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1. Introduction

Let ) C E" be a bounded domain with the boundary 80 € 1. Consider the
non-negative solutions of the problem

wy — L¥(w) = ﬂ(z_]ffw}: (2,t) € D x (0,¢)
@ = ¥, (2,t) € 8D x [0, T) (P)
w = 1wy, (z,t) € D x {0}

where L = 8;(a* 8;) with a¥ = a*(2) = a¥*(z) € (D) is a uniformly elliptic operator,
le., there are constants A, A such that A > A > 0, and for any £ € R" it holds that
AE]* > a'i€;¢; > A|€]®. Here and throughout the notation & is used for e and the
summation convention over twice repeated indices is often used. Suppose that

(H1) € € €'[0,00) is a monotonically increasing function satisfying that &(0) =
$'(0) = 0 and ! is Hélder continuous;

(H2) f € C'[0, 00) is an increasing function with f(0) = 0;

(H3) @ € C°(D),wq € L*®(D),x € C(8D % (0,T)) and x = wp on 8D x {0}.

* Work supported by National Natural Science Foundation of China.
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Problems of this type arise in population dynamics and in reaction-diffusion pro-
cesses. The investigation of this paper was motivated by the special case of that (see
[1] and [2])

U = A%(u) + (A u), N € Rjuy = Ad(u) = uf(z,t),(z,t) € D x (0,c0)

On the former equation, the authors have proved a uniqueness and existence theo-
rem for its mixed problem. Moreover, the asymptotic behaviour of the solution when
.t — co has been discussed for some values of A, For the mixed problem of the later
equation, the authors have given a good discription for the solution and the correspond-
ing stationary solution. In this paper, based on above two works, we consider, for more
general degenerate quasilinear parabolic equations, the properties of the solution of the
problem (P) as well as the corresponding stationary solution.

Definition 1.1 We ecall w ¢ L=(D) ts an equilibrium solution of problem (P) if
for any 5 € C*(D) with zero value on 3D, it holds that :

On
- | #(w)Inde+ [ @ sads = [ 2)d 11
Jp ®w)indz + [ #()3ds = [ afe)s(wpn(e)ds (11)
dn .. O : , il 55 |
where e & B cos(n, z;) is the obligue derivative of . By an upper (lower) solution
v i

w e L=(D)(w € L=(D)) of (1.1) (i.e., by an equilibrium upper (lower) solution of
(P)) we mean that w(w) satisfies (1.1) with the inequality sign > (<), for any positive
71 as above.

Because of Hélder continuity of %, we know from [2] that any solution of (1.1) is

a classical solution, and u = &(w) € C?%(D) is a classical solution of the problem
Lu+ a(z)g(u) =0, in D (P.)
u = ¢, on 30D '

where g = fo @~ o = &[x(.)]. We call such u as a stationary solution of problem (P).
u is called as an upper (lower) solution of (P,) if it satisfies

Lu+ a(z)g(u) < (Z)0in D,u > ()¢ on 6D

Definition 1.2 w ¢ C([0,T]; L} (D)) n L=(Q7) is called as a solution of (P)
provided that for any t € [0,T] and non-negative { € C%(Q,) with { = 0 on 8D x (0,T)
it holds that :

t ac¢
j;} w(z, t)((z, t)de — Lr[wg‘c + $(w)L(]dzdt +£ - ];.u:r @(xjaﬂdﬁ (1.2)

= [ wol(2,0)do + |, a@)fw)i(z, tdea

where @, = D x (0,t) and % is as the one as in Definition 1.1. Instead of sign “="
in (1.2) by “> (£)”, then w is called as an upper (lower) solution of (P).
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2. Existence and Unigueness

Lemma 2.1. Let w,W be respectively the lower and upper solution of (P), then
for any t € [0,T] the following holds

[ fwte,t) - (e, 0] de < & [ u(2,0) - w(e,0)):do

where vy = max{r,0},k = 0 is a constant.
Proof For any non-negative ¢ € C%(Q,) with ¢ = 0 on 8D x (0,t), by Definition
1.2 it holds that

][ w(z,t) — Bz, )]l tdn:—f (w — By + (B(w) — &(@))Loldzdt

(2.1)
f[w{m 0) — @(z,0)]p(z,0) d::-|—f a(2)[f(w) — F(@)|e(z,t)dedt
where t € [0,T]. Let
Bw)-3@) o
o= W= 1w
0, w=uw
then (2.1} becomes
[w(z,t) — W(z,t))p(z,t)de — [ (w— @) (p: + alyp)dzdt
'/';' - ]';" (2.2)

