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Abstract A thermistor is an electric circuit device made of ceramic material
whose electric conduetivity depends on the temperature. If the only heat source is
the electric heating, the temperature and the electric potential satisfy a nonlinear ellip-
tic system which is also degenerate if the electric conductivity is not uniformly bounded
from above or away from zero. Under general boundary conditions, we establish exis-
tence and Holder continuity of solutions of such a nonlinear nonuniformly elliptic sys-
tem. When the electric conductivity linearly depends on the temperature, we provide
a non-uniqueness and non-existence example,
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Classification 35J70, 35J55.

1. Introduction

A thermistor, or a thermally-sensitive-resistor, is an electrical device made of sermi-
conducting materials whose electrical resistivity changes up to 5 orders of magnitude
ds the temperature increases over a certain range. It has many applications such as
current regulation, switching, thermal conductivity analysis, and control and alarm;
see, for example, Hyde [12] and Llewellyn [13].

When acting as a (renewable) circuit breaker, a thermistor operates as follows: an
increase in current provides more (electrical) heating, leading to a rise in temperature
of the material which causes a rise in the resistivity, thereby reducing the current (to
almost zero if the temperature increases beyond a eritical limit). When the thermistor
cools down, its resistivity decreases and the normal operation of the circuit resumes,
In this paper, however, we shall only study the steady state problems.

Denote by §2 the domain in RY occupied by the thermistor (N = 2,3 are cases
of physical interest) and by u, ¢, o(u), and k(u) the temperature, electrical potential,
electrical conductivity, and thermal conductivity, respectively. Then the steady state
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thermistor problem is to solve the elliptic system

V(o(u)Vg) =0 in 2 (conservation of current) (1.1)

—V(k(u)Vu) = o(u)|Ve[* in 2 (conservation of energy) (1.2)
subject to the boundary conditions

o=¢y onT¥, Bap=0 onlf=0n\TH (1.3) :
vw=1wuy onl}, Juu+h(z,u)=0 on I'th = 8\ T} (1.4) }

where 8, is the outward normal derivative and I'f;, I'}j are smooth hypersurfaces. Typ-
ically, 'Y, consists of two disjoint hypersurfaces I'p, and I'3, and

w=V onlh, =0 onlf

where V is the voltage difference applied on the thermistor.

There has been recent mathematical interest in this thermistor problem in both the
case when o is positive [4, 5, 6, 11, 15, and the references therein] and the case when
¢ is vanishes at large temperature [1, 2, 3, 10, 16]. .

The obstacles in this thermistor problem are the quadratic growth on the right- %
hand side of (1.2) and the degeneracy of (1.1) when o(u) is not uniformly bounded
from above or away from zero.

In this paper we shall consider the case when o(u) is positive but is not necessarily
uniformly bounded from above and away from zero as u — oo. Since the change of
thermal conductivity is of secondary importance, we shall assume that k = 1. In fact,
the method given here can be applied to the general case of k > 0 as well. We shall
establish the existence and Holder continuity of the solution of (1.1)~(1.4) under certain
conditions on o(u) and h{z,u).

In the case when k = 1 and ¢ is uniformly bounded from above and away from
zero, existence of weak solutions to (1.1)-(1.4) was recently established by Howison,
Rodrigues, and Shillor [11]. The strategy they used to get around the quadratic growth
is to write ¢|Vi|? as V{o(p — ¢o) V) + oV Vi which is a bounded functional on
HY(f2). They proved the boundedness of the solution only for the case of Dirichlet
boundary condition or for the case of N = 2 where one can apply Meyers' theorem
on the elliptic equations of type (1.1) to deduce that Vi € LP(f2) for some p > 2,
and therefore to deduce that w € W22/2 ¢ ¢?~4/? by the L? estimate and the Sobolev
imbedding theorem. They also established the uniqueness of solutions for the case when
the solutions are sufficient “small”. The general uniqueness problem, however, is still

open. )
When o{u)/k(u) is not uniformly bounded away from zero, equations (1.1), (1.2)
with Dirichlet boundary data was studied in [4, 5, 6, 15]. The strategy here is to use
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the transformation found by Diesselhorst in 1900 [7]:

