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Abstract A phase change problem with Joule’s heating describes the processes of
electric heating in a conducting material. It is modeled as a coupled system of nonlinear
partial differential equations with quadratic growth in the gradient. We establish the

. existence of a weak solution for the problem in two dimensions.
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1. Introduction

In this paper we consider a model that deseribes the combined effects of heat and
‘electrical current flows in a metal. When an electrical current flows across the matal,
Joule heating is generated by the resistance of the metal to the electrical current, which
hrmgs about the increase of the temperature. A phase change will take place once the
melting temperature is crossed and the latent heat is absorbed.

Let © = u(z,t) denote the temperature, u, the melting temperature, h = h(z,1)
be the enthalpy density, ¢ = (z,t) the electrical potential and & = o(u) be the tem-
perature dependent electrical conductivity. The mathematical model for the evolution
under consideration is the following nonlinear system:

Find a triplet {h,u, e} such that

i—’;‘ — Au = o(u)| Vel 4 o1
V(ie(u)Ve) =10 (1.2)
hCudt AH(u—u) (1.3)
and the initial and boundary conditions, where |
-1 if s <0
H(s)=4 [-1,1] ifs=0 (1.4)

1 if 8 > 0
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When h = u(ie.X = 0) in (1.1)-(1.3), Cimatti [1] proved the existence of weak
solutions in two space dimensions and Chipot and Cimatti [2] proved the uniqueness
for the problem in one and two space dimensions. For the physical background and
the known results for the problem (1.1)-(1.3) we refer to 3] for more details and the
references therein. In [3] by using regularization and time discretization the existence
of the solutions {uy, @, } for the discretized approximated problems is proved, and then-
the strong convergence of {u,} and {y,} in L? is proved. But we find that the proof
of the latter step includes a mistake and the method breaks down, Here we shall give
a new proof of the existence for the problem in two space dimensions.

The plan of the paper is as follows. In Section 2 the definition of the weak solution
and the main result are stated. In Section 3 an approximating problem is solved by
using Schauder fixed-point theorem. Further a priori estimates on the approximating
solutions are obtained is Section 4. Since the right term of (1.1) involves the quadratic
growth in the gradient of ¢, we will use Meyers' estimate [4] to obtain the higher inte-
gratility of |Vi| and then prove the local equicontinuity of {u,} by using the modified
method of the De Giorgi estimates (see [5]). In Section 5 it will be concluded that
there exists a sequence of approximating solutions converging to the weak solution of
the problem under consideration.

2. The Definition of the Weak Solutions and the Main Result

Let {2 be a smooth bounded domain of R2, which is occupied by a conducting
material. Denote p = 2 x (0, T). We shall adopt the notation and symbol in [7] and
make the following assumptions.

o(s) € CY{RY), 0 < 0u < o(s) < 0* < 400 Vs € RL (2.1)
up(z) € C(12),ug(z) =0 on 912, up(x) # uy ae. in 2, uy > 0 (2.2)
0o € CHO(2) (0 < o < 1) (2.3)

The enthalpy formulation of the problem is as follows:
Problem (P): Determine a triplet {h,u, ¢} such that

h € alu) in 2y (2.4)
%-ii - Au=c(u)|Ve|? inf2p | (2.5)
u=0 ondn x[0,T] (2.6)
u=ug(x) on 2 x {0} (2.7)
V(e(u)Vy) =0 in Or (2.8)

w=1wy ondf x[0,T] (2.9)
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Here @ = a(u) is the maximal monotone graph modelling the phase change process,

T8 g—1 if & < .
a(s) = ¢ [u. — Liue+1] if s =u. : (2.10)
s+ 1 if 35 u,

‘and we assume the latent heat A = 1 and the melting temperature u, =constant.
Definition 2.1 We say that a triplet {h,u,} is a weak solution of (2.4)-(2.9) if

he L=(0r), b€ alu), hiz,0) =afug(z)) in 2

e Vo (Or) N C(R % [0,T]), u(z,0) = uolz) in 2
p E_CI::J'-?T]I N L=(0, T; W (2)) N C(0,T; H (1)) for some p* > 2

(2.11)

= pp On a5} % [[},T]
o 1,1
and Vv € W, (27) with v =0 on 2 x {T'} there holds
f {- il P f o ()| V| udedt + f o(z,0)h(z,0)dz  (2.12)
I dt e 1
and Y1 € HJ(2),Vt € [0,T] there holds

Lg{u}?gﬁ- Vibdr = 0 (2.13)

Remark 2.2 Since for any g > 1, Hﬂf’;'l(ﬂﬂ — L3(27) holds in two space dimen-
sions, the first term of the right in (2.12) makes sense.

