lk)
aa

This completes the proof of Theorem 2.1,

If one of the characteristic fields, say A%}, is linearly degenerate on £2, then we have

Theorem 2.2 Assume that one of the characteristic fields, say A%}, is linearly
degenerate on £ and there exist n functions p(¥) (r'il], fos ,:r":'”'}] (¢ =1,2,---,n) which
satisfy (2.5) and

— k) < Co'F)

Py (AP =AY £ 28950 >0, 45=1,2,--,n (2.24)
then, under the conditions (i), (i) and
-3;,"[:;] (). .
(i) 55 2 j““im,—m 20, i=1,2" 5 j=1,-, k=LE+ L. n

the Cmr:rh-i-; problem (2.1) admits a unique globally smooth solution.

Proof From Theorem 2.1, we only need to establish a priori estimates on z(¥), { =
1,2,---,n.

Similar to that of Theorem 2.1, we can obtain

29 >0, i=1,2 k- 1,k+1,.n (2.25)
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(2.14) yields

':1}' (k) , II-‘:J (R} (2 (k) _ 3 (5
+ A + — E A A
p{u (»; ( :]

e A{H {k}}pfﬂ () II‘»]' HeyEa G ) L B (2.26)
i
Hence
: - B ; i
k) :zg*}exp{ o f (ﬁz (pgﬂ ( Alk) _ ;.l{.r}) 5 ;E,Hp{k]) REPE)
D T
i#k
ALk
25T
T )d*r} | (2.27)

Combining (2.24), (2.25) with (2.27), we obtain

Ak .
< |4 «"| < C (2.28)
For i # k, we have

BUNONONERE o (52 (XD = X0 4 AP0 )26,

p® £
+ p(l_i} (p” (A*FJ :«“’J) - Af;"Jp'i’l') P @;&mz ) =0, 4k (2.29)
then
L) gﬁ*}exp{ - f; L}':‘ i( i) (A{‘:' ;Lf:r]') ;!,L'::' Er}) pi 0] 4 5;&:} 7
< zé’::'e:-:p{ = f] 0 i; (0 (3@ — A®1) 1 ADp9) z':“dfr}
< ziPe=Mt  (by (2.24), (2.25), (2.28) and (iii)") (2.30)

where M = &:up( %) ( (i) (A[*] }L'{“) + A{”p'{“ ) ,-"p{”J C

Theorem 2.2 follows from (2.25), (2.23) and (2.30).

Corollary 2.3 Addition to the conditions (i), (ii) and (iii), we assume that system
(2.1) is strictly hyperbalic, i.e.

],lf"” 2 ,ﬁ.'iii'i >e>0 (j#k)

then Cauchy problem (2.1} has a unigue globally smooth solution.
Furthermore, if one of the characteristic fields, say A®), is linearly degenerate on

{1, then under the conditions (i), (ii) and (iii)’, the Cauchy problem (2.1) possesses a
unique globally smooth solution. : ;
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Proof Let p') = exp (E?:l E,-jr{j}) si=1s E,: -+, 1, where

Hence

plidp(d) Agﬂ +pW@ (pﬁ:l ( 30 Au}))

1

= exp (E E-r;ji":j:' + Zij-ﬁ"{i:') (Lj' (.'}I.I:i} = ,l':j:') + Agﬂ) >0
7=1 =1
From Theorems 2.1, 2.2, we can immediately get Corollary 2.3.
Corollary 2.4 a) Besides the conditions (i), (ii) and (iii), we assume further
Les (i (1) T .
m}ui +'J"J Eﬂ? 1-1_?—'112-5“','“. f‘g.dl}
then Cauchy problem (2.1), (2.2) admits a unique globally smooth solution.
b) If one of the characteristic fields, say MK s linearly degenerate on 2 and

