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Abstract We show that the solution to the Cauchy problem of 2 » 2 nonlinear
conservation laws, in general, may go out the strictly hyperbolic region of the system in
a finite time, here the initial data are given in the strictly hyperbolic region. In other
words, in peneral, we can’t confine our attention to solve the Cauchy problem of 2 x 2
nonlinear conservation laws in strictly hyperbolic type. However, we can expect that it
may be solved under the additional conditions (A) and (b).
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1. Introduction

This paper is a development of the papers [1-5]. In [1-5], we considered the equa-
tions of isentropic gas dynamics in Lagrangian coordinates. We proved that the vacuum
never occurs in an isentropic flow consisting of rarefaction waves even though the den-
sity may tend to zero as time tends to infinity. Now, we study the similar issue for a
pair of quasilinear hyperbolic conservation laws,

The problem of the occurrence of the vacuum in isentropic flows has been a central
issue in this field for some time, which was addressed by some authors, e.g. Liu and
Smoller [6]. When the vacuum appears, the speeds of the characteristics of two families
coincide with each other, the system is not strictly hyperbolic and waves hehave in a
singular way, causing serious analytical difficulty [7-9|. It is well known that the solution
of Riemann problem for isentropic gas dynamics may contain the vacuum. One thereby
tends to believe that if the initial data are not far from the vacuum, then it will oceur at
a later time. We showed that [1-3] the aforementioned solution of the Riemann problem
indeed is the only cir¢cumstance where the vacuum can oceur. Precisely, we showed that
vacuum states cannot appear in rarefaction wave solutions of the equations unless the
vacuum is present at time ¢ = 0. It is well known that vacuum states can only appear
due to the interaction of two rarefaction waves of different families, thus one tends to
believe that they don’t occur for the solutions in general. If it is proven to be true, then
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following DiPerna [10], we can get the existence theorem by compensated compactness
theory, and avoid the serious analytical difficulties caused by the appearence of vacuum
[7-49].

The similar issue is naturally addressed to a pair of quasilinear strictly hyperbolic
conservation laws. This is a complicated problem. We can obtain a similar result under
the additional assumptions (A) and (B) in Sectlon 2. They hold for the equations of
isentropic gas dynamics in Eulerian coordinates and that in Lagrangian coordinates.
Once the assumption (A) or (B) is violated, no matter how narrowly, Examples 1 and
9 in Section 3 show that “vacuum states” may occur at a later time, where “sacunm
state” means that, in the state, the speed of the characteristics of two families coincide
with each other. But Example 3 shows that the condition (A) is not necessary for the
pnonoceurance of “vacuum”,

Remark Examples 1 and 2 imply that the solution to the Cauchy problem of 2x2
nonlinear conservation laws, in general, may go out the strictly hyperbolic region of the
system in a finite time, here the initial data are given in the strictly hyperbolic region
and bounded away from the boundary. In other words, m general, we can’t confine
our attention to solve the Cauchy problem of 2 x 2 nonlinear conservation laws in the
strictly hyperbolic region of the system. However, under the assumptions (A) and (B),
we can expect the (generalized) solution will stay in the strictly hyperbolic region of
the system in any finite time, if the initial data are given in 1t. In other words, we can
expect that the Cauchy problem of 2 x 2 nonlinear conservation laws may be solved in
the strictly hyperbolic region of the system under the assumptions (A) and (B).

Note The result in Section 2 is much more general than that in the papars [1-5],
and the proof is much simpler [11-13]. It is owing to the intent of the papers [1-5] that
is to find some suitable frameworks to study the solutions with shocks.

2. Existence Theorem
We are concerned with the Cauchy problem of a pair of conservation laws
ue + flu,v)e =0, vi+glu,v)s =0, (fz)E R xR (E);
w(0,2) = ug(x), v(0,2)=we(x). z€R (1)1

here f(u,v),g(u, v) are smooth in Dy, where Dp is a region on {u,v) plane, the system
(E); is strictly hyperbolic in a subregion Iy C Dp, Le. the Jocobian matrix of the
system (E); has two real and distinct eigenvalues A < p in Dy. Let G = p — A, then
0 <G < ooin Dy

Riemann invariants of (E)y z = z(u,v), w = w(u, v) give a bijective smooth mapping
from I, onto a region D on (z,w) plane. Thus 0 < G < oo in D. Let Cp = {(z, w) |
Gz, w) = 0}, O = {(z,w) | G(z,w) = oo}, we assume éD = Cy U Cy;, where &0
denotes the boundary of . The Riemann invariants diagonalize the principal part of
the system (E); as

e+ Mz, wlze =0, wrHplzww.=0, (t,x)€ By xR (E)
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B
and reduce the initial data (I); to
2(0,z) = zo(x), w(0,z)=1wp(z), z€R (I)
We assume that
in D (2.1)