In this paper the following existence theorem will be proved.

Theorem 2.3 Under the assumptions (2.1)-(2.3), Problem (P} possesses al least

one weak solution.

3. An Approximating Problem

Set oy (3) = s+Hp(s—u.), (n = 1,2, ) and Hy(s) satisfies the following conditions:

Ho(s) € CH{RY), 0 < Hi(s) <4n V¥seR!, ¥nz1 (3.1)
4
Hl(s—u,) < T Vs € RPN {ue), ¥n > 1
H (s —uy) =0 HSE'EI"\[u*—lu*+l] Vn > 1 (3.2)
i ﬂ1‘ " 1 o’

H' (s — u.) is increasing over s € (—oo, u.] and decreasing over s € [u., o0) (3.3)

en(s) — afs) in C'[a,b] for all [a, b] such that u. & [a,b]. (3.4)
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Let upa(z)(n = 1,2, ) satisfy

upn(2) € C1(N), Upn(2) = 0 on 802, ||upa(z) — uu[m}ﬂﬂu{m —+ O{n — oo) (3.5)

Denote [a],, = min(a,n). For each n we consider the following problem (P, ): Find
a pair {u,, .} such that

Jog(uy)

o~ Aun = 0(w)[|Vign[l in 27 (3.6)
V(e(un)Vis) = 0in £2, ¥t € [0,T) (3.7)
tn(z,0) = ugn(2) in 2 (3.8)
up = 0 on 802 x [0, 7] | (3.9)
@n = o on 812, Wt € [0,T) (3.10)

Lemma 3.1 Forn=1,2,---, Problem (P,) has a weak solution satisfying

1
e Lig
u, € W2L(02r) W, " (fr) for any p > 2

on € C(07) N L0, T;C***(R)) N C(0,T; HY(12)) and for some p* > 2  (3.11)

Vien|lz, . = sup ||[Veu(t)llo .o < C
IVenllr, . o(ar) ugang” enl )L, (m

o 1,1
where p~ and C' are independent of n, and for any £ € W, (1) with & =0 on 2 x {T}

g€
fﬂT { - cnltn) 35 + Vun - V}dzdt

(3.12)
= f () [[VonPlatdzdt + f on(tion(2))E(z, 0)dz
2 i
and for alln € H;(2) and all t € [0, T
j:? e(tn)Vipy, - Vadz =0 (3.13)

Proof Introduce the Banach space B = C’E'%{ﬁg«} and the closed convex subset
K={veB; ||vlpg<C, v=00n812x[0,T] v(z,0) = up,(z) in 17}

where C > 0 and & £ (0,1) are constants to be determined.
Let uw € K and ¢ € [0,T]. Denote by ¢, = @u(-,t), the unique solution to the
problem '

(pu = 90)(1) € BY(), [ o(w)Vpu-Vndz =0 ¥ye HY(D) (3.14)
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By the standard elliptic theory we have
leul:s t)llgagay < Ca : - (3.15)
[l E)ll 1ot () < Ca for some p* > 2 (3.16)

Here Ci(i = 1,2) depends only on o.,¢", ¢y and the smoothness of §12. (3.16) is the
known Meyers’ estimates [4]. Also @,(-,t) € CM(Q) for any t € [0,T] (see [8, Chapt.

81).