< [ w(e,0) ~ (=, 0))p(z,0)dz + [ ae)lf(w) - f(@)}pdads

By (H1) and the boundedness of w and @, we know a € L™(Q,;). Taking a series
of smooth functions o, satisfying that

< an < llallzmgy + = (an — @)/y/@n — 0 in I*(Q:) as n — o

1
T
consider the following mixed problem
O+ nlipn, = pp in D x (0,T)
Yn =0 on 8D % (0,T)
wnlz,T) = Balz) in DxT
where 3, € C5°,0 < 8, € 1; ¢ > 0 is a constant .t{} be determined below. Based on
Chapter 4 of [3], the above problem has a classical solution ¢, € C*1(@Q,). Moreover,

we have 0 < ¢, < e™#*, Multiply L, on both sides of the equation and integrate by
parts, it yields

1 H{Pﬂ. a'ﬁﬁ'ﬂ.] f " '5.9':'1'1 ﬂan
Bl i =k i
[ Ef a Ba; 8a;)lo + e een( Lipn )  dzdt p.f{:ha De: D2; ——dzdt
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By the uniform ellipticity of a* we find
2 2 A 2
f e, ( Lipy ) dadt + lp/ | Daton|“dzdt < —f | DB, | de — e
Qr JQr 2 Jp
then f@ otn(Lpn)?dedt < ¢, which and (2.2) with t = T, = @n yield
T
[ (e, T) - (e, TBu(e)de - | (- B)(a - on) Lgpndade

D ' T

< [ fa(2,0) - Wz, 0lpa(z,0)dz + | (@) () = a(z)f(@) + plw ~ Dpadadt
D Qr

< _[D[i_u{z,ﬂ}—ﬁ{z:,ﬂ}]_t.dt—]— Lr[a{zjf{y] _ a(2)f(®) + plw — T)|4 " dzds

_ (2.3)
Choosing B, such that 3, — B = sign(w(z,T) — @W(z,T)), and noticing that
o — ap
(e — an) Dpnllzs < | | allVERLenlus
i — an
Ef}f?“ T o — (), when n — oo
then letting n» — oo in (2.3) we obtain
ehT j [w(z,T) — B(z, T))s dz
¥ (2.4)

T
< L[E(Efﬂl — w(z,0)|dz + f L e laf(w) — af(W) + plw — )] dzds
0
Obviously, replace T by any t € [0,T] the above inequality still holds. Denote

M = esssup |w|, M = esssup |[@|, M = max{M, M}
Q4

Qi
K = max|a(a)| _max /(O] #=K
then
la(z) f(w) — a(2)f(@)] + plw - T)}4+ < 2K (w - W),
and by (2.4)

h(t) < h(0) + 2K fn bt

where h(t) = E_H’f [w(z,t) — @W(z,t)]+de. By virtue of Gronwall lemma, we obtain
D
h(t) < h(0)e*!, ie.,

[ fte,t) ~ (a0l de < e [ fu(z,0) - (=, 0)];dz
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where k = 3K.
Theorem 2.1 Suppose that (H1) to (H3) hold. Moreover

limn @:ﬂ, lim F[—SJ:-FE'-B
100§ a0t 8
Then, for any T = 0 the problem (P) has a unigue solution.

Proof From the definition, it is obvious that the upper-lower solutions of (1.1)
are also the ones of (1.2). By virtue of Lemma 3.3, there exist the upper solution ¢ and
the lower solution ¢ of (1.1), i.e., the equilibrium upper and lower solutions of problem
(p), satisfying that ¢, € L™(D),0 < ¢ < ¢. By (H2) and (H3), |a(z)f(s)| < M
when ¢ < & < 3. Therefore, on the base of the theorem in [4] (see Remark 1 following
the theorem in [4]), the existence of the solution of (P) follows. If (P) has two solutions
wy, ws, by Lemma 2.1 we have

Liwl{mﬁt} - wz[z,i]].f.dz = EK# fﬂ[wlimsu} Ty WE{E,D]].E.{:&F =0,

then wy < ws. Similarly, the inequality ws < wq holds too. Hence, w, = ws.

