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Abstract The existence of inertial fractal sets for weakly dissipative Schridinger
equations which possess (Ey, E) type compact attractor is proved. The estimates of the
upper bounds of fractal dimension of inartial fractal set are also obtained.
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1. Introduction

In the study of the inertial manifold of the 2D Navier-Stokes equations (NSE)
representing turbulent flows, one finds out that [2] since there exist spectral barriers
and spectral gap conditions, the existence of an inertial manifold for 2D NSE is still
a mystery. Recently, Eden et al.}l have studied and discovered that some dissipative
evolution equations with real coefficients, for which the (F, E) type compact attractors
exist, including 2D NSE, have a kind of set similar to inertial manifold-inertial set. This
paper advances the previous results to complex weakly infinite dimensional dynamical
system that only possesses (Ey, E') type compact attractors.

2. Main Results

Let D{A), V be two Hilbert spaces, D(A) be dense in V' and compactly imbedded
into V.

We study
du
— + Autg(u) = f(z), t>0,z€Q (1)
u(0) = ug ; (2)
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% |an=0 (3)

where £2 15 a bounded open set in B", 98 15 smooth. A is a positive self adjoint operator
with a compact inverse. Let {u,,n =1,2,---} denote the complete set of eigenvectors
of A, the corresponding eigenvalues are

Dty = Ao e A en (4]

We assume that the nonlinear semigroup S(t) defined in (1)-(3) possesses a (D(4),
V) type compact attractor, namely, there exists a compact A4 in V', A attracts all
bounded subsets in D{A4) and it is invariant under the action of S(t).

Definition 1 A compact set M in V is called an inertial fractal set of (D{A), V)
tupe for (S(t),B) if AC M C B and

LoS(EIM C M, ¥t> 0,

2. M has finite fractal dimension, dp(M) < oo,

3. there exist posttive constants cp, c) such that

disty (S(8)B, M) < cge™ %', ¥t >0

where disty (A, B) = sup inf |z — y|v, B is a positively invariant set for S(f) in V.
e A WE

42 s : e
Definition 2B If for every § € ([], E) . there exists an ovthogonal projection Py,

of rank equal fo Ny such that for every u and v in B, either
|S(t)u — St )vlv < 8lu — vy (5)

o

Qo (S(t)u — S(t)v)lv < [Py (S(te)u — S(ta)v)lv (6)

Then we call 5(t) is squeezing in B, where Qn, = I — Py,.
Theorem 1 Suppose (1)-(3) satisfies the following conditions
1. there exists a (D(A), V) type compact attractor A.
2. there exists a compact set B in V' which is positively invariant for S(t).
3. S(t) is squeezing and Lipschitz continuous, that is there erists a bounded function
I(t) such that |S(t)u — S(t)v |v < l(t)|lu — ul|y for every u,v tn B.
Then (1)-(3) admits a (D(A), V) type inertial fractal set M for (S(t), B) and

O<i<t,

where

M, =AU (E{ [Ej S(t.)] (E{“)) (8)
=1 k=

F=1k=1
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Muoreover,
1
dp(M) <1+ Nolog (1 + v/21/8) /log 7 (9)
disty (S(#)B, M) < cpe™ 5t (10)

where 6, Ny, E'*} are defined as in [3], [ is the Lipschitz constant for S(f.) in B. t, s
o positive constant.

Proof We utilize that I is compact in ¥ and it is positive invariance for S(t}, with
B instead of X in [3], note also that S(t) is Lipschitz continuous and has a squeezing
property in B2, then this theorem is proved by the same manner of the proof of Theorem
1in [3].

Proposition 1 Suppose that problem (1)-(3) possesses a unigue global solution,
u € Cy(Ry, D(A)), ifug € D{A); v € C(R4, V) ifug € V.. Moreover there exist closed
absorbing sets By, By in D{A), V respectively. Then nonlinear semigroup S(t) defined
by problem (1)-(3) possesses a (D(A), V) type compact attractor

.,-‘1='ﬂ S(t) By (11:]
E=0)
A is bounded in D(A). Notation C, denotes the class of funclion which is weakly
continuous with respect to { in topology of D(A).