Next solve the following problem

o ()37 — Av= o (W)l in 0r
v=0o0n 81 x [0,T], v = uy, on 12 x {0}

(3.17)

From the theory of linear parabolic equation there exists a unique solution v ¢
1

W2i(02r) N W *(f2r) for any p > 2 to problem (3. 1?] and by the Krylov’s estimates

we have ||v|| < C, so that [[#]| a « < €. Here C and o ¢ (0,1} are
o™ EEQTII CZ'4(ar)

constants independent of u. Now we can choose & = g in the definition of Banach
space B and the constant ' in the definition of the subset X can be taken as (¢. Define

a mapping A : K — K as follows: v = Au. Obviously the image AKX is precompact.
We need only to show that A is continuous. Let u; € K(i = 1,2,---) converge to u

in C&’%(ﬂrj Denote v; = Aw(i = 1,2,---) and v = Aw. Since | |t:'1”w:r1{ﬂ ) < C
and “m“c %) < €, where C is independent of i, a subsequence out of {v;} can be
selected (and relabelled with i) such that

v; — 4 in Wif'l{ﬂr], v — 1 in Gﬁ'%[ﬁr}

If we can prove that there exists a subsequence of {V,,} such that
Vipy, = Vipy ae. in Op(i — co)

then ¥ satisfies that

ah(w) gy ~ A% = o(w)|Veul in 0

=0 ondf?x[0,T], # =up, on 2 x{0}
We must have # = v = Aw, and hence the sequence {v;} itself converges to v in

Cﬁ 2 (flr). Then Schauder’s theorem applies, and clearly, any fixed point u of A yields
a solution {un, ¢} to the problem (P,) by setting u, = » and ¢, = ..
To complete the proof, two simple propositions will be shown.
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Proposition ( A) Let u € K. For each ty € [0,7], we have
Pul11) = @ul'sto) in CO(2)(as ¢ — t) (3.18)
Vou( 1) = Voo (- 8) in L2(2)(as t — tn) (3.19)
Proposition (B) Let {u;} converge to u in G&'%{ﬁ]"}{f — 00}, then
Pu; = Py in L*(02r) (3.20)
Viou, = Ve,  in L3(0y) (3.21)

Proof of (A) Denote ¢ = ¥u for simplicity. Let {t,} [0,
From (3.15) and (3.16) it follows that
#(z) € H'(2) such that

T],f,-; — fgfﬂ ~) oo )
there exists a subsequence {tn,} and a function

wlz,ty,) — @(z) in co ), Vo(z,tn,) — V@(z) weakly in L*( 1)

S0 ¢(z) = wo(z, ) on 812 and for any n € Hj(12).
| [ o(ute, 1)) V() Vi(e)dz|

< | [ oz, 0)) - o(u(z, 1))} Vo(o, 1, ) Vi(z)de|

| [ o(utz, t))V(3(2) = p(e,1.). V(z)de|

— O(as k& — o)

We conclude that $(z) = ¢(z,1p) in 2 and (3.18) follows. And for all n € Hi(12) we
have

|, o)l t0) = o, 10)) - (o)

+~/J;Iﬂ{ﬂ{3:fn]} = F[Hfﬂ:,tn”]?ﬁﬂ{ﬂ,t{;} : Tf}-{g}dz =0

choose 1(z) = ¢la,tn) ~ w(z, o) ~ (o(2, 1) = po(z, 1)) € HX(2) to obtain

[ 1¥(p(2, ) - oo, o)
= Gj.;z lo(u(z, t,)) - a(u(=, )| Vip(z, 1)/

+Gj_.r.;. (Ve(z, t0)?[V(po(z, tn) = po(z, to))|?

Here C' = C(o,,0"). Therefore (3.19) is proved.
Remark 3.2 From the ar

gument above we see that in order to prove (A) it suffices
to assume that u ¢ CU2r),u

= Ugn(z) on 2 x {0} and u = 0 on 97 % [0,T]. Also
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on fIp, and from (3.16) it follows that ”?‘ﬂgunﬂp-m{ﬂ'ﬂ < 5.
Proof of (B) For any n € H}(2) and any t € [0,T] we have

L (1) Vipn, - Vindz = 0, / FHV R S
5 .

50
fﬂ{cr(u-ﬂ?[cpu.. —ou) - Vi + (o(w) — o(u)) Vi, - Vpldz =0

Let n(z) = pu, (2, ) — wu(x, t) € HF(1?) and obtain
Ty /1:} i?(fﬁ}ug i 5'?'1:][."1:1 tjlidﬂ:
Lk - 2.
<% [ 1900w - pu)(z,0Pd

+i fﬂ lo(ui(z, 1)) — o(ulx, 1)) | Veu(z, )2 ds

L]

Therefore
[ N - ou)Pdzdt < [ lo(ws) — o (wPIVultdadt — 0 (i — o)
fip Ty S0 :

and also ||y, — ‘Pu”iﬂ{ﬂﬂ < Ol Vi, — ‘Pu]“iﬂ{;}ﬂ* (B) follows.
The proof of Lemma 3.1 is completed.