Using Lemma 2.1 and conditions (H1) to (H3), similar to the proof of the theorem
in [1] we have

Theorem 2.2 Let wy and Wy be respectively the lower and upper solution of (1.1)
satisfying 0 < wy < Wo a.e. in D, then,

(a) If wy < wo € Wy a.e. in D, then for any t > 0 we have wy < w(-,{,wg) £ Wo
a.e. in D, where w(-,t;wy) is @ solution of (P) with the initial value of wy;

(b) the mapping t — w(z,t;wy) is non-decreasing for a.e. = € D; the mapping
t — w(x,t;Wy) is non-increasing for a.e. 2 € D;

(¢) w(-,t;wy) and w(-,t;Wg) converge (in C° whenn =1, and in LP(D) withp > 1
when n > 2) respectively to the equilibrium solutions w and W at ¢t — oo, where w and
W are respectively the minimal and the mazimal equilibrium solution of (P).

3. Stationary Case

In this section, we consider problem (P,). Because g = fo &%, (H1) and (H2) the
following holds:
(A1) g € C=([0,00)) N C((0,00)), @ € (0,1), and g(s) > 0 when s > 0,g(0) = 0;
(A2) g'(5) > 0 when s > 0.
Moreover, we suppose

(A3) h(s) = L M—lﬂ_-]-dcr < +00, h(0) = 0;

(Ad) g(s) is strictly concave in (0, co).

At first we consider the unique solvability of problem (P,). When a(z) > 0, by the
discussion in [5], (P,) has at most one solution, and so does it when a(z) < 0. If a(z)
changes its sign in D, we deal with it as follows.
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Define Dt = {x € D|a(e) > 0},D~ = {z € D|a(z) < 0},D° = int(z € D]a(z) =
0}. In view of the continuity of a(z), DT consists at most of a countable number of
connected components denoted by Dy k€ M = {1,2,---,7},7 < oo. Then, we have

Lemma 3.1 Let u be a non-negative solution of (P, )}, then

(a) Eitheru =0 oru>0in DJ;

(b) Ifu > 0 in D, thenw >0 in Df N D.

This lemma gives rise to the following classification of the positive solutions of (P, ).

Definition 3.1 (a) For any subset I C M, let 51 be the class of solutions of
(P,) which are positive in D} = Uper D (b) N1 denotes the set {u € §; : u =
0 on Dt — DF}.

Then, we have

Lemma 3.2 Let ¢ > 0 be a fired number and u be a non-negative solution of ( F,).
The function U = h(u + g)(h being defined in (A3)) satisfies the following equation

gl U sale) glu)
ez, E-‘::L.J glu+g)

LU = —g'(u+¢)a” —

Because the proof of above two lemmas is standard and trivial, we omit it here.

Now, we have a uniqueness result as follows:

Theorem 3.1 Suppose (Al) to (A4) hold. Then, for any finite I C M, N has at
most one element,

Proof Suppose that there exist two different solutions w;,us € Ny. Let D' = {z €
D|uy(z) > uz(z)}, then by the definition of the sclution, we know 4y = uz on 8D and
hence u; = up on 80D'. Denote U; = h{w;),7 = 1,2, because A’ > 0 we have

Up>Usin D' and Uy = Us on 8D (3.1)
Hence, there exists a point 2y € D' at the place where the difference of §(z) = Uj(z) —
Us(2) attains its maximum, i.e., §(zg) = max §(z). Let us distinguish two cases:
z= D)’
(a) There exists some zq € D' such that §(zg) = nészJﬁ{at] and Us(zq) > 0. Denote

by V the maximal connected component of the set Iy = {z € D'|U2(z) > 0} containing
g, then §(z) € C*(VV). Taking £ = 0 in Lemma 3.2 yields

., sevesOUY ST,
Li‘_'f;;: —yg {H&ZQJH:IEE'_ —alz), k=1,2
Then
00, 0t - OUs AU,
. 4 iU U ij
L = LUy - DU = ~¢'(u)a¥ 52 50 4 g/ ()t 2 0
By (A4), |
g'(u1) < g'(ug) in D’ (3.3)

which together with (3.2) implies

a8 ;
Lé + ﬁ'{uzlﬂiﬂ > (3.4)
z;
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where o; = z

j=1
Since §(z) assumes its maximum at an interior peint of V, the maximum principle
entails that § = const. in V. It then follows that