G dolz ) oo, 0= pulzw) <oo’

The initial data are smooth and satisfy the condition

ILec'D (2.2)

where the bounded set T = {(z,w) | z = zo(z), w = wp(z), x € R}.
Theorem Under the aforementioned conditions, and the additionel conditions

o+ fhx 2 D: Aw T A 20 m D {‘ﬂ'*:l
NG| <60, |Gu| <00 inD (B)
re R (M)

if
0 < zplz) <N, 0<ug(z) <N,
where the constant N can be arbitrarily large, then the Cauchy problem (E), (I) has a

unique global bounded classical solution z = z(t,x), w = w(t, ),

(2,z) € Ry x R (2.3)

(2(t, ) (2, x)) C Q,
(2.4)

(et ) ce Dy ki« T, =eK

where T > 0 can be arbitrarily large, and Q is a bounded rectangular @ = {(z,w) | 2. =
L T TR | T I A igfzn(;r},_ z* =.8up.zp(x), W= igfwg[s:], w* = sup wol(x).
x x T

Moreover
(t,z) € BL X R {2.5)

Pz () < N S w )Y,

Proof It is well known that the global classical existence theorem follows the local
classical existence theorem and the o priori estimates (2.3), (2.4), (2.5). By (E), (2.3)
is obvious. In order to get the a priori estimates (2.53), we differentiate (E) with respect

to x, thus

Wi + pW, + #w“ﬂ + . AW =10 '
where Z = 2z, W =: w,. Let “dot” denote differentiation in the direction 8/3t+ A8/ o,
and “prime” denote differentiation in the direction ¢/9f 4+ pd/dx, thus

{a+aa+¢gﬁ+AM¢x=n

ZANZEL I WE=0 (2.6
W+ W24 0, ZW =0 '

"It is well known that the A {resp. p) characteristic field is genuinely nonlinear if and only if A; £ 0
(resp. jt. 7 U}: and the held 1 hnearly degenerate if and only if A, =0 {r:-*.l;p. P = 1]] I:s-EE_' [12, 14]].
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Following Lax [11,12], we have

wh(z) ep{~a(t, ) o
1+ wh(zo) [y prw(s, z) exp{—als, z)}ds

T =

as long as the classical solution exists and is strictly contained in D, where a{t, z) is a
function satisfying a. = u./G, a(0,x2) = 0, the integration is along p-characteristic
issued from (0,zp). DBy the monotone condition (M), we have a priori estimates
Wi(t,z) =: wy(t,z) = 0. Similary, Z(¢,x) = 0. In order to complete a prior esti-
mates (2.5), it is sufficient to prove T = oo, where

T —isuplt| n(t) < NV}, n{t)=: I.[}_?;]{{E{T} z),Wir,z)}
Re—dllzez) | 0. T < 26 R}

We now prove it by contradiction. In fact, if T < oo, then without loss of generality,
we may assume that W achieves N at a point (T, X), W(T,X) = N > 0. Since T > (],
there exists ¢ > 0, such that

Witz T, X)) >0 asT—-e<t<T

where x = xo(8; T, X), 0 < ¢ £ T, is the p-characteristic through (T, X'). According to
the definition of T,

Z(t,za(t; T, X)) <n(t) < N=W(T,X) asT—e<t<T (2.8)

On the other hand, solving (2.6), we have
! T
W(T, X)=W{t, za(t)) exp —f P W (T, :cgf’r}}tﬁ'r}
t

T - T
—_ L‘ i ZW (T, za(7)) exp {—' /; W (s, T2 [Sﬂds} dr (2.9)

Since
i i
_f #wW[T?ﬂ:z(T}}uxp{h-[ ;LwW(S,:Eg[S]}dﬁ} dr
t t

T
= exp {—f ﬁwW(w,:ﬂz{ﬂ}}dﬂ} =1l (2.10)
Fr

multiplying the both sides of (2.10) by W/(T, X}, then
; &
W(T, X)=W(T, X)exp {— f i Wilr. xg(fjjdr}
t

i T
+/; }wa{TﬁﬂE{Tj]W{T,x”E@{_ﬁ HWW(S,iE;;{S}}EIS} dr (2.11)
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G{]m]..iillillﬂ (2.9) with (2.11), we get
T
W (T, X) mwu,zg{a}}—II (2 Z (7, 22(7)) + polr, 22(7 ) )W (T, X)] W(r, 22(7))

L XD {— -E 1w W (s, xg{s}}ds} dr

In view of (A) and Z = 0,
.
W (T, X) <W (2, z2(£)) + f: 1Z(7, 22(7)) = W(T, X)| Wi, z2(r))
- eXp |i_. fi_a.'.m'l»l"{s,:e:g{s}}ds} dr (2.12)