2

_ ¥ _ [ k(s)
P = E—F—F{u] where F(u) -rj;} 2(s)

ds - (1.5)

Using this transformation and (1.1), one can write equation (1.2) in a simpler form
V(ieVy) =10 (1.6)

so that one can apply the maximum principle to obtain a L° a priori bound for .
Consequently, if one assumes that F'(co) = oo, one can derive from (1.5) a L* bound
for u. Once the L™ bound for u is established, the function o(u(z)) becomes uniformly
bounded from above and away from zero, so that one can apply the classic Holder
estimates to obtain the Holder continuity for the functions ¢ and 4 in 2. In [15], Xie
and Allegretto also studied equations (1.1)-{1.4) but with the restriction I'ff ¢ I'f.
Under this restriction, the boundary condition for 4 is

2
$= 5 +00 on I3, 8up = H(s,¥) = L2

For this type of boundary condition, one can still directly apply the weak maximum
principle to get the L® a priori bound for ¢ and then use the Hélder estimate to
establish the Holder continuity for the solution.

For the general case of (1.3), (1.4), i.e., without the assumption I'}f C I', we
cannot use the transformation (1.5) since the boundary condition for 4 involves dnep.
To overcome this difficulty, we use the transformation

¥ = (¢ - o) + Flu) (18)

Under this transformation, the boundary cendition for ¢ is of the type (1.7) since
On(tp—0)* = 0 on 812, Although the equation for 1 in the domain 2 is not very good,
we can still implement the classical Nash-Moser iteration to establish the L= bounds
for 4.

To establish the Holder continuity for w in 2, we cannot simply use the function
in (1.5) or in (1.8) since the boundary condition for % in (1.5) is not pleasant whereas
the equation for 1} in (1.8) in the domain 12 is not good. Instead we shall directly work
on u and . By showing that

n I (1.7)

u=F=1(y—? 2)

ff o(u)[ V> < CRN-2+ Yz e R R >0
Brlz)na

for some o > 0, we then use the method in [8] to establish the Hélder continuity for w.

The plan of this paper is as follows. In Section 2 we state the problem and our
main result. Then we establish the L% estimate in Section 3 and prove the existence
of a weak solution of (1.1)-(1.4) in Section 4. We shall establish the Holder continuity
for the weak solution in Section 5. To explain the necessity of our condition, we shall
finally give a non-existence and non-uniqueness example in Section 6.
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2. Statement of the Problem

It is convenient to introduce a new function v defined by

1 k
v=Flu)= f ﬂris (2.1)
0 ofs)
Under this transformation, (1.1)—(1.4) are equivalent to
~V(e(v)Ve) =0 in 2 (2.2)
~V(a(v)Vv) = a(v)|Ve? in R (2.3)
w=wo onlp, B.p=0 onTlf - (2.4)
v=v onlp, v+ H(z,v)=0 on T} (2.5)
where
EE{“{.F} ~ ﬂ-[u}lu:F‘"{v}
vy = F(ug), (2.6)
k()
sk = I
Gind alu) Ha, 1 u=F-1{y)
Note that in order for F~'(v) to be well-defined for all v € R, it is necessary to
assume that  k(s)
&5
L Iﬁd& — 00 [ET}

In fact, if this condition is not satisfied, Cimatti [4] has shown in one-dimensional case
that the solution may not exist. Therefore, to ensure the existence, one has to assume
that the a priori L™ bound for v obtained in Section 3 is in the definition range of
F~*v). For simplicity, here we assume that (2.7) is satisfied so that a(v), H(z,v) is
globally defined and we can just work on (2.2)-(2.5).

Also note that the function k() is not involved in (2.2)—(2.5), so one can generally
assume that k(u) = 1.

We shall make the following assumptions for {2, o(-),ve(-), H(:,v), and a(v):

(Al) 2 is a bounded domain with a (piecewise) smooth (C?) boundary 802. I'f
and I'j} are non-empty (piecewise) smooth (C?) hypersurfaces with smooth N — 2
dimensional boundaries in §12.