ﬂ=ﬂ§:—ﬂu . DusinV 35
. g(u) - glus) = (3.5)
i,
aU‘l aﬂg :
= L s
9z; | Oz Lygiovy e
The ellipticity of L together with (3.3) gives
i aU]_ E}Ul
= — f = ! i Pl o b
0=Lé=[g'(uz) — ¢'(w1)]a 525 0
i griﬂﬂj . g;[ul}ﬂij Gy O
gz{ul] 3:1:1- ﬂj:j
g'(uz) — g'(w1) :
s A|Dui|® > 0 3.6
QE[H;I} | l| { ]

Therefore, |Dug| = 0 in V. By (3.5}, |[Duz| = 0in V. Hence,
Uy =01, Ug=caxin V

where ¢; and ¢s are two constants with ¢; > ¢;. On the other hand, V' C D C DV and
hence either I7s = 0 or Iz = Uy on V. This implies that either uz = ¢z = 0ore =es.
Both cases lead to a contradiction of Uz > 0 and ¢; > ¢z Tespectively.

(b) Uz(zo) = 0 for all zy where & achieves its maximum in D', Denote by Cy the
maximal connected component of the set ¢ = {z € D': §(z) = 8(zo)} which contains
:I!u T].'I.'EI'L, Ug =0in G[] and

§=b{xg) > 0 (3.7)

Therefore, I7; > 0 in Cp. On the other hand, vy € Ny implies Iy = 0 on D+ — D}*.
Hence, by (3.7) we find

Con(D¥ = D) =1 (3.8)

By virtue of Lemma 3.1(b), Uz > 0 on .D_g If 8D;" N @D is non-empty for some k € I,
we have u; = up and hence § = 0 in such a intersection. Therefore,

ConDF =0, Vkel (3.9)
By the hypothesis, I is a finite set, and then (3.8) and (3.9) implies

Con D =0 (3.10)
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Cp and D+ are therefore at a positive distance from each other. Then, there exists a
connected neighbourhood O C Cp such that OND; = 0,0N(C —Cy) = B and §(z) > 0
in 0. Therefore, the monotonicity of h implies that

m.jg[m[z} —us(z)] > 0 (3.11)

Zi=

Thus, there exists a constant b > 0 such that §(z) < b < §(zg) for any z € 80. For
any € > 0 we define
Use = hlus +¢), d.=U4 — Us,

Clearly é, << § in D. By (3.11), there exists some € > 0 such that
uy > ug + € and b.(zp) > b on 0 (3.12)

It then follows that é.(z) < (=) < b {-ﬁﬁ{zn} for any # € 80. Hence, §. attains its
maximum at the same interior point in @ and is not constant on @. On the other hand,
Uy » Uze > 0in O. Then, by Lemma 3.2 we have

Lol
e oy F il R e S
L = —g'(w)a e a(z)
y N A g(ug)
= — M= i
LUz g'luz +eja Oz; Ozj )E[HE + €)

in view of (3.12) and (A5), the difference of the above two identities gives

Lé. = —g'(uz + E}cr,;g—i: - {I[;’:](l — gl:f&iﬂj—]f}) (3.13)

n Uy + U Sawpide
where o; = Eﬂ-” ( ;: 2]. Since O N Dt = B, we have a(z) < 0in O. The
i=1 :

monotonicity of g with {3.13) implies

' a5
Lée + g'(uz + €)os— > 0in O
-EF:::;
By the maximum prineciple, §, can not achieve its maximum in @ unless it is constant.
This is a contradiction, whence the result follows.
For obtaining the existence of the sclution in 57, we suppose that

(A5) @ﬁﬂass—rm*ﬂ—ﬂ—}{—ma&s—rﬂ"'.
3 8
The next lemma can be proved similar to its counterpart in [4] so we only write it

down without the proof.
Lemma 3.3 Assume (AB) holds, then

(a) For any m > 0 there ezists a stationary upper solution T of problem (P) such
that @ > m on D;
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(b) For any I C M and any open set U such that i C Df,ﬁﬁﬂ; # 0,Yk € I, there
erists a family of lower solutions u,, p € (0, pol, such that suppu, C 4, suppu, N Dt
0,Vk € I and |||l — 0 as p— 0.

Now, we give rise the main result in this section:

Theorem 3.2 Assume (Al) and (A5) hold. Then for any I C M we have

(a) Sr#W;

(b) there ewist o minimal solution u; end a maztmal solution U in Sy such that
up < u < U for any other solution u € Sp;

(¢) the mazimal solution Ur coincides with the mazimal solution in Spr;

(d) if ur # Uy, then uy € Ny, where I' = n{I|I > I,N; # 0}.

