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Abstract We study the Cahn-Hilliard equation with nonlinear principal part

%— + Dm(w)(kD?*u — DA(u))] = 0

The existence of classical solutions is established by means of the method based on
Campanato spaces and the energy estimates. The corresponding uniqueness is also
proved.
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1. Introduction

The Cahn-Hilliard equation, namely

% + ﬂ[m[u}{ﬁ:ﬂ'au — DA(u))]=0 infr= (0,7) x (0,1) (1.1)

is based on a continuum model for phase transition in binary system such as alloy,
glasses and polymer-mixtures, see [1], [2]. Here u(t,z) is the concentration of one of
the phase of the system, m(u) the mobility, k a positive constant,

J = m(u)(kD>u — D A(u))

the net flux, D = EE Based on physical consideration, the equation (1.1) is supple-
mented with the zero net flux boundary value condition

=0 (1.2)

2=01

the natural boundary value condition

=0 | (1.3)

x=0,1

Du
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and the initial value condition

u(0,z) = ug(z) (1.4)

Using the energy method, Elliott and Zheng Songmu [3] have successfully treated
the problem (1.1)-(1.4) for (1.1) with linearized principal part, namely for (1.1) in
which m(u) is a positive constant. And for A(s) = —s + 718% + 728° with 72 > 0, the
global existence of classical solutions of the problem (1.1)-(1.4) is established.

Sinece, in many situations, the mobility m(u) depends on the concentration u in
general, the investigation for (1.1) with nonlinear principal part seems to be a natural
continuation of the pioneering work [3]. In this paper, we discuss the solvability of
classical solutions of the problem (1.1)-(1.4) under the following much more general

assumptions

m(s) >0, H(s)= f; Ala)de = —p, p=>10

in which the non-uniform parabolicity for (1.1) is allowed and 4(s) is permitted to be
some polynomial of odd order like —s 4 ;5% + 728° with 92 > 0. The discussion for the
degenerate case of the equation (1.1) will be subsequently presented in our next paper,
where certain structure conditions are proposed ensuring the existence of “Physical
Solutions”, namely the solutions with the property that 0 < u < 1. An interesting

wark for such kind of equation of degenerate type can be found in the recent work by
Bernis and Friedman [7].

The main difficulties for treating the problem (1.1)-(1.4) are caused by the nonlin-
earity of the principal part and the lack of maximum principle. Due to the nonlinearity
of the principal part, there are more difficulties in establishing the global existence of
classical solutions. The method we use is based on the Schauder type priori estimates,
which are relatively less used for such kind of parabolic equations of fourth order. Here
the Schauder type estimates will be obtained by means of a modified Campanato space.
We note that the Campanato spaces have been widely used to the discussion of par-
tial regularity of solutions of parabolic systems of second order. Because of the lack
of maximum principle, the actually used Campanato space is a modified version. In
fact, after such modification, the terms related to supremum norm will not appear in
deriving the key estimate (3.9). A detailed description and the associated properties of
such space will be given in Section 2. Subsequently we prove the existence of classical
solutions of the problem (1.1)-(1.4). The uniqueness is also discussed in this section.

2. A Modified Campanato Space and the Holder Norm
Priori Estimates

Let @7 = (0,T) % (0,1), o = (to, 20} € Q7. For any fixed R > 0, define
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Br = Br(zg) = (20— E,z0+ R)
Ir = In(ty) = (to — R*,to + RY)
Qr = Qr(vo) = Ir(to) X Br(=o)
Sr=QrNQr

Er = Ep(zo) = Br(zo) N (0,1)
Jr = Jr(te) = Ir(to) N (0, 4c0)

' 1
d(y1,y2) = |21 — 22| + [t = e
Let u be a function defined on @ and set

1
URr = Uy R - E _[,[3‘ udtdﬂ:
R

a \ ug, QRN aPQT =3
Uup = Hmiﬂ = ]
0, fQrnNa&Qr+#0

where #,Q@r is the parabolic boundary of Qv, |Sp| = mes Sg.
Definition Let A >0,

C.(@qp)={uecC(@Qr); u=0ondQr}

For any u € C.(Q7), denote

1
M*u] = sup  sup ij |u{t,m}—ﬂw,;_3|2dtdz
weQy MSREZR R Srlw)

where Ry = diam Q7. By the space LEMQr) we mean the subset of C.(Qp), each
element of which satisfies M[u| < +oco. Foru € EE‘A[QT]J we define its norm as