Substituting (2.8) into (2.12), by (2.1), we have
W(T, X) < W(t,za(t)) asT—e<t<T

It contradicts the definition of T, hence T' = oo, 1.e. (2.5) hold.
We now prove the a priori estimate (2.4). By (E), w’' =0, and

2=t opze = (z 4 dze) + (g — Aze = Gz

thus
G = G2 + Guuw' = G,2,.G (2.13)

If (2.4) fails, in view of (2.2), it is easy to prove there exists a point (T, X),0 < T < oo,
such that (z(T, X),w(T, X)) € 6D, and (2(t,2), w(t,z)) C Das0 <t < T,z c R If
(z(T, X),w{T, X)) € Cg,1.e. G({T,X)=0,and0 <Gt z)<o0,as0<t<T, z€ R
Solving (2.13), we have

0=G(T, X) =G0, 2:(0)) exp {fDT FazalT: .',i!.‘g{‘?‘;l::liﬁ’.f‘}

where z(t) =: z2(#; T, X). By (B) and (2.5), G(0,z2(0)) = 0. It contradicts (2.2).
This contradiction implies (z(T, X), w(T, X))ECy. Similarly, (z(T, X), w(T, X ))EC .
So (2.4) holds.

Note It is easy to check that the assumptions to the system (E) hold for the equa-
tions of isentropic gas dynamics in Eulerian coordinates and in Lagrangian coordinates
under the ordinary assumptions to the state equation (see [15]).

3. Examples

The following example shows that once the assumption (B) is violated, “vacuum”
may occur at a later time.
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Example 1. We consider the system

U == ISI'I:?_J:];.; =0, v —Usr= 0 {31]
where o(v) = v7, v >0, ¥> 1. Thus ¢'(v) = 7" > 0. ¢"(v) = ’y{’rl— Ly St
The eigenvalues of the Jacobian matrix of (3.1) are Mv) = —/7Fv 2 and p(v) =
—Mw). The system is strictly hyperbolic in the region Dy =: {(w,v) | v > 0,u €
R}. The Riemann imanants are taken as z = —u — @{fu] = —u + P®(v), where

1
$(v) =: [§ plv)dv = Av™ S, A =: E..*,J’_,-"{*:r—i— 1}. Then u = ——(w+ , B = —{w - z),

plv) = Clw — z) *+1 where C = ,/7(24) o . The Riemann invariants give a smooth
bijective mapping fmm D, to the region D = {(z,w) | w—z > 0}. Since g, =

" -1
fg vl vy = uo . , then p,y = 1y Py, i > 0and g, = A = —A; = — -
The conditions (2.1) and (A) hold, but the r:::mdltmn (B) is violated, Gy = —G. =
e =2
M[m — z)7 — 00, as w — z — 0. The initial data are taken as
v4+1
LN ag ¢ < —N
'H-D{Ij = —Lx as |ﬂf:1 {_: N
—LN as T >N
volx) = vp asr € R

where L, N and vy are positive constants, then

el

D(u(0,z)) = Py =: Avy* > 0
(—LN — &y, —LN + @) as x < —N
(zo(z), wo(zx)) = { (Lx — ®o, Lz + Po) as |z| < N
(LN — @p, LN + &) aszt >N
The conditions (2.2) and (M) hold.

We now consider the determinate region, denoted by By, of the interval (—N, N} :
on the initial line £ = 0. It is easy to check

u(t,z) = —Lx, wv(t,z)=wv —Lt, (t,z)€ By
is a solution in By. In view of the fact that v(f, x) is independent of =,

plt) = plo(t,z)) = ' (v) = (1) /v'(t) = —2'(t)/L in By thus
zy(t) = —®'(t)/L in By (3.2)
where ©3(f) is a p-characteristic in By. Integrating (3.2) along p-characteristics, we

have

za(t) = 22(0) + L7 [®g — ®(2)] in By
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Similarly,
z1(t) = 21(0) — L7'[®p — ®(t)] in By

The left (right) side of By is the p-characteristic (A-characteristic) issued from the
initial point (¢,x) = (0, —NV), ((¢, rr} = (0, N}}, which is denoted by =3 (¢), (z (1)).
Ty (t) = =N + L7 (®y — ®(£)), zi = N — L7(®g — ®(t)). When N > L~1®;. the
upper side of By is the horizontal segment: bo={(t,x) |t =L v, |z| < N — L7 1@},
On by, v =p =& =G = 0. “Vacuum states” occur on by.

The solution is continuous in P and consists of constant states and simple waves in
P\By, where P =: {({,z) |0 <t < L7 g,z € R}. _

Note 1 It is quite interesting to study the following cases, whenv=1,0 < v < 1
and general o(v).