Proof (a)By Lemma 3.3 and the upper-lower solution principle, the result follows
immediately.

(b) Denote-Ur(z) = ;llEE'I-sfu[I:I, then, by virtue of Lemma 3.3(a) there exists an

upper solution @ of (P,) such that w > Ur. By Theorem 2.2(c¢), w(-,1; i) converges to
the maximal equilibrium solution W. Let U = (W), then, U € Sy and u < Uz, On the
other hand, for any u € Sy, we have 27 (u) < $~1(U). Because of the monotonicity
of =1, u < U, and hence Uy < U. Therefore, Uy = U, 1.e., {F; is the maximal element

in §7. Similarly, we can show that uj(z) = I‘Ié.‘gl u(z) is a minimal element n Sr.
uESy

(c) Suppose that Uy # Uar. Then, by Theorem 3.1, there exists some k € M — I
such that U; = 0in D} . Since Up € Sy, then by (b), Uns < U; and thus Upr = 0 in
Dy contradicting the definition of Ups.

(d) For u' € Nj, since I C [ we have w' € 51 and thus ur < u'. Hence, uy = 0 in
DI{ - ﬂ}l], ie., ur € Np.

The maximal solution Il = Ups can be constructed by means of a variational prin-
ciple as follows. Consider the problem

Lv+alz)glv+ h)=0 in D
{ (z)g(v + R) G
v =10 on 4.0

here Lh = 0 in D and h = ¢ on @D. From §6 in (1] we know that (3.17) has a unique
solution. Obviously, © = v + h is a solution of (P, ). Let

. Qw Hw
) e o L Eonlalpt 2N +
J[w] _-f @ B: D j_dz Zf a(z)G(w + h)dz

G(s) = f;g[r]dr

We have
Theorem 3.3 Under the same assumption as for Theorem 3.2, we have
(a) the problem
J[w] = inf, w € Hy(D) (3.18)

has a sofufion wy,;
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(b) if in addition r < +oo and (A2) to (A4) hold, then (3.17) is uniquely solvable
and U = wo + k is the mazimal solution ofiEE)
Proof (a) We first show that J[w] is bounded from below. Let

maxa(z), ifa(z)> 0 forsomez e D
D

=
I

0, if a{z) <0

and kb = maxh(z)} By virtue of the ellipticity of L, we have
D

Tw] > .lj;j \Dw|Pdz ~ zaf Glw + R)dz, Yw € Hi(D) (3.19)
D s
By the Sobolev imbedding theorem,
f | Dw|*dz > ;:n_.j_‘_ widz, w € HA(D), o = co(n, D) >0 (3.20)
D D
By (A5), there exist constants ¢; and s, such that
"-':'D-}'- 7
G{S - hr] E EE + ¢, Vs - 30 [3.21}
Clombining (3.20) with (3.21) gives

1
J[w] = c.u.l] wodz — E{:D:&f wdz
b

D
—EE/ eqdz > —2aey | D], when 5 = 8
D

For s < sq,

i

Jlw] = Aco f widz — 23 f G(so + R)dz > —2aG(so + R)|D
i i

Denote ¢y = min{—2ac¢;|D|, —2@G (50 + h)|D|}. We then have
Jw] = ez, Yw e Hy(D) (3.22)

where (s is independent of w. Therefore, there exists a minimal sequence {wp} C Hj
such that

Lil'ﬂJ'['w']z irr_f J[tu]:d

T=—+D0 TJ-'EH[% Eﬂ]
Hence, for any € > 0, there is an integer Ng(e) such that d + ¢ 2 Jwg) for n = ngl€),
1.8.,

dte> A f |Dw,|*de - 2a / G(wn + R)de (3.23)
o D
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If w, < sp for all n > ngp(e), then the monotonicity of G and (3.23)implies that the

integral ] | Dwy,|*de is uniformly bounded. If w, > s for some n > n' > ngle), then
o

by (3.20), (3.21) and (3.23) we have

: A
d-ﬁ-e—]——f |Dwﬂ]2dm+iﬁcllﬂﬁijif \Duw,|2dz
2 Jp D

and hence,

j‘ |\ Dw,|?dz < 2(d+ € +AEEE1|JDL} i
D

Therefore,

f wide < lf |Dw,,|*de < i
o n Co

p

By virtue of the weak compactness of Hj(D), there exists a subsequence of {w,},
denoted still by {wy}, converging weakly to some wq € H, 3(D). The Sobolev imbedding
theorem implies that w, converges strongly to wy in L?(D), and hence there is again
a subsequence of {wy}, denoted still by {w,}, converging to wg a.e. in D. Then, the
lower semi-continuity of the integral J|w,] and the Lebesque’s dominated convergence
theorem yield

Lim J{w,] = J{wol

Ta—t D

which establishes (a).