4. Estimates on the Solution of (7,)

From the results of Section 3 we have that

o 1,3
Up, £ W§=1[HT} W, 2{.l?T::l for any p > 2
Vion € Lys oo 2r), for some p* > 2, and ||[Vigu| Le (7)< C
Here ' is a constant independent of n. And

Pt (tir )
gt

Uy = upp(x) on Q@ x {0}, u, =0 on 80 x [0,7]

= Aup = o(u,)[|Veon*]n  in Qr

In this section we shall establish the following three uniform estimates:
{un} is bounded uniformly in 2
[#ally oy € C(C independent of n)

{un} is equicontinuous in 2' x [0, T] for any compacts of £

%@DE (A) we deduce that ¢, (x,t) € C°(2r). Then Vel 1) is a measurable function

(4.1)

(4.2)
(4.3)

(4.4) -
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Proof of (4.2) Set Af(t) = {z ¢ Bu(z,t) > k}, AL (t) = {z€ 2u(z,t) < k)
and

7= %(un — k)
where k > sup,maxpug, () for (v, —k)* and k < infp,min g (—ug, () for —(u, — &)~

a 1,1
Son e W, (fir).
Multiply (4.1) by the function 7 = +(u, — k)*, which vanishes on the parabolic
boundary of i1, and integrate over % = 2 x (0,%) to obtain

aﬂfﬂ{”ﬂ} . 9
k[ (ur, — k) +fﬂ. IV (un — k)]

=t ]ﬂ )V~ R

We treat the term involving a—afﬁ—ij as follows:

2 uﬂ—k}+

aaﬂ{ﬂﬂ} [
& o Ot

3 g [ty ] ry i
_fm E{ﬂ:f RGO ds)
n(ten(, t:':'
= :E:f j - [art(s) - k]ids}u’t-
xn k)
uﬂ :l:,t} 1
_ PRI AT Sy R + _ g2
= j;? {_/; (s — k) aﬂlfs]ds}dm > > L{%[z,tj k)= *dz
Therefore we have
1 ¢
3 Ltz )=k de + [ [ Gt <k [ o)V Plaun - B (45)
: 12 I:t} i
The right hand side of (4.5) is non-positive when we choose the lower sign. Hence
(n— k)" =0in Qie. uy(z,t) > iﬂfﬂ}}iﬂ{—ﬂaf:ﬂ]} in I

When we choose the upper sign we get

S
1 :t _k +2d f f nE
Jym(e = ke [ 9w
EC‘f |Vien|*(un — k)*
12

; t g=1 1 —1
< CUVenl, canln ~ )l gyyqoo( [ 14F12 ds) @
="
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Here ¢ = % el = 2(2-—- é)
From the embedded theorem

A n(f?t} — Lag (f2)

g—1"91

(see [7]), it follows that

“":'“'n k}_l_”vl (42¢)

g=1 @1
< ClIVnlZe oz 1(tn = £)Fllys (g j AR T ds) @

Then
g=1 . -1

ol t
(ot = £ 30y < €( [ 14F1 7 ds)

Here C' is independent of n. Therefore [tnllp=iny = M. (see [T] Thm 6.1; pp.102)
and (4.2) is proved.

o 2.1
From (4.1), for all ¢ € W, (f2r) and all [ta,t] C [0,t] we have

f _/ {aﬂn[unjﬁﬁ + Vi, - Vi — ﬁ[%}[l?wﬂlz]anu}dzdt =0 (4.6)

Choosing ¢ = an(u,) — a,(0), s = 0 we obtain

3 [, (anluate,) = 0 (0)de = 5 [ (au(uon(z)) - an(0))
AT
= fﬂ (1) [ V| *In{an(un) — an(0))

So (4.3) follows.

Proof of (4.4). For simplicity of notation we let u. = 0 (by using the trans-
formation v, = u, — u.) and drop the subseript n. Following the notation of [5],
let 1,09 € (0,1) and (zp,tp) € ¢ be fixed. Set B(R) = {z € 2;|z — zp| < R}
and consider the cylinders Q(R,A) = B(R) = [to,to + A, Q(R — 1B, A — o3}) =
B{R - E‘lﬂ.} # [t.:} + oa X tg + Al A > 0.