HHH;EJ-‘[QT] = ES;P lu(t, z)| + Mu]
T

For a bounded n-dimensional domain §2, Campanato defined a similar space L£2M0),
the set of all functions in L*(§}) satisfying

where

1
10220, £)| Ja2(20,0)
Q20,p) = {7 € |2 — 20| < p}

u(z)dz

Yzp.p =
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Taking n = 2, @ = Qr, we obtain a space £2*(Q7) which has some similarity with
ﬂg"’“(QT}. For a function u defined on Q7 if the boundary value of the function is not
considered, it is really possible to apply L2 Qr) to deseribe its interior behaviour.
But when prescribed the boundary value, we have to use the modified Campanato
space ﬁf}""‘{QT] to describe its global behaviour, in particular the behaviour near the
parabolic boundary. This advantage and the following property of the space Eg'L[QT]
will be useful in estimating the Hélder norm of solutions of some fourth order parabolic
problems, in particular, the Holder norm of the derivative Du of solutions of the problem
(1.1)-(1.4).
Theorem 2.1 Let A > 5. Then there is an embedding

£22(Qr) ¢ C+*(Qr)

A—2D 25 :
where a = carea Moreover, the embedding is continuous and

”u”f?%'“{ﬁﬂ < G{A}““ﬂ;gﬂ‘(qﬂ

where C(X) depends only on A.
Proof The method we use follows the idea of Campanato [5]. For 0 < p < R and
3o € Qp, we have

|y R — ﬁm.plz < 2lult, z) - ’tﬁ“'a.luuni2 + 2[ult, =) — ﬂyn,RF
Integrating the inequality with respect to (¢,z) over 5, = S.(va),
|5l ya R _ﬁ"H'DuPF
<2 [ [ utt,2) ~ typalfdtdn +2 [ [ fu(t,2) ol dtds
s, i
< dM*[u]R*

Since S,| = p°, it follows that

; 4 R
|ty 12 — By .0|® < 4M z[ﬂlp—ﬁ

In particular, we have

dgn,r — & pl? < 12802 [u]R}
'

14 A-5
i g — @ pl* < 128M7[u]RM| -
@, 2 - &, al* <128M"] (3)
14 A=0
¥ v 2 & 12 2 R.\—E vl
% um.g&%' < 128 M %[u] (2-"‘*)
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Summing up these inequalities, we get

K A 5 2 A—5
— il < (A M- |u|R 2.1
|“yn.R IE.F_EH| = { } [] ( ]

By the definition of 1, , and the continuity of u, it is easily seen that
E_%ﬂm‘p = u(tg, 2p)
and hence by letting k tend to infimity,
|ty & — u(to, z0)|* < C(A)M>[u]R® (2.2)

Let y; = (t1,21), ¥2 = (t2,22) € Qr and set R = d(z1,32). If d(y1, 8,Q1) < 2R,
then

thy, 4R = Uy, gr = 0
and hence by (2.2),
|we(t1, z1)— u(ta,zz)|
< 20u(ty, 21) — iy, arl® + 2u(tz, 22) — By arl’
< C(A)M 3 [u]R*3
The same is true for the case where d(ys,0,Q7) < 2R.
If d(yy,8,0T1) > 2R and d(y2,3,@ 1) > 2R, then
[u(ts, z1)— (t2,22)* < 4|ults, 21) — uy, 2r[*

+ d|ufts, 22) — uy, 21]* + vy, 2R — wy, 20

From (2.2), we conclude that the first and second terms in the right hand-side of the
above inequality can be estimated by C(A)M [u]R*~%. For the third term, we notice
that

Ity 2k — Uy 2r|? < 2lult,2) — iy, 25 + 2lu(t ) — wy 2r*

Integrating this inequality with respect to (t,2) over @y, 21N @y, 2r and noticing that

|QH1=2R M Qm,ﬂﬁl E |QI."| .Eﬁl 2 RE

we have
|u'y;|,,2R _ﬂyg ,ERlE
2 f/ 9 12
£ — [lu(t,2) = wy, 2r|* + |u(t, ) = uy, 2r|"|dtdz
bk Qg 2rMy 2R ] . { } Hz ]

2 ff 2 2 ;
: a(tiz) =y snl edn L —ff lu(t, 2) — uy, 2r|?dtdz
R Qy, 2n . e R® Qya 2R } i