(b) If wp is a solution of (3.18), then by the variational principle wy is a solution of
(3.17) and hence U' = wq + h solves (F,).

The uniqueness of I/ as well as wy follows by Theorem 3.1, as soon as we prove that
Il is the maximal solution of (P,). Hence, it is necessary to prove that U > 0in DT.
By contradiction, we suppose U =0 in D for some k € M, ie., wo = —h. Let B be
the ball in D} and £ > 0 be the first eigenfunction of the following problem:

LE+p, £E=0 in B
LE4+p, £=0 on OB

Define
T i D—B

=1
!
et e,

~h+e in B
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Because wg = —h in Dy, we have
7[] = fﬂ a"j%%dz 5 sz o(2)C (1 + h)de
= [ o .ﬂa_‘: %*i’:—f_’ ~2 [ a()G(wo + B)d
té? Ba‘f%%dz _9 fﬁ a(z)G(et)dz
oy fB o g:t- %dz+2 L o(2)G(wo + h)dz (3.26)

Since B C Dj it must hold that wp + h=0in B, ie., G(wp + k) = 0. Because

fﬂ‘.j-‘?ig- =—f fLhdz =0
- +B ] 8

(3.26) becomes
i o [ i 06 O€
J[@] = J[we] + € ];gﬂ-’—-—dz — EL&{R:]GL’_EE}&E

Daz; 0z,
= J[wp] — € LELEdm - Ef a(z)G(e€)dz
B
= Jfwo) + e [ Ede =2 f o(2)G(et)dz (3.27)
B B
Take a such that a(z) > a > 0in B, then by (A5) there is a constant € > 0 such
that 5
gle€) = —EEE in B, and hence G(e£) = %EEEE
£ (21

*

Hence, (3.27) becomes
- 2 Sogedf 20 4 2
Jw) < J{wo] + € ,u.f Eidp— —¢ f a(z)§ dr
B a g
< Jiwo] — ey [ Ede < Ilwo]
B
It contradicts the definition of wg.

4. Parabolic Case

In this section we consider the asymptotic behaviour of the solution of problem (P).

The results are based on [4], and some methods in [4] and [5] are used.
Definition The interval [wy,wa] = {w € LP(D)un € w < wq} is called as

LP-attractive if there exists a set X & LZ(D) such that
[iEl.:] [wlmwﬂ] <X,
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(b) for any wo € X, there ezists a solution w(-,t;wp) of (P) such that
dist{w(-,2; wo), [wy,wa]} — 0 in LP(D) ast — o0

Let us denote wy = & ' (u), W = &~1(U), where uy and U are respectively the
minimal and maximal solutions of (P,) in S;. Because @ is monotone, then w; and W
are respectively the minimal and maximal equilibrium solutions of (P) in Df. From
Section 2 we know that there exists uniquely a solution w(z, t;wp) of (P). Let us denote
by Cr(k = 1,2,--+,1) the connected components of the set {z € Dlw(=z,t;wg) > 0}
which do not intersect T't. Then, we have

Theorem 4.1 Suppose (Al) and (A5) hold, then

(a) For all wp # 0 in Cp N (User D) k = 1,2,---,1, the interval [wr, W] attracts
every solution w(-,t;wy) of (P) in the LP sense (p € [1,00) when n = 2,p = oo when
n=1);

(b) If wy < wy and wy £ 0 i Crn {U{EIDEI-}?JE =1,2,--+,1, then w(-,t;wp) — wr
in LP(D) when t — co.

Proof (a) By Lemma 3.3 there exist an upper solution and a lower solution
u, of (P,) such that suppu, C C N (User DY) and u, € wy < U By Lemma 2.1, we
know w(z,t;wy) < w(e,;%). Similarly, w(z,t;wy) = w(z,t;2,). Then, the conclusion
follows after using Theorem 2.2(c).