Define cutoff functions in (R, A) as follows:

(a) £ € Cu[@(R, A)] such that £(z,t) = 0 on JB(R) x [to,to + A],&(z,ta) = 0 in

o€ e

B(R),£(z,t) = 1in Q(R - 1R\~ 02)), 0< =5 < —

c
Wod| iR 0 st
| El—m,R £
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(b) € € Cy(B(R)) such that £(z) =1in B(R - a1 R), |VE| < C(e1R)?
For any cylinder Q(R, ) C f2r, we choose the f{:.tllnwmg test function in (4.5)

b = +(un — k)F£2

where £ € R! satisfies |k| < M. Obviously

= ffﬂ £ 20 ke, ) dedr = f ’ ! E“{z,r}i—‘:‘

o)
where A = + f } [a=(&) - kJ£dg. We perform an integration by parts to obtain
ik )

I=Lﬁ{:m,ﬁt]fﬂfm.,t}dm—\/:fﬂ;‘:.f:u i}ﬁ_ﬁdth
= %L[u{m,t}—k}ﬁfz{ﬂ:,tjda:—f fﬂf; T}&EE[ ]dmnf (4.7)

Using assumption (2.1) we have

f; L{v“ V¢ — o(u)[|Ve|].g}dzdr

> [ [ 190 =04 1e e, m) £ 20u— ky2eva. ve

—o(u)[|[Vel’la(£(u — k) )e2}dadr
E : _ a2 e pae
>3 | [ 1Vu= ke,

-2 [ [ {(u 0y*eivep - [ [ oM veperi-rt >0 s

Here x(X) denotes the characteristic function of the set . We set

Aiﬂ{r} = {z € B(R); (u—- k) (z,7) > 0}

By Hélder inequality

= [ [ 2Mo VoPenitu - byt 5 g
to J 12

< 2MT VPl i, [ VAR T
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E -
Denote r = 2(2 — E),q == pf—rf:” we have

% f (u(z,t) — k)*?€%(z,t)dz + f fﬂ V(e ~ k)*[%¢
<7 j:” [ (= #1092 +e60)

e [ [ e e D anar 4y [ 14z nlr)fiar (49)

Wt € [to,fo + A], where ¥ is a constant (independent of n} depending only upon the
data. A change of variable in the integral defining A(z,t) gives

. fe +u—k)* :
Azt) = | na(k + n)dn (4.10)

Therefore A(z,t) < C(M)(u — k)=,
By redefining the constant v and recalling the construction £(z,t), (4.9) implies

412
W = B)* a0 g(rmoy R A=z 0)

< Al{e1R) 72 + (e2A) 7 [I(u — k)*||2 QR

ta+A
+7 ‘/t; |z‘iiﬂ{r]| 5 dr H- *'f[urg}'m} »/{Rl (u — k) dedr (4.11)
Here v is independent of n and inequality (4.11) is valid for all & € [— M, M], all cylinder
Q(R, ) C 7 and all 1,02 € (0,1),
Now suppose that (4.9) is written for the function (u, — k)* for k > 0, then by
(3.2) A(z,t) in (4.10) can be estimated as follows: |

Alz,t) < %EE o'(s)(u - k)*? < %(1 + %){u — k)t?

Hence

_I_
|(— &) |VI“[Q|{R—J1RJL ez )))

2o : B2 S (5
< +E)((@332+a2,\.)”(“‘ ) ||1QIIH.J~J+TL | A% R(T)|2dr

Here 7 does not depend upon n and (4.12) is valid for all & € (0, M], all cylinder
Q(&,A) C 27 and all 0y,0, € (0,1).

Remark 4.1 An analogous inequality holds for the function (u, — k)=, k < 0, to
which we refer as (3.10)~.

All the subsequent arguments in this section will be carried over cylinders of the
form Q(R,0R*) = B(R) x [to,tg + 8R?),8 > 0.