(A2) The functions ¢y and vy have extensions into {2. The extensions, which are
still denoted by g and vy, satisfy

[0, vollgrpy < Mo (2.8)
Ontpo=0 on If (2.9)
vp>0 on 2 (2.10)
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where My, is a constant > 1.
(A3) The function H(z,v) is measurable in # € I't and continuous in v ¢ R?
(uniformly for all z € I'}}); moreover, H satisfies

|H(z,v)| £ My V(z,v) € '}y x [0, Mp] (2.11)
E[m,uj =0 Yo> My, zc I (2.12)
H(z,v) <0 Yve <0, ze I} (2.13)

where M) is the constant in (2.8) and M, is some positive constant.

(A4) The function a(v) is continuous and positive in R' and satisfies the following
conditions:

1. There exists a constant ¥ > 0 such that

1 _a(v+y) 2
= L -t g < :
5 S Tal) S L Yux0, |yl <4M; (2.14)
2. Either 2 1 2
= d lim — =
: a(s)ds = oo an oy ./u a(s)ds = oo (2.15)
or —
linlt 2L il g (2.16)

vooa p2 Jy o oafs)

Notice that any (positive) polynomial satisfies (2.15) whereas any (positive and)
monotone decreasing function satisfies (2.16). :

First of all, we define a (weak) solution of (2.2)-(2.5).

Definition 1 A pair (v,p) is called @ weak solution of (2.2)—(2.5) if

v, € HH(R), afv)H(v) € I(TY), a(o)|Vel € I2(2),
w=wo onI'f, v=uvyonl§,

and

[[ eveve=0 vee B (), €y =0 (2.17)
JJ )50 - a@)Veln+ [ a(w)(z, v =0

¥y e H'(2)n L™=(N), Alry =0 (2.18)

Notice that taking £ = ¢ — g in (2.17) yields a(v)|Ve|* € L1(2), so that (2.18) is
well defined. Qur main result is the following:

Theorem 1 Assume that (Al)-(A4) are satisfied. Then the system (2.2)-(2.5)
admits o (weak) solution satisfying

v, € C%(17) (2.19)
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for some constant o € (0,1).

The proof will be given is Sections 3-5.

Remark 2.1 For simplicity, here we have assumed that I'j is non-empty. This
assumption, however, can be replaced by some monotonicity condition on H(z,v) (see
also Remark 3.1).

Remark 2.2 The functions k(u) and o{u) quoted in [15] have the form

o(u) = Auve~S/P%  h(u) = (D + Bu + Fu?)~?

where A, B, ., D, E and F are positive constants. Clearly, after the transformation
(2.1), the function a(v) defined in (2.6) satisfies the assumption (A4).

Remark 2.3 With a boot strap argument,-one can start from the regularity (2.19)
to establish higher regularity for the solution provided that a(v) is smooth.

Reamrk 2.4 If o(u) vanishes beyond some temperature u* > 0 but satisfies

fnu k{z:;ds =

then the function F~!(v) is well-defined for v € [0, o0), so that Theorem 1 still holds.

Note that when k = 1 and o ~ +° with 8 € (0,1), the assumption (A4) is satisfied.
However, when o(u) ~ u, the assumption (A4) is not satisfied since in this case a(v) ~
e, Therefore, as a test for the necessity of the condition (A4}, we consider the case
when ¢ is linear. More precisely, we consider the following problem:

(upz)e =0, =€ (0,1) (2.20)
gy = upZ, =€ (0,1) (2.21)
p(0)=0, ¢(1)=V (2:22)
u(0) =0, uz(l)+u(l)=0 (2.28)
u(z) >0, z¢€[0,1] (2.24)

For this system, we proved the following:

Theorem 2 There exists a unique positive constant Vy such that (2.20)—(2.24) has
a solution if and only if V. = +£Vo. Moreover, if (u, ) is a solution of (2.20)—(2.24)
with V = £V, then for any k > 0, the pair (ku, ) is also a solution to [2 20}-(2.24)

The proof will be given in Section 6.