< C(N)M?[u]RA®

=
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Thus

[}

lu(ty, 21) — u(ts, z2)|* < C(AYM [u] R~

The proof is completed.
Now, we consider the following linear problem

: % + D*(a(t,z)D*u) = D*f in Qr =(0,T) x (0,1) (2.3)
u(t,0) = u(t,1) = D?u(t,0) = D%u(t,1) = 0 (2.4)
(0,2} =10 (2.5)

Here we do not restrict the smoothness of the given functions a(t,z) and f(f,z), but
simply assume that they are sufficiently smooth. Our main purpose is to find the
relation between the Holder norm of the solution » and a(t, =), f(¢,2). The parabolicity
assumption 1s

0 <ao=aft,z) < Ao (2.6)

Let yo = (tp, 2p) € @7 be a fixed point and define
plup)= [ [ (lu= 1, + oD%l )dtdz, (p>0)
Sp

Let u be the solution of the problem (2.3)-(2.5). We split w on S5g = Sgr(wp) as
t = uy + uz, where u, is the solution of the problem

%‘% + a(to,z0)D*u1 =0 in Sp (2.7)
u1|E?SR = u|ﬂ,¢sﬂ’ E{m,ﬂ)u;hﬁn = H{mrﬂ}ulaﬁﬁ (2.8)
and ug solves the problem
5’% + a(ty, zo)D*uz = D*[a(ty, zo) — alt,z))D*u] + D*f in Sp (2.9)
wl, . =0, B, D}ug|EER =0 (2.10)

where B(z,D) = D* for z = 0,1 and B(z,D) = D for z # 0,1. By classical linear
theory, the above decomposition is uniquely determined by u. The sclution wu,, u; are
sufficiently smooth in

St ={(t,2) € Sg;t > inf J5}

and satisfy w;, Du; € C(Sg), D*u; € L*(Sg) (i = 1,2) (see Section 4).
Some essential estimates on u; and us; are based on the following lemmas.
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Lemma 2.2 For the solution uy of the pmbiem (2.9), (2.10), we have

supf us(t,z)dz + f/ -:frd',m
Ju Y Egr SR
< Uﬂzﬂf (D*u)’dtdz + C sup | f|*R° (2.11)
Sr

where C' depends on ag, Ag and ||a||», ||al|, denotes the norm of & in the space G’%"’(@T].
Proof Denote by

Q: = (0,£) x (0,1), Sh=5rNQ:, Jir=Jr0(0,1)

Multiply the equation (2.9) by u; and integrate the resulting relation over S%. Inte-
grating by parts, we have

%f ﬂ%[taﬂ}dm+ﬂ:[ﬁmtn}ff (D*up)*dsdz
Er Sh

:ff [a(tn,mg]—a(t,mj]ﬂzuﬂzugdsdi:—l-ff fD*uqdsdz
Sk Sk

~ [, $(s,Br)Duals, pr)ds + [ (s, ) Dua(s, ax)ds
Tk Ik
where g and 8g are the left and right endpoints of the interval Er. Noticing that

sup |Dus(s, 2) < B [ (DPusls,2)do+ 15 [ w(s,2)da
ﬂfEER EH- -R' E.H

we have

| j £(s,8r) Dua(s, ﬁR}d.5| +| . F(sem) D, ap)ds|
< ::f SEI{EEHE )“dsde + “,/.[sf dsdz
+C.R [ (1£(s,BaI" + | (s, nl?)ds

< £ ff [Dﬂuzfdscﬁ: 4+ Esupf ﬂ%{sjm}dm + G'ERE' sup |-ﬂg
Sh T B
This and the facts that
1.[,[ [a(to, o) _'““[:t=£]]ﬂzﬂﬂzugd5dﬂ|
5h

< Ef (D*ug)*dsde + G‘,Hﬂ”ith : (D*u)*dsdz
st s
| / fD?usdsdz|
i

Lo [iarie i
"
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yield the desired estimate (2.11) and the proof is completed.
Lemma 2.3 For any (f,21), (t,22), (t1,2), (f2,2) € 5,

s (t, 21) — wi(t, 22)]* < CM(uy, p)lzs — 22 _ (2.12)
L
|l (t1,2) — u(tz, 2)|* < CM(uy, p)lty — t2]4 (2.13)
where

M(u,0)=sup [ (Du(t,2)de+ [ [ (D*w)dnds

and the constant C depends only on ag and Ap.
Proof The estimate (2. 12] is obvious. For (2.13), we ::rn.l}r consider the case where