(b) Similar to the proof of (a).

Corollary 4.1 Suppose (Al) to (A5) hold, r < co. Then, for any wo £ 0 mn
D (i € M) we have t]ﬁ'ﬂ.? w(-,t;wy) = w, where w is the unique positive equilibrium
solution of (P) in DT.

Proof Based on Theorem 3.1, w is the unique solution in D*. The conclusion
then follows after using Theorem 4.1(a).

In the following, we suppose the continuity of w(-,#; wo) in Qco-

Theorem 4.2 Assume (Al) to (A5) hold, » <= cc. Then, for any initial condi-
tion wy the solution w(-,t,wy) of (P) converges to an equilibrium solution as ¢ — o0.

Proof First, we suppose that for any k € M, there is a point 23 € D and £ > 0
such that w(zg,tx;we) > 0. By virtue of the continuity of w(:,t;wy) and Lemma
3.3, there exists a lower solution u, with u,(z3) > 0 such that u, < w(-,tx;wo). By
Theorem 2.2 we then have

w{miﬂ?t;w{!} E Ep[:mkj > []: L= ma’};{ilf. 3 1t‘1'} = Lo

Using Corollary 4.1 to w(:,t + tojwo) = w(-, tw(-, tojwy)) yields t].im w{~,:;wg]“= W,
— 035
an equilibrium solution.
Secondly, we suppose the case of w(-,t;wg) =0 in .D;',jl' =1,2,---,q < r. Denote

&_{ 0, in D},i=12 0

a, elsewhere
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Replacing a by & in (P) and then denote this new problem by (P), it is obvious

that w(-,#;wg) is a solution of (P). Similar to the preceding discusions, we have

lim w(:,tiwo) = W, where W is the maximal equilibrium solution of (P). Since

w(-,t;wg) =0 in D1+ ..U D;' for any ¢t > 0, then W=0inDfU.--U JD;I". Hence,
W € Nygia,r)y 16, Wis the equilibrium sclution of (P).

Corrollary 4.2 Assume (Al) to (AB). If for any I C M, Ny has at most an
element, then Theorem 4.2 still holds for r = +oo.

Proof It is sufficient to prove that for any k € M there exist x € ﬂ;:" and #; = 0
such that w(zg,f;we) > 0. Otherwise, similar to the proof of Theorem 4.2, instead
of problem (P) we consider problem (P), the conclusion follows. The case of finite M
associate in problem (P) has been proved in Theorem 4.2.

Consider {w, } where w; = wy; 5 . ;) is the minimal solution in Si1zipt =120
By Theorem 3.2, such a sequence uniquly exists and is non-decreasing, uniformly
bounded by W from above, where W is the maximal equilibrium solution of (P ). Hence,
ﬁ]j_'T.'l.;lc, w, =w < W.

Iet us denote the Green function of operator L by G(z,y) which equals to zero on
dD. Then,

dG (z,y)
11 = G ¥ i d _f d 4.1
wy(2) j;j (z,y)aly)g(w,(v))dy Bl T w(y)ds (4.1)
e oG aG(z,y)
oL 4 z, ¥ :
oy a Y cos(m, ;)

is the oblique derivative. Obviously, a(z) is uniformly bounded in D. Due to the
monotonicity of g we know g(w,,) < g(w), and then

|En{.lm] E, Eﬂ-[mJ]l

8G(z,y) 0G(2',y)
< - 3 X
< c]ﬂ G(2,y) — G(2',y)ldy + LE] Do, o, le(y)dsy

By virtue of the property of G(z,y), we know that the right-hand side of above in-
equality tends o zero as 'z — z'. Hence, w,(z) is equi-continuous. Then, by the
Arzela-Ascoli theorem, there is a subsequence of {w,(z)}, denoted still by {w, ()},
converging uniformly to a continuous function W(z). Let n — o0 in (4.1) we get

w(e) = [ Clemallatoo)iy - [ ot

p. - vy,
Taking the derivatives under the integral sign yields the regularity of w. Therefore, W
is an equilibrium solution of (P). Obviously, w > 0 in Dy for any k € M, and hence
w = W, the maximal equilibrium solution of (P), by the uniqueness assumption.
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By Theorem 4.1,
w(-, t;wo) — [w,, W] ast — oo, Wn e M

~ then, lim w(-,t;uwo) = W.

=t
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