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Abstract In this paper we study the uniqueness of generalized solutions for a .
class of quasilinear degenerate parabolic systems ariging from dynamics of biological
groups. The results obtained give an answer to a problem posed by A.S. Kalashnikov

].
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In this paper we consider a quasilinear degenerate parabolic system of the form

B 4 Y
% — a; Aul + bufuf (1)

in Qp = RT % (0,T) with the initial condition
i, 0) = uoi(®) (2)

for r € RV, where iy = 1,pe 2 Lz = 1, T > 0,a; > 0, b; are given real numbers and
ug;(i = 1,2) are bounded measurable functions in RV {

The system (1) arises from modeling interacting evolution of two biological groups
with densities uy, uz (see [1] 5 '

Definition A vector function (w1, uz) with u; € Loo(Qr) and w; 2 0 (i = 1o P

a generalized solution of (13-(2), if (w1, ua) sadisfies
ﬂg : (witpse + aqul® Awp; + biui ud ;) dedt =0 (3)
for all @; € C§°(Qr), 1 = 1.2
lim i whi(ui(z,t) — vei(z))dr =0 (4)

for all ; € CP(RY), i =1,2.
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A.S. Kalashnikov first studied the system (1) and proved the existence of generalized
solutions to the Cauchy problem (1)-(2) (see [1]). However, he was not able to solve
the problem of uniqueness, and put forward as an open problem in the paper [1].
Afterwards, A.S. Kalashnikov mentioned this problem again at a symposium [2].

In this paper, we attempt to give an answer to this problem. The main result
obtained is the following theorem.

Theorem Let the vector functions (uy, us) and (vy,v3) be two generalized solutions
of the Cauchy problem (1)-(2). Then

Wit =l n), nte=],2

for a.e. (z,t) € Qr.
Here the uniqueness is proved for the cases p; > land ¢; =2 1 (i = 1,2). The
following example shows that these conditions can not be removed in general: both

w=0 and w=|[(1 -—p}t}ﬁ
are generalized solutions of the equation
wy = Aw™ + w? (5]
in Q7 = RY % (0,T) with the initial condition
, w(x,0) =0 (6)

on RY, where m > 1and 1 > p > 0. In case b; < 0 (i = 1,2) the uniqueness seems to
be true even if p; < 1 and ¢; < 1 (i = 1,2). But we are not able to prove yet.
The result {Theorem) can be extended to more general systems of the form

()

by

ot
in Qr, where 4; : R' — R, B; : R* — R! (i = 1,2,.--,n) are locally Lipschitz
continuous, respectively.

The same problem for more general systems with convection term has been studied
by one of the authours and his colleague and the uniqueness of BV solutions has been
proved (see [3]).

In order to prove the theorem we define

uy () — o (¢ =
. {ai- i &) = 07 (%, 1) if wi(x, ) £ vz, t)
0

=ﬂ.}1{|:?.-!1'] 'i‘Bil::'ﬂ.hu.g?"',uﬂ}, 1:21,2,"',.31

Ailz,t) = u‘ir:$~. t:' 2 ﬂi{ma f'}

; : otherwise
A (x,t) = Ajlz, t)+¢, 1=1,2
Ai etz t) = (A = L) (x,1), i=1,2

for all (x,t) € @7, where

Osp =l .1 el0P (RN f =1

RN+
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with
suppJ, € {(z,t) : || < p, [t] < p}

Clearly, we have

EEA'E,E{$1E::I{_:M:- 1=11E
(= E A£1E“ﬂ{$1i’} _':; ﬂvf._ i- — 1,2

for all (z,t) € Qr, where M is a positive constant depending only on the L*-norm of
u; and v (i = 1,2).
For #;(x) € Cﬁ“[ﬁ”) (i = 1,2) with |8;] £ 1, we choose a positive number /& such
that
f#i(x) £ Ce(Bra), t=1, 7

where

Bp={z € R" : |z| < R}
Now consider the following boundary value problem

di;

— A, A =0 in Br X (0,T) (7)
$i(z,T) = 8:(x)e ™, z € Br (9)

where 1 = 1, 2.

It is known that the boundary value problem (7)-(9) has a unique smooth solution
i ¢p- In order to prove the uniqueness of solutions for (1)-(2), we need the following
lemmas.

Lemma 1 The solution ¥ , of the boundary value problem (7)-(9) satisfies the
following inequalities

i oz, ) 1, (z,t) € Bp X (0,T) (10)

fB |0 ieplat)? < My; t€(0,T) (11)
.

fn fﬂ ; Aie o, 1) (A ) ddt < My (12)

where My is a positive constant depending on 8; (i = 1,2) but independent of £, p and
K.