At =ty —t; > 0, z,2 + 2[.&#}4 € E,. Integrating the equation (2.7) over the region
1
(t1yt2) X (3,9 + (At)1), we get

1
;|_,|-|-I[.'!L£}1
0= f [wa(ta, 2) — ua(tr, 2)]dz
u
no S
-|—a(tg,=:g]j; (DPui(s,y + (At)T) = D3us(s, y)lds
1
or equivalently
1 g1 1 1
D — (ﬁ.t]‘i fu [H]{Ig,y -|- ﬂ{ﬁt]4::| - ul{tl,y + H[.&f]‘l}]dﬂ

Falto,20) [ [Duals,y + (A0)4) — Dus(s,)lds

1
Integrating this equality with respect to y over (z,z + (At)4) and using the mean value
theorem, we have

(A1) a(t2,2%) = wa(t1,2°)

1
ta :u+|:ﬁt]1
f f Sua(s,y + (A8)F) — DPus(s,y)]dsdy
i i3

and hence ;
lur(tz,27) — w1 (t1,27)|° < Clt1 — 3|4 _[L (D%uy ) dtdz
I

1 1
where z* = y* + 67(At)4, ¥* € (z,z + (At)4), 6" € (0,1). This and (2.12) yield (2.13)
and hence complete the proof of the lemma.
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Lemma 2.4 (Caccioppoli type inequality)

sup [ (ua(t,z) - N)da + f f | (D?w;)?dtdz
3R

Jp YER
4 ry
C

< 7 f | - 2)?dtde (2.14)

2

sup f (Dus(t, 2))*de + f f (D% Pdtde
Jp YER R
= ry
o 2 2
< (Du,y ) didz -=i — {141 M) dtde (2.15)
R4 Sp
2

where C depends only on ap, Ao,

p arbitrary constant, if QrN QT = 1]
0, if Qr N 3Qr # 0

Proof We discuss in the following two cases.

1°. The case to — R* < 0. In such a case, A = 0. Choose a ¢ function x(z)
R
satisfying the following requirementa. If0,1 £ Er, then supp X C (zﬂ - %,zu + = 5 :],
: R R
x(z)=1imn (ﬂn R B0 3t I)’ 0<x(z) 21,

x'()] £

Fa|

@IS @IS S, K< g

In 0 € Eg, then the value of x(=) for 2 < zo, is changed into 1. If 1 € ER, then the

value of x(z) for = > zg is changed into 1. Multiplying the equation (2.7) by ytu; and
integrating the resulting relation over S, we have

fj aul}"h T.leﬂdm + ﬂ-[tu,‘.’!u jf _D411-11 ﬂ]d&l‘i‘.ﬂ =10
51

From the boundary value conditions (2.4) and (2.8), it 1s easily seen that

4 e 2 4
o HI\BEH = D, D 1‘.L1.Dl:x HI:IIE"E
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Thus

= % xtui(t, z) dz-—/f a(ty, zo) D%uy D? (x uy )dsde

—f xui(t, z) dz—l—/f a(to, 2o)x*(D*up ) dadz
—I-Bffl a(to, 20)x°x' Duy D*uy dsdz
S.El'.

-I-ff {I[tu._:u}[idrfx}g-i-ﬂf "y D*uydsdz
Sk

By Cauchy's inequality, we have

|fj a(ty, zo)(24x” x 2 4 8x°x")m D uicfscfi|
.H-
1 C
:1: tu,ﬂu]jf Eﬂ,l}zdﬁdﬂ: - Ffj;’ﬂ ufdada:
5

8 f j alto, 20)x°x’ D D*uy dsdz|
Sh

1 ;
< Ea{fmtujjfl (D)o dsdz + fo x (D)o dsde
S.H. S}‘i

(2.16)

Noticing that

ff 2% Duy 2 dsdz = - ff uy xxzﬂul}risdm
SF

== -f xix ulﬂzuldsdz—l—fj u? D3 (x*x *)dsdz
Sk Sh

| ¢
< i’ﬂ{tﬂ:*‘?ﬂ}f fsa xﬂi[ﬂﬂul}zdg{fﬂ: + E/ j;R u‘fdﬁdﬂ
2
we obtain

supf ful(t,z) dm+fj x*(D*u, )P dtdz < /f uidsde
Jgp vEr SR

from which (2.14) follows.
Since w = Duy satisfies

Z_W + altp,#0)D*w =0 in Sg
and Dw(t,0) = D*w(t,0) = 0if 0 € OEpR, Dw(t,1) = D’w(t,1) = 0if 1 € IER, we can
prove the estimate (2.15) by the way similar to the proof of (2.14).
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29, The case tg — R* > 0. Choose another function n(t) € € such that 5(t) = 1
R4 : By C
il (t.;. - (—) ,-{—m)1 n(t) = 0 in (— oo, £y — (hz—) ), 0<n(t) <L, 7)) = 7 for all

t € R. -

With ) stated in the lemma, we multiply (2.7) by x*n(u; — A) and integrate the
resulting relation over S5, Then we derive an equality similar to (2.16) in which u; is
replaced by uq — A and a term