Proof From [5] we know A is a weakly compact attractor in D(A4) and attracts
all bounded set in D{A) with respect to weak topology in {A). Since weakly bounded
property is equivalent to strongly bounded property in Hilbert space, we deduce that
A is bounded set in D(A), by the compact imbedding of D{A4) into V' we know .4 is
compact in V. Suppose B is any bounded set in D[ A), since 4 attracts every bounded
set in D(A) with respect to weak topology in D({A4), we can extract a sequence S(t,)B,
which weakly converges to A in D(A) as t,, — +oo, by the compact imbedding of D(A)
into V' we know S(t,)B strongly converges to .4 in V', this shows that .4 is a (D(A4), V)
type attractor.

Proposition 2 There exists f9(By) such that

B =N, ' (12)
0=<Ct<to(Ba)

is a compact, positively invariant sel in V' and is absorbing set for all bounded subset
in D{A).
Proof By the definition of By we know that, there exists ¢3(Bg) such that

S(t)By C By for t = to(Bg)

It is easy to check that I defined in (12) satisfies that result of this proposition. Indeed,
denoting ¢ = kto(Bo) + £1, 0 < £ < tp(By), we have

s®B= | SSkto(Ba)Bol) U 5(s)S((k + Lto(Bo))Bo

t1 Ss<to( Bo) 0=s<ty
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€ U S@BlJ | S)Bec | Sis)Bo=B
tyZs<tol Bo) N<ssty O<s<to{Bo)

Since D(A) is imbedded into V' compactly, we deduce that B is compact in V', absorba-
bility of B is clear.

Proposition 3 Let u(t),us(t) be two solutions of problem (1)-(3) with u(0),
u2(0) € B respectively, setting w(t) = up — uy. If

1 fw(e)f? < keot|w(0)[2, (13)

2. E‘P(QNW} + cow(Qnw) < Ay |QvwlE (14)
holds, then there exists t. such that S(t.) is Lipschitz continuous and squeezing in B
where @(Qnw) satisfies

1Qnw(t)] < kow(Grw) < k1 |[Quw(t)|? (15)

ko, k1, k, co, 01, a0, F are positive constants independent of w(t), Qnw = wg,v Ang is
eigenvalue as in (4), N safisfies

1
. S a7 Ao ;
E:]_JEE().'E.,I',:Ct! a7 Lﬂ} lf:l"f-.’f]_'e b E—SE {Iﬁ}
t. salisfies 3
167500 < — 7
ki1e < 356 (1 }

Proof  From (14), by Gronwall’s inequality we hove

i
p(Q@uw) = p(Qrw(0))e 0" + E1fﬁﬁ.;rf1ﬂat!@ww{ﬂll%fﬂ_mtf eletenlsg,
0

< kﬁlkﬂﬂqu(ﬂ}ﬁ;ﬁ_mt + crk{cp + a) ! Ay r_11==ﬁ‘5"*|1.1,;;' w[ﬂ}w
< [w(O)f} [k5 kre™* + erk(a + co) T ARH €] (18)

Let &, be Emﬁa enough so that

k1e 0 < EIE. (19)
Next we choose N large enough 50 that
1 kok{ o + ng}_leim‘ﬁﬁ,_ﬂ < 2;5 _ (20)
From (18)-(20) we obtain that
kop(@nu(®) < 58O, se (0,7) (21)
Then from (15) we have
@uw(t) < —w(0) I (22)

i
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So
. 1
lwit)|3 = |Pyvwli + Qunwl < 2|Qnw(t)]i < El‘w{ﬂili

when |Qnw(t )|} > |Pyw(t.)|}. It completes the proof of proposition. By Propositions
1-9 and Theorem 1, we immediately have
Theorem 2 Suppose that problem (1)—(3) satisfies the conditions of Proposition
3 and there ezist bounded and closed absorbing sets By, By in D(A), V respectively.
Then (S(t), B) admils a (D(A),V) type inertial fractal set M and

. 1
dr(M) < 1+ Nolog (1 + V21/6) /log . (23)
disty (S(t)B, M) < coe™ " (24)

1 2 :
where | = ke®=, 8 € (0, —S-), 46 < 0 < 1, co,c1 are constants, Np satisfies (20), 1.
satisfies (19).