3. L™ Estimates

In this section, we shall always assume that (Al)-(A4) are satisfied.
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L. o
¥
Ry .
e
LA
i,

- Lemmal Let(v,¢p) be a weak solution of (2.2)~(2.5). Then one has the following
E"'GCHI+ nds:

E (e sup || < masx|go| (3.1)
<3 p: ¥

I

1 infv > 0 (3.2)
BBz i

This lemma is a consequence of the weak maximum principle. In fact, take £ =
'r{gan-nll‘%x wol,0} in (2.17) and 5 = max{min{v, 0}, -1} in (2.18), one deduces that

B e D
_ t%(ﬂ)l?ﬂz = 0 and a(v)|Vn|® = 0. Therefore £ = 5 = 0 since a(v) > 0 a.e. in £ and
&1 € H'(2). One then obtains the inequality supyp < 11}1ax|5r.7-'u| and the inequality
o D

' 'q;_i':z]. Similarly, one can prove that "j-’:f ¢ = —sup |pg|. The assertions of Lemma 1 thus
r I‘I'ﬂ

follows. .
Now we shall establish the upper bound for v. To express the idea simpler, in the
sequel we shall write equations and boundary conditions in the classical way in stead
of in the integral identities as in the definition 1. Although it looks formal, it can be
verified rigorously in the distribution sense by taking appropriate test functions in the
definition 1.
Introduce a function 1 defined by

D

¥=(p—p0)+v (3.3)

Since 0,0 = Oup = 0 on I¥ (in the distribution semse), it follows that 3 (- po)? = 0
~on 317 and therefore 1) satisfies the boundary condition:

Ot = Gpv = —H(z,9 — (- 0)?) on I'iy (3.4)
One can compute

~V(a(v)V4) = =2V(( — 90)aVe) + 2V (a(p — o) Vi) — V(aVv)
= —a|Vel® + 2V (a(p — o) Vi) + 2aVp Vi,
by utilizing (2.2) and (2.3). Using Cauchy’s inequality for the last term, one obtains

the inequality:
~V(aVy) < a|Veo|® + 2V(a(p ~ wo) Vi) (3.5)

~ To establish the upper bound for 1, we first consider the case when a(v) satisfies
(2.15). The second equation in (2.15) implies that for any & > 0, there exists a positive
constant C', such that

alv) < Ef; a{s)ds 4+ C, Yo >0 [35]
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Set My = 4MZ + My, Then in view of the definition of 4 in (3.3), the boundedness
of @ in (3.1) and the boundedness v = vy on I'g, we have ;

¥ <M, on I (3.7)
Define ¥ as
¥ = A(y) = fi a(s)ds (3.8)
it follows from (3.7), (3.4), and (3.5) that ¥ satisfies
¥ <0 onl} (3.9)
O ¥ = —a(P)H(2,v)|y=g-1(¥) — (¥ — w0)° (3.10)
-v( “E_;J}v ¥) < a(v)|Vepo|* +2V(a(v)(@ — 00) Vo (3.11)

(in the distribution sense].
By the routine truncation and approximation process if necessary, we shall assume
that ¥ £ L*( (1), so that the following proof is valid without further explanation.
Denote max{¥,0} by ¥, and let p > 2 be any constant. Multiplying (3.11) by
!.F’f_"l and integrating by parts, one obtains

2(v) gp-2 . a(v) @t Y
:;p—l}j/ ﬂmwi VL + [ a) 7 )

), o1 29

Here we have used the fact that (¢ — @g)8neo = 0 on 312

Note that if ¥, > 0, then ¥ > 4M? + My and v = ¢ — (i — )® > My, so that
by (2.12), H(z,v) = 0. That js, the second term on the left-hand side of (3.12) is
non-negative. Using (2.8), (2.14), and (3.6) in (3.12), one gets

fj_l; i Ao AL G'[[H{E Uy + C )TN, + |V E,])

Using Cauchy's inequality, one finds that

(3.12)

f EVEREC ffﬂ (e 72 + e'-PCP) (3.13)
Since ¥, |ru = 0, the Sobolev inequality implies that
ff;;. ¥ < C(2,IE) j] V&, 2 (3.14)
12