Proof The inequality (10) follows from the Maximum principle. In order to prove
(11) and (12), we multiply (7) by &icp and integrate in B x (0,T) to obtain

¢ d
/ LR {f’i“*ﬁ’w}ahﬂwi + Af,a.p[a%,pﬁ} dodt — 0
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We compute

T s, 1 1 :
b i Lo B . =2 e e = B o (. 12 d-
ft _[Bﬁfﬁwt.ap:' atiﬂlisipd:rdf 5 /:;fn | 57 [E?,[m}e_ |7 dx + 5 j:gﬁ | %7 %1 o{z, ) da

and we have

1 _ 2 = 2 =1 —|z[]]?
E\/ER | “-.TJ" '!,'.'Jhglp[fl',_ t” d$+£ -/;ER Ai.&,p[&ﬁiﬁ',ﬁ,p] fimdﬁ- —r "'2" fHR 't-,_-.-'r [Hif:r}ﬂ ] .fl!{:E
which implies (11) and (12). Thus Lemma 1 is proved.
Lemma 2 The solution 1., of the boundary problem (7T)-(9) satisfies
'J,."J;';,;‘pll(:[:,'ﬁ} i :!Wgt‘_lxl {133

for all (z,t) € B x (0,T), where My is a positive constant depending only on T and
the L™ -norm of w; and v;.
Proof We consider the following functions

W (2, ) = Fapie plz, t) + 1 1EHHT-0 4 g 9

where v > 0 will be determined later.
From (7)-(9) we have
w(z,t) > 0

on |z| =1 and || = R and
W?:E$1 = ?ﬁgf‘._iﬁr 4 el=lzl+A(r-T)
=7 I:i:F"I-:;"; - E::I.g_|3'-| =0

and

EEE ('IJ!J:!_) + ‘q'i-rfhﬁ&w?: N %EI_|54‘|'1{T—*J + A€IEIP£EI—|$|+TI:T—t:I

= pl—lz[+¥(T-2) {A£1E1|ﬂ' — (N - de‘li.E.P!xi_L o FF}

Therefore, we can choose depending only on L*-norm of u; and v; such that

& +
awiﬂ: + A; o pAwE < ()

for all (z,t) € (Bg\B;) = (0,T). Applying the comparison principle, we have
wE(z, t) > 0

for (z,t) € (Br\B1) = (0,T).
Mamely
Fihice o, t) + 0T 5 g

which implies (13).
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Lemma 3 There exists a positive constant M independent of €,p and R such
that
| 7 Wil < Mae™™ - (14)

on 8B % (0,T).
Proof We consider the following functions

22 (z,1) = FiieplE,t) + Kye Blefalel=R) _ 1]
for all (z,t) € Bg x (0,T). Clearly, we have
2z, ty =0
for (z,t) € 8BR % (0,7") and
2E (2, T) = Fhie ™ + Kye Blefel=-R) 1] < 0

for x € Br\Br-1-
Using Lemma 2, we can choose K, and K3 large enough such that

2 (z,1) = Fthie o, 1) + Kre Mle 2 = 1] <0

for |z] = K —=1.
Clearly,
d

N-1
ﬁa: :t + Aiﬁglp.&.z? = H-lc_R - Eﬁz{hml_ﬂ}ﬂfﬁ;p [ff% + Ko 2] ] =10

Therefore, by maximum principle, we hawve
zF(z, 1) £ 0
for (z,1) € (Br\Br-1) x (0,T), and

dzE
I
dvr — !

on §Bg % (0, T), where v is the outward normal to dBr. This implies

a i
?51&-&;@ > —K1Kqe™?

on @Br % (0,T), and (14) is proved. :

Lemma 4 Let (uy,up) be a generalized solution of the Cauchy problem (1)-(2).
Then for a.e. st with0 < s <t < 7T and all @ € C>=(0,T:Cg2(RY)) (i = 1,2) we
hove

.[RN wilz, t)ui(z, t)ds — fﬂﬁ wilx, 8)ui(x, 8)dz

: dipi : : _
i /; f;—ﬁh‘ (w ot 1 ﬂi“?lﬂ'ﬁi + biﬂf"ﬂ?' tp;') dondt; t=1,2
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The proof is similar to that given in [4].
Proof of Theorem We choose 7, ¢ C5°(Br) such that