2. Application

We consider

E‘i—? — Au+ ﬂuﬂ“ju + 1yu = f{ﬁja {'t:-ﬂ:} € Ry % {D:f] (25‘]
u(0) = ug (26)
u(0,t) = u(l,t) =0 (or ulz,t) = u(z + L,t), Vi > 0, x € R) (27)

2
where A = _..%1 g(s) € C*(Ry) satisfies
his) —wG(s)

.slirl-l?m 53 =0 ' {28}
i Gals

e i)

h(s) = sg(s), G(s) = f;g{ﬂ}dm G(s) = max{0,G(s)} (30)

Let D(A) = H2(0,1) 1 HA(0,1), V = H}(0,1) (or
D(A) = {v € HE(R),v(z +1) = v(), Yz € R}
V = {1: € HL (R),v(x +1) = v(z), Yz € R})
The norm of u in D(A) and V is defined by
ullogay = [luld + Elueld + Blueald] (31)
lu]lv = {Iuﬁ + Flumﬁ]lﬁ1 | - |o is the norm of L*0,1) . (32)

Proposition 4[5 Suppose that g satisfies (28)-(29), f L?(0,1), then for problem
(25)-(27), we have the following statements. :
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1. If ug € V (D{A)), then there exists unique solufion w and v € C(R.. VI N

(R, V). (ue C(Ry, D(A)) N L=(R., D(A)))

+ 2. There exists bounded closed absorbing set By, By respectively By = {u € D(A),

lellpiay € P2}y Br={u eV, |lullv < pooi}-

From Proposition 2,

o

Bi=s || sy sS(8) By

D<t=to( o)

(33)

15 a positively invariant compact convex set in V. In order to prove the existence of
inertial fractal set of {5(t), B}, according to Theorem 2, the condition of Proposition

3 must be checked.

Let ug, us be two solutions for problem (25)—(27), w1(0), u2(0) € B, we set w(t) =

uy (t) — ua(t), then wt) satisfies

duw
o —Awtg ({mlz) U1 — g {IHEFE) uy + eyw =10
By using
bd 2 = Im(iw; — Aw, Aw
EEinh} = Im(iw; — Aw, Aw)
and 1id
§E|w|§ = Im{iw; — Aw, w)
we have
s ﬂirgw“ﬂ = Jm (g.r (|u3|‘?) Uz — @ Ii[’i:).”z) iy, W+ sz*i:u) — llwlli
2 dt s : SR

Note that g(s) € C*(R,), so
g (lual?) wa =g (jur*) e = g (IE1?) w + o' (1) €2 + o' (1€F) e

where £ = 7uy + (1 — 7)ug € B, 7 € (0,1). (notice that B is convex)
By using (38) we have

I (g (Jual) w2 = g (fur]?) w1, ) = Tm (g” (1€I7) €2, w)
Note that [€lzee < pec.zi |9’ (16} < €, we have
[ (g (Jual?) w2 — g (jur]?) wn,0) < oo ol
Also

Im (,-;r (iugﬁ) Uy — (|m |2) 1¢1,Aw) =Im{g-6£|2) 1

+ g (1617) €w + ¢ (1€1%) 1] w, Aw)

(34)

(39)
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=Im (45}' (L{F} Re ({EI) w, wx) + Im (g’|£|2) &2y, tt'm)
+Im (29" (J61?) Re (68.) w+ 2 (1€F2) €62+ 20" (1617) Re(66e) 6w, w2) (40)

Now using |£z|re < |éa i”|§i$“ < pooz and L estimates on g (€%, ¢" (1€1%), we
imnfer that

[fon (g (1usf?) w2 — g (Jusl?) wr, Aw)| < eslwald + ¢4 L llwslde < el (41)