Substituting (3.13) (with p = 2) into the right-hand side and taking & small enough,
one obtains the L® estimate

| ¥4l g2 () = € (3.15)
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The L= estimate for ¥, then follows from (3.13), (3.15), and the Nash-Moser iteration

technique. For reader’s convenience, we give the proof below.
Let € be fixed, say £ = 1, and let ¥, = max{¥,,C.}.
Recall the Sobolev imbedding

| 22| p2e gy € C(2)]] ‘Pf’m”ffl(s:rj
< CMIV 2 Loy + 192 |22 y) (3.16)

where
2N

o  — ) N -2
any ¢ < oo if N <2
Substituting (3.13) into the right-hand side of (3.16) yields

f N >2

” gfﬂ”LPP{ﬂ} < ECP]”F” !P-EHLF['_Q] Yp > 2

)

N
where u = ¥ 3 1f N »>2and p = 2i1f N € 2. Therefore, successively apply the

above inequality w1Lh Po=2,pp = pou” for n = 1,2,-- -, one obtains the following:

12ellpm(a) = lm || Ze||gaem ) < TT(C20' )| ]| 2y < €
£=(]
Transferring back to the function v via (3.8) and (3.3) and using the first equation in
(2.15), one obtains that there exists a positive constant M such that

1ol ooy < M (3.17)

In the case when a(v) satisfies (2.16) we can use a similar argument to establish

[3.17) and here we just sketch the proof. Set s, = max{, M2} and multiply in-
St

Wt
equality (3.5) by ¢ = [

M, afs)
(2.16), and following the same procedure as before, one gets

ffﬂ W22 Vg, |2 < € fj;: (e, +£17CP)

The Nash-Moser iteration then yields the L® bound for i34, which also provides an
upper bound for v.

In summary, we have proven the following:

Lemma 2 Let (v,) be a weak solution of (2.2)-(2.5). Then there exists a positive
constant M such that

ds. After integrating by parts, using (2.8), (2.14), and

s vllpeeioy = M (3.18)

Remark 3.1 The only place we need to use the assumption I'}} being nonempty
is to derive the L? estimate (3.15) where we have to use Sobolev's inequality (3.14).
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Clearly, we can drop this assumption and still get the L estimate if we make some
assumption on the growth of H(z,-) and in deriving the L? estimate (3.15) we do not
drop the non-negative term f a(v) ¥ H(z,v) in (3.12).

Pll.

i

4. Existence of a Weak Solution

With the a priori L™ estimate, the existence of weak solutions now follows from
the routine truncation procedure.
Let m > () be an arbitrary constant. Define a function a,,, by

a(0) ifs<0 _
am(s) = ¢ a(s) if s €[0,m]
alm) ifs>m

Then a,, is uniformly bounded from above and away from zero. Applying the result
of [11], we know that there exists a (weak) solution (v™, ™) to (2.2)~(2.5) where a(v)
is replaced by a.n.(v).

Notice that the constant ¥ and the limit in the assumption (A4) can be made
uniformly in m so that the L™ a priori estimate obtained in Section 3 can he made
independent of m; i.e., there exists a positive constant M independent of m such that
lo™, ™| g2y £ M. Therefore if we let m > M, we have am (™) = a(v™); that is,
(v™,%™) is actually a solution (2.2)-(2.5). This establishes the existence of a weak
solution,

5. Holder Estimates

The L™ estimate obtained in Section 3 and the continuity assumption on a{v) imply
that there exists a constant ¢~ > 0 such that

1/o* < a(v(z)) < o* Yz € 12 (5.1)

We shall now use (5.1) to establish the Hélder continuity for the weak solution of
(2.2)-(2.5).
Lemma 3 There exist a constant a(0,1) and a constant C,, > 0 such that

lellgaia) < Ca (5.2)

I a@)IVe) < CaRN-22=  vaem R >0 (5.3)
Briz)ng :

where Br(z) is a ball in R™ centered at ¢ with radius R.
Proof The first estimate follows from (5.1) and the classical Hélder estimates [14].
We need only to prove (5.3).
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f 7] a!.l.d R > 0 be given. We consider two cases:

A] denc}tes t]le distance from z to the set A.
_g consider the case (i). Denote by ¢ the average of ¢ on the set Bag(z)n 2.
5 (..RN] be a cut-off function satisfying { = 0 in BRY \ Bap(2),{ = 1 in
-?_;i(; <1in RV, and |[V(| < 2/R. Then, (¢—@)¢% € H () and (p—@)(2 =0
king £ in (2.17) to be (@ — @)¢? yields

0= [ ave((e - 2)¢%) = [ alVel*¢* + 2ac(p - #)VV(

.n. 1 B
- > 5 [ alvelc =2 [ alp- p)19¢P
' iy, n
1
= a|Ve|* — CRY 22| p||%a
=5 Jpaioing [Vl _ lelle (42}

Tnequality (5.3) thus follows.
_ .;-l';];m case (ii), notice that both ¢ and ¢, are Holder continuous, they coincide on
I'p, and dist(z, ') < 2R, so that

le(y) — woly)l < CR® ¥y € Bag(z)
.;1.. ws that

]
L

0= [ aveV((p - po)c?)
> -[.ﬁr (%u|?fp|2{:? — alVpol*¢® — 4(p — Pﬂjglvf:lz)

1
- (2 Br(z)ng alVel )

44,_“ '53] holds. This completes the proof of Lemma 3.
j}_’;the following, we shall assume that a € (0,1/2) so that 2a € (0,1).

‘We need the following lemma to establish the Holder continuity for the function v.
- Lemma 4 Let

—(2)'In|a — €| N =2

{wn|z—~£|2_N if N >2

e
be the fundamental solution of the A in RY and let wy(z) be the harmonic potential

wy= [ T@-0f©% 2cR

L

where
. f {.-1|?ga|3 if z € 2

0 if ¢ ¢ 02
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Then there exists a constant C' depending only on the constant C, in Lemma 3, such
that

Hwi”gjn[ﬂ‘”j <5 C

Proof The proof is much the same as the potential analysis in [8, 9]. For reader’s
convenience, we sketch the proof below. For simplicity, we assume that N > 2.
Let z,y € RY be any two points such that = #Fy. Setd=|z -y Then one has

urtz) - wi < [ rG-olf@l+ [ re-eole
* Jfa sy 1@ =0 = T = OISOI= b+ T + I
Since (5.3) implies that
| O CRY-%1 vy e RN R0 (5.4)
Bpgl=

one can estimate [; by

h=) r©)lf(z - £)

Bitnnxa_"{_[ )
il

: L -

I ; m,{n] Ao
2 2L Nz s d o (N—-242a) "

<e (7 ) )" s

Similarly, one can obtain || < Cd*.
To estimate Iy, recall that

[Pz -8 —T(y=&)| < Clza—ylle—2"Y if|¢—2>|z—1y

where z = (z + y)/2. It follows that

slsc [ ,HHME leHIIJ’EE}I

- C’dg I _— el - Ol

lu%e’ 1 N—1 . ki
gc&g(ﬁ) (241 4)(N-2+20)

< Cd**  (since 2a < 1)

where in the second inequality we have used (5.4). Lemma 4 thus follows.
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Now we are ready to prove the Hélder continuity for v.
Lemma 5 There ezist a positive constant €' and a constant @ € (0,1) such that

”“Hc.ﬂ{ﬁj <C

v(xz)

Proof Introduce w(z) = ] a(s)ds. It suffices to prove the Holder continuity
0

of w. Decompose w into the the sum of v, and v; which are, respectively, the solution
of the following problems:

ﬂ.“ﬂ] — _f = fﬂ' in {2 {55}
davy =0 on 812 (5.6)
f s =0 (5.7)
an
and
Avg = fg in 2

-]
Uy = f a(s)ds —v; on I'§
L

dnvs = g(-) on Iy

where f = a(v)|V|?, fg is the average of f on 2, and g = — H(=,v(z)).