(4.12)
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Let k > 0 and p > supgp gpey(2(u) — ), 0 < 5 < . Set
1) = 4 =In*t ¢
Plet) =plalu)) [.H — (a(u) — k)+) + '?]']
Then there exists a constant €' = C(#) such that for all ¢ € [to, to + 6R?],

jﬂ{ﬂ_m m-apﬂ(m,t}dz .
oy (R i aa w19

< i
N /:5':31] 51 7 }

Proof of {4.13] In (4.6) choose ¢ = (4?)'¢2(=), here (=) is as in (b) and the
d
prime denoting differentiation w.r.t.a(u). Denote Y = 1';5:}) .
The first term gures

ftﬂf deiy) (B2 € () dadr
= [ ¥} (e nee)as,

:_-~f 'r,!JE[:t:,t}dz—f P2(2, to)de
B{R-a R) B(R)

In estimating the second term we first observe that (¥*)" = 2(1 + ¥)(¢")2. Hence

fﬁ t ]:?{‘J'u 21+ Y)Y ) e (w)Vu - £3(2) + 2(2)E(2)VE(z) - Vu)
Z g/ﬁ: L(l + P)(¢) o ()| V|23 (2) — BEILLM?EF

For the remaining term we have

2 j | ol Vellnp'e¥(e)dodr

P T
ﬁ—-lu—ff? 262 (g
= Ftﬂﬂlwlé[]

Combining these estimates above we deduce

2 L 2
‘/‘.E':R—Jlﬂjip (2,t)dz fﬂmjﬂ' (z,10)d=

E * [ L
<yl [ [ 196 + Il [ 9. o(r)R2" 205" g
to o 42 7 N

5 2
]IL*?'[ 1 /)%
cle : R2p*-2)/p*

< SO ) 1 T

7B b |2, o, 087 - (xR2) -2
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and (4.13) is proved.
Remark 4.2 Ifk <0andi> sup (a,(u,)—F%)", then an analogous inequality

Q{0 RE)
holds for

i

_I =I T.I.+
L R e o o T

, 0<n<E

to which we refer as (4.13)~.

Now (4.4) follows from inequalities (4.11), (4.12)* and (4.13) via the arguments
of [5.pp.95-115]. The continuity up to ¢ = 0 also can be proved as in [5. Th.6.1]. (see
pp.114-115).

5. The Limit as n — o0

From the results of Section 4 it follows that there exists a subsequence of {u,} (and

relabelled with n) such that

Up —* U in C{2'= [0, 1)), v’ cc N}
Vin, — Vu weakly in L*(f2r)
(5.1)
an(tn) = h € alu) weakly in L?(f2r)
o (ton(2)) = alug(x)) weakly in L3(12)
Arpuing as the proof of (3.21) we have
[ 19600 = om)la t)Pds
1
< ;,:f”“'[”ﬂ} 7 J{ﬂm]ﬂi“f{p‘—ﬁ:hﬂ (f}”v‘ﬁmﬂp'.ﬂ{f}_
Therefore
J V=)@ 6z —0  Vee[0,T)
[ 19(pn = om) (@, ) ddt = 0 (52)
fir .
f |@n = @) dzdt — 0 (as n,m — oo)
fir
Let @, — @ in L*(027), Vio, — V@ in L?(2r) and
wn(x,t) — @(x,t) in H(12) for each t € [0,T)
Then
f o(u(z,1))Vo(z, 1) Vnde = 0 ¥y € HL(2), Vt € [0, (5.3)
i

We can now proceed as the proof of Proposition (A) in §3 and Remark 3.2 to derive

@€ C(Rp)NC(0,T; HY{2))n L=(0, T; WL¥ (R2)) (for some p* > 2)
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It is easily seen that ¢(z,t) = @(z,f) in 7.
For ¥¢ < C’l[ﬂr}, with £ = 0 on 2 x {T} U872 x [0,T], we have

Ar“ { - an{uﬂ]% + Vi, - ?E}dmdt

- fﬂ ()| Ven[nédzdt + fﬂ an(ton(z))é(2, 0)dz

Let n — oo in the subsequence chosen above to obtain
¢
LT { - h5s + Vu- Ve}dadt

= [ oIVeltdadt + [ afun(z))t(z,0)dz

This equality also holds for all £ ¢ PET:J[J?T} with £ = 0 on 12 x {T'}, and Theorem 2.3
is proved.

Remark 5.1 We may use the method of [6] to prove u is continuous on 82 x
[0,T]. Similarly for the case of Neumann boundary data and mixed boundary data the
existence of weak solutions can be obtained. :
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