Note 2 When ¢ = L~ 'uy, the solution depends on the definition of o(v) in the
region v < 0,

The second example shows that once the assumption (A) is violated, no matter
how narrowly, “vacunm states” may occur at a later time, and waves behave in a really
singular way.

Example 2 We consider the system

1 BN
Up — (Efrzj — p{’u]) =0, v—(uv),=0

where p(v) = v~ 10~7, v > 0, v > 2. The eigenvalues of the Jacobian matrix of the
g

system are A = —w — A(v), g = —u + h(v), where hiv) = v~% > (0. The Riemann
invariants are taken as z = u/2a — h/2b, w = u/2a + h/2b, where a = 2(2 4 4)71,
b=(2+~)"'. Then u = a(w + zh, h=blw—2); A= —w+ez, = cw— z, where

0 <e=b-a< 1 G= p-A=2h(v) = 2b(w—2) >0 (= 0) if and ouly if
. — 22> 0(=0). Ay =, =-1, X; =pypy=c>0, A, +Ap=ps+pp=c—-1<0.
Thus the conditions (2.1) and (B) hold, and the condition (A) is violated. The initial
data are taken as

- L as < —NN

ug(z) = ¢ Lx as x| € N
LN as x> IV
vo(z) = 1y asr e R

where L, N, vp are positive constants, then

|
b

h(v(0,z)) =hp =9, ? >0 z€R
(AN — ho(20)™", ~ AN + ho(20) '1] as T < —N

(_fl.':r: - hu{ﬂi}_l, Ax + hg{?f?}_l) as |z] < N
(Af"." — hp(28)71, AN + hu{ﬂb}_l) as x = N
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where A = L(2a)~!. The conditions (2.2) and (M) hold.
We now consider the determinate region, denoted by By, of the interval (—N,N)
on the initial line t = 0. It 1s easy to check

u(t,z) = La /(1 = Lt), u(t,z) = vp/(1 = Lt) in By

is a solution in By. The equations of \-characteristics and p-characteristics are

(t) = [71(0) = 5 ho = )| (A= LOT! =0 st = L7

zo(t) = [3:3{[!) + %{hn - .’L{t]]- (1-—Lt)™' —0 ast— Tt

respectively. Along A-characteristics and -characteristics,

u(t,z1(t)) = Lx1(0) — 24~ Y ho — R(t)) — Lx1(0) - Ohoy ! ast— L
u(t, za(t)) = Lza(0) + 94" L(hg = h(t)) — Lxa(0) + Mgy~ ast— L7
A, () = —ult, z1(t)) = h{t) — —Lay(0) + Fhoy T e
plt, za(t)) = —ult, z2(t)) + hit) — —Laxa(0) — Eh_m_l gs bt [}

When x1(0) — ol = ‘EIFT-D’}'_LL_I,
ult, z2(8)) = Alt, 21 (t)) = 0 ast— 5 gl

Hence, when N > 2hoy ' L1, in the strip {2 bt = L1 x € R}, the solution 1s
continuons and consists of constant states and simple wave outside the region By, but
the point P : (t,x) = (L~1,0) is a singular point. “Yacuum states” occur at P, and
1 ) o s 2(L7L, 04),w(L~1,0-) > w(L™',0+). It is quite interesting to study
the solution in the upper half plane § > L~ and the cases v =2, 0 <7 <2.

The third example shows that the additional assumption (A) is not a necessary
condition for the nonoccurance of “vacuum”. The system describes the macroscopic
hehaviour of some bacterial populations, which are attracted by a chemical substrate
[16, 17]

Example 3 We consider the system

w— (up)e =0, m—u=10 (3.3)

: : : 1
the eigenvalues of the Jacobian matrix of the system and A(u) = E{_ﬂ - &%}1 i) =

]. 1 % 3 W o a A
EI:'—?..-' + A%}, where A = v* + du. The system is strictly hyperbolic n the region

Dy = {{w,0) |u>0} A<0< pin Dy Following Zheng [17], the Riemann invariants
are takem ag z = p,‘%(ﬂ,l 4 1), = {—A]%{A + 3p), which give a bijective smooth
mapping from Dy onto the region D =: H\D,, where H =: {(2,w) | z € R,w € R},
Dy =:{(z;w)lzz20,w= 0}. Tt is easy to check

A el 4 1
AES_E“}"”!& l}ﬂ, ﬂtu:'ﬁ#l:_}“];&_l = 0




T2 Lin Longwei Vol .8

and the assumptions to the system (E) in Section 2 hold for the system (3.3), but the

additional condition (A) is violated, A, + A, = 2/3(— A}l}ﬂ‘l{zu% + v), fhr + =

2
E;_-',Efl L(2u? — o). Zheng proved that the above theorem in Section 2 holds for the

system [17].
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