{2} S
Ayt =20, e fi=l 2 (2.32)

then, under the conditions (i), (ii) and (iii)!, the Cauchy problem (2.1), (2.2} admits a
unique globally smooth solution.
Proof Let pi*! =1, then (2.6), (2.24) reduce to (2.31), (2.32) respectively.
Remark 1  The function transformation, we used in Theorem 2.1, Theorem 2.2
is the generalization of the function transformation proposed by P. Lax in (3). In
fact, when n = 2 and the systems under consideration are strictly hyperbolic, let
q (:r':l:', fr':"g}) L h (T[“.,TI:E}) be the Lax transformations, 1.e. i

aall)

3g _ _ o™
ar@ AL = A(32)

axzl

oh EEY

ari0 AR = )
and let p{t) = exp(—yg), p'¥ = exp(—h), we have
piV (,;{1:' = Am) LA =
P (A — 2D) 4+ 2Pp? = 0
Hence (2.5), (2.6) (or (2.24)) is automatically satisfied for n = 2, and (2.14) reduces to
{5513' £ A0 4 A0 () 50 1 200 o

5 - : (2.33)
23 4L 2@, 4 3 Bp2) (3{21) + AL =
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Then Corollary 2.3 follows immediately. If the system is linearly degenerate (i.e. Agﬂ =
0, i =1,2), we have

Corollary 2.5 If the strictly hyperbolic system is linearly degenerate and
N, then for any smooth initial data with bounded C! norm, the conclusion of Corollary

2.3 holds.
On the other hand, our results indicate that for n > 2, the function transformations

analogous to the Lax transformation can no longer be existing. For there exist no

(#)

FH

5

function p satisfying
i (.3';“:' o A':r‘":') + A{;}p =0, p3 (}a{” = AES}) + Ju%”j':r =10

Remark 2 Corollary 2.4 does not require that the system considered to be strictly
hyperbolic. In Section 3, we will show how this result is used to consider the globally
smooth (continuous) solution to nonstrictly hyperbolic systems.

3. An Example

In this section, we give an example to show how the results m Section 2 can be used
to study the globally smooth (continuous) solution of the Cauchy problem of a special
nonstrictly hyperbolic model: The isentropic gas dynamics system in Euler coordinates

{m + (pu)y =0
(pu)y + (pu-z - k“"pr)m =0
(0, u) |i=0= (polx), volx)) (3.2)

where k > (1 is a constant, r > 1 is the adiabatic exponent.
The eigenvalues of (3.1) are

(3.1)

r—1

M=u—kripg T, A—=u+krip7 (3.3)

Corresponding Riemann invariants are

1 1
2RT2 r—1 2kr2 121 )
?ﬂ{p,ﬂj—ﬂ—l—rﬂlpﬂ :Efpru}_u_r_lpz (‘3'{1::'
respectively.
(3.4) and (3.3) yield
3—r r+1 r+ 1 3—r :
A= n w + i Ay = 7 w + = (3.5)
1
}-zwﬂ?‘ua:g{?‘-kll}ﬂ, Aiw + Az =120, i=1,2 (3.6)
Hence, from Corollary 2.4 the following Cauchy problem
we + Az, 2)w, =0
zt+ Mlw, z)z, =0
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(0, 2) limo= (wo(z), z0(x)) = (w(po(x), uo(x)), 2(po (%), wa(2)) (3.8)

possesses a unique globally smooth solution (w, z) provided that the imitial data (wo, z0)
are smooth functions with bounded C'-norms and woz 2 0, 2oz 2 0.

Following the arguments in [13], [14], we can get the following theorem.

Theorem 3.1 Suppose that (po, o) € T = {{p, ) | lw| < M,|z| £ M, w—2z =0}
and (wy)(x), zp(x)) € Cl(R) x CY(R) with bounded 1 norms. Furthermore wge = 0,
zpz = 0. Then we have

1) when 1 < r < 3, the Canchy problem (3.1), (3.2) admits a globally smooth solution
(g, u) € L. | %

2) when v > 3, the Cauchy problem (3.1), (3.2) possesses o globally Heélder contin-
uows solution (p,u) € L.
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