0 =14 < 1in Bp; N =11in Bp_,

3

i} )
| V7 7| < = |An| < —

where 0 < @ < R and £ is a positive constant independent of R and e
Applying Lemma 4 we have

f NaWicp(t — vz, t)dx =/ NaWiepltt; — v}z, 8)dx
By Br
: a.
+[E a, Ne 5 Wise,pl s — vi) (z, A)dzd )
t
] o o) AQrapi, ), Mo
& JHp

t
=[] b U — o) (i), Nz
s JBp

for a.e. s, withD <5 <t < T, where Wi 2 o 18 & solution of the boundary value problem
(7)-(9) with T = ¢.
Let 8 — (). Then we obtain

f Neetlie p(i — i) (2, £)dz
B
:
:f f T [@5 (W™ = ™) = Aieplus — vi)] Ay oz, N)dzd )
0 B
i |
s [ bi (uy'uf — v o) (Matbie )z, A)dzd)
Jo /B,

t
+-/.; fﬁ 0y {'H-.;n:' 2, '|l_,|;ﬂ|";| {2 '?':i‘jl‘“ ' ?i}{:i|£|,ﬂ' - 'En'i'lz:-.ﬁ,'pﬁﬂ.:}-}(i_, .-:!'L:Idﬂd..};
I
1'jzl:-rfhjl -+ IE i _!ra

We compute

i
..I-!r'[ :\/I} % Mo [ﬂ-!: I:H-Int i tj;“{] — Ai,s:.ﬂ{ﬂ-i = 'LII:}] &¢f|51p{m}ajﬁ}:i1:{g}|,
A

4
=A fﬂ Mt = i) Ase = A p) Al (i, N)dd A
5 .

¢
- E[ / e (s — i) Ay o (2, A)dzdA
] Hy

1

: {/ﬂtfan baf: “ﬂ&ﬁﬁg,e,ﬂimaﬂlzdm} s { /D ﬁ fE e ;ai,f,prﬂtz,,x}fﬁm,x}
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te {f{: LH [t m—m}li{m}_}u}d:gdh}% - {f[: fﬂn[ayf;i,ﬁﬂ(m}m]:dm}%

Using Lemma 1 and noting the definitions of A;. , and Ai, we conclude

—

i F) 1
1] £ Ce73 {f f;:; |Aie — Aol (2, i]dﬂ?fﬂ} + Ce?
0 R

where C is a positive constant independent of £ and p.
Let p — 0 and & — 0. Then we have

II1] =0 (16)
Noting that p; > 1,¢; = 1 (i = 1,2) and Lemma 2, we obtain
I t s 5 I.
| Is| = \—f f b; (uf ud — ol 0d) (atlicp) (@, A)dzdA
0 JBgn .
'
e f f (g = 01| + |2 — va|)ePldzdA (17)
0 JBg
where (' is a positive constant depending only on py, ;. b; and L=-norms of u; and u;
(e =10y
Now, we discuss s,
t
I5 =f f a; (U™ — o) {27 Do Tiep + Wic pA0a (@, A)dudA
0 fBg :
¢
=f f a; (ul = v ) {2 7 Do - it (T, A)drdA
0 JBR ;
t
+ f / a; (uf — ") iz p A0, A)dxda
0 JBg
d=E=f131 + T4 (18}

From the definitions of ¥ . , and 1, we have

[ I5] =2

t
f f 2 (U™ = 0™) (T - Ticp} (@, A)dzd)
] Br

L
<cat [ f | 9 Wi pl (2, A)dzdA
0 JBr\Br-a

< CRYY sup |
.EHI'-,HR—n

It fﬂllnws from Lemma 3 that
lim |Fs1| < CRY e (19)

where ' is a positive constant independent of R, = and p.
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On the other hand, we have

£
”3?[ = j; /J_::‘ I‘I{{H:m - U?f]’tj’?ﬁﬁlpﬂ?}a{fﬁdﬁ
R

!
< Ca™? / f 1. pldzdA
0 JBr\Br_.

5 G e T SUp 3y ¢ o
BRIII.BE—n

It follows from Lemma 3 that
lim [I3y] < CRV1e~R (20)
fr=—
where C' i3 a positive constant independent of R, = and .
Let oc — 0. Then, it follows from (15)—(20) that

[ 0@t - v)(a, e
Bg

-t
<+ CRN-1e-R E’/ f (Fer = w1 | + [us — vo))e =l gagn
0SBy

where C' is a positive constant Independent of R, = and p.
Let p— 0,6 - 0,0 — 0 and B — +oo. Then we have

t :
f Bi(z)e 1l (q; — vz, t)de < C’/ (lur — wy| + o — va|le ¥l dwd
RN 0 JRN

forae. t e (0, T") and all 8;(z) € Ci(R™) with 0:] <1(i=1,2), where C is a positive
constant independent of £ and 4, (=12
This implies

_/Rﬁ.flul{ﬂ:,f} — oz, E) + fua(e, t) — va(z, £)])e~ 17 gy

¢
EEC'f /N(iu]{ﬂ:,.l} —m(zx, A)| + lua(z, A) — valz, A e~ =l dag
0 JR
Using the Gronwall inequality, we obtain

/‘;H”“l{maﬂ = (@, )| + Juz(z, t) — vy(a, te =gy — o

for ae. £ € (0,T).
Therefore, we have
Ui =14, t = 1, 2

a.e. 1n Qr. Thus the Theorem is proved,
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