Combining (37), (39), with (41), we have

il
@Iy < eollw@®Ily (42)
Then
()1 < e [lw(y (43)
where ¢; depends only on 7, P2, 6,9+ 9"
Let :
plw) = [ {wal? g (1) hul* - 29’ (lF") Re(¢w)’} de (44)
Using the fact that |§]ges < poo for £ € B, g (&%), ¢ (|€]*Y < ¢, we have
lQvu®} < 226(@nw) < 26| Quu(E)IY (45)
when
Anal =%+ 200 + 4c.:.;fjﬂ12 (46)

where ¢o = max {!_23 co + Ecg,ﬂiﬂiz} :
We multiply (34) by 4 and integrate on (0,1), take the real part. Next we multiply
again (34) by —w; and integrate on {0, 1) take the real part, then we obtain respectively

i [ wwds — [ stoultda +v [ o () lePhoPds + [ o (i)
-+ Re /: g’ (IEFJ Rﬂrtﬁﬁ]zdi.‘ =0 (47)

%% [ ful |ws|*dx — L I [24' (1€?) Re(cm)* + 9 (I¢I°) jol?] d:a:]
+ ~Im -[}I willydz = 7(t,w) (18)

where

r(tow) =~ f.;. E [Iwﬁ%g (ler) +Rﬂtm}§y' (ler?)
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+ 2¢' (1¢]?) Re(¢w)Re () Jda (49)
We deduce from (47) and (48) that
2 2 () + yhusld = Rt w) = r(tw | (50)
where
{ 1
R(t,w) =’}'fﬂ 9’ (1€*) ¢ | da —lﬂfrfn g ([&?) [w[?dz
R o E) Re(£w)*dx 51)
+Re [ o (el (5
Note that £ € B, so |R(t, w)| < e(poe.z, 7) w3 (52)

Returning to (25) we have
ity = A — g(Ju|*)u — ivu — f

According to w € B,f € L*(0,1), u € L®(Ry,D(A)), we have uy, € L*(0,!), and
& € L*(0,1) that is [¢]o < e(poo,2, | f]o). Therefore we obtain

[r(t,w) < e /; wlléeldz < erléelfwl?s < clwaly’lwly®
< Lol + 2e¥3(2y) S ul} (53)
Substituting (52), (53) into (50}, we obtain
d
= 0(w) +lwsl < calwls (54)

where ¢3 = c1¢(poo2, | flo) + 3¢¥2 /4427, ¢, ¢ are constants which do not depend on w,
constant c(poo,2, |flo) depends only on po 2, | flo.

Using
¢ I
2 |2 ! 2 —2 2
il 2 ] o o
Uﬂg(m Jheldz +2 [ o' (167) Re(éw)?da| < calul
wie obtain d
—2(Qvw) + 19(Quw) < esAk llQwwll (55)

where o5 = c3 + ¢4, N satisfies (45).

Finally, we have

Theorem 3 Suppose that ui(t), us(t) be two solutions of the problem (25)—(27),
f € L3(0,1), up € D(A), then under the conditions (28)—(29), there exists the inertial
Jractal set M of (S(t), B) in V and

dp(M) < ¢max {\/E—E + 2eg + defpl, 4, 15&“’*“&5%:15 -I—“]f}_l'm} + 2 (56)
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disty (S(t) B, M) < cge™ (57)

t, satisfies 2calle™ 7t < Eé-':j- constants cg, €1, ¢, cg, do not depend on w, ¢z is defined by
(46).

Proof By Propositions 4, (43) and (55), we deduce that there exists an inertial
fractal set for (S(f), B), where Ny, satisfy

Ao+t = max { 2eq + 4eBpl 5 + 17, 256e52% (7 + ¢5) ™' | (58)

We choose § < %} 4§ < 0 < 1, and observe Ay,y1 = coNg in (23), the complex space
is regarded as the product of the two real spaces, we obtain the (56), (57) follows with

(24).

Remark If we solve t. from the inequality 2eal®e~ " < ——, then (56) will not

2 A6
contain t,.
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