Let G(z,&) = I'(z — &) + h(z, ) be the Green’s function of the Laplace operator A
corresponding to the Neumann boundary condition (5.6); namely, for each z € 2, h(z,-)
is harmonic in {27 and satisfies the boundary condition On bz, &) = ~Gp (= —€)+ ¢
on 02 where ¢ is the average of 8, I'(z — £) on 812.

By Green’s formula, one has

o= [ Gl O)1(6) = s+ [ #2001 = ws + v}

Notice that h(z,£) is smooth when z is in a compact subset of 12, so that w} is smooth
In any compact subset of 2. When z is near the boundary 82, the singularity of
h(z,€) is similar to I'{z — £*) where £” is the reflection of £ with respect to (the tangent
plane of) df2. Therefore use the same proof as in Lemma 4, we can show that wy is
Hélder continuous with Hélder exponent 2o mear the boundary #§2. It follows that
v £ C*=(12). -

As a consequence of the Hélder continuity of v, in §2, the boundary value of v,
is Holder continuous on I'f. Since 8,v3|rs = g(z) is bounded, the classical Hélder
estimate then implies the vz is in CP(17) where 8 € (0,2a] is a constant depending on
I :

The relation f a(s)ds = w = v; + vz then yields the assertion of the lemma.

Combining thg results of Section 4, Lemma 3, and Lemma 5, Theorem 1 follows.
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6. A Non-existence and Non-uniqueness Example

Now we shall solve the system (2.20)-(2.24).
Notice that if (u, ) is a solution to (2.20)-(2.24), then for every k& > 0, (ku, ) is
also a solution, so by (2.24), we can always scale the solution such that

'u-{l} = (6.1)

Since u.(1) 4+ u(l) = 0, one gets
ug(1) = —1 (6.2)

The equation (ue, ), = 0 implies that
wgy =1 (6.3)

where I is a constant, which physically denotes the electrical current. Substituting this
relation into the equation u.. + up? = 0, one gets

(ue + Ip), = 0
which, together with the boundary condition u.(0) = (0} = 0, yields
U + Jp =0 Yz e[0,1] (6.4)
Using (6.2) and the boundary condition ¢(1) = V', we find the relation
L= (6.5)

To find u, we substitute p2 = I?/u? = 1/(V24?) into the differential equation for u.
This gives

1
“::[!-I_ﬁ:ﬂ

Multiplymg this equation by u,, integrating over (z,1), and using (6.1), (6.2), we get

gehib | LicH
%+I—ﬁlﬂ(ﬂ_2u]:ﬂ

Since, by the maximum principle, we have u > 1 for all z € [0, 1), this equation implies
that u, # 0. It follows that

3 s
V]

e =

‘/2]11{&1”-"'211’._'1) (6.6)

Solving this ODE, we obtain that the solution u is implicitly given by

ufx) * E.-"E o =
j; —_m{e‘”ﬁrl] = ]Vi{l } ¥z e[0,1] {.E'T}
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Using (6.4), (6.5), and (6.6), one gets

-]

WI\/EJ_H(E"”:"?u'l} (6.8)

Equation (6.6) and the boundary condition u.(0) = 0 imply that u(0) = eV /2 so,
by (6.7), V has to satisfy the equation

41 f Vi 'ﬁr"r
x/lu{e“zfz ) [

(6.9)

Up to now we have shown that if (u, @) solves (2.20)—(2.24), then after an appropri-
ate scaling on u, the solution is (uniquely) given by (6.7) and (6.8), and the constant
V has fo satisfy the equation (6.9). On the other hand, one can directly verify that if
I satisfies (6.9), then the functions u and ¢ given by (6.7) and (6.8) form a solution
to (2.20)-(2.24). Therefore, to complete the proof of Theorem 2, we need only to show
that equation (6.9) has a unique positive solution.

Assume that V' > 0. Then equation (6.9) can be written as

Fiv)=10

where

H} f Vi v,f_ EV:."'E fl cdt .. ’uﬁ
1 \/]n E‘L’?;zs—l} i vifz o/ Int ¥

Observe that F(0+) = —oo, F(ee) = co, and F'(v) > 0 for all v € (0,c0), so one
concludes that there exists one and only one solution to equation (6.9). This completes
the proof of Theorem 2.
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