¢
= f f 39 (uy — N)?dsde
tp—R1 JER

is added. Then following the argument as in Case 1°, we can complete the proof of the
lemma,
Lemma 2.5 Forany0 < p < R,

pl(u1,p) < C(£) plu1, ) (2.17)

where C' depends only on ag, Ao and ||al|,.
Proof It sufficies to show (2.17) for p < T From Lemma 2.3 and Lemma 2.4, we

have

R g6
|2 & 2
fv/:sﬁ |y — dy,|" dtdz EGM(ﬂhz)P “_:C(R) / SR{“lF}'] dtde

Taking A = {1, we obtain
/f [ — s, Pdtde < C(2) fj' (w1 — da)dtds (2.18)
S.l':'

On the other hand, by (2.15),

f / p4(D?u; )2 dtdz
{Glff ul dtdm+Cgffp{ﬂu]dtdm
S

< G‘lpﬁff (D3uy ) dtdz + Cop® sup/ (Duy(t,z)) de
SR Jr “ER
4 5 q

¢ 2 1
) f R2(Du,)?dtdz
SR

L E

/f R‘*{ﬂ=u1]=dmz+ff =) dm]

G( ) wlul, B)

5{:(

==

[P

{3‘

’;qt‘c:- :ulh
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which together with (2.18) imply (2.17). The proof is completed.
To estimate the Holder norm of u, we also need the following technical lemma,
whose proof can be found in [6].

Lemma 2.6 Lel (p) be o nonnegative and nondecreasing function satisfying
Py &
elo) < A[(5)" +¢|e(R) + BR

for all0 < p < B < Rg with A, B, a,f positive constants with 3 < «. Then there
extsts o constant g9 = gp( A, &, 3) such that forall0 < p< R < Ry and 0 < € < &g,

p(p) < C (%)%(R} + BRF

where ¢ 15 a constant depending only on o, and A.
Now we state the main result in this section,

Theorem 2.7 Let a (f,z) and f (t,z) be appropriately smooth function, u be
the smooth solution of the problem (2.3)-(2.5). Then for any a € (D, -;—) , there exists

a constant C' depending only on ag, Ao, o, T, | al|s, ff u’dtde, ff (D?u)dtde
O .
such that i )

[u(t1,21) — ultz, 22)] < C(1+ sup | F[)(|Jer — 22" + [t2 — 2] 7) (2.19)

Proof For any fixed point (tg,2q) € @1, consider the function w(u, p), which is
clearly nondecreasing with respect to p. By Lemma 2.5,

w(u, p) < plug, p) + @(us, p)
I G
< () wlur, R) + ¢(us, R)
< S(%Jﬁgﬂ(u,ﬂ] + Co(ug, R)

holds for any 0 < p < E. By Lemma 2.2,

wluz, R) = f jsﬂ[{ug —diag)? + RY(D*uy)?|dtde

< 4ff ugdzdm+ﬂ*jf (D?us)?dtdz
SR SR

< 4R? Eupf ui(t, z)dz + R‘*ff (D*uy)* dtdz
Jan JEgr Sn

< GR“””/ ] (D*u)?dtdz + C sup | f|*R®
Ii

< CR*(u, R) + Csup | f|*R®
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Thus

w(u,p) < U[(%)E + RE"]@MR} + Csup | f*R®

For £g in Lemma 2.6, we choose Ry > 0 such that R* < gp whenever R < Ry. By
Lemma 2.6, we have

@lu,p) < C (%)Aqﬂ{u,ﬁn) + sup Iflzp”‘]

for some 5 < A < 6, and hence

M2 [u) < G’[Rigrp[u,ﬂn] + sup 1f|3]

Using Lemma 2.1, we immediately obtain (2.18) and complete the proof of the theorem.

3. The Existence and Uniqueness for Classical Solutions

Woe first consider the special problem where no lower order term appears.

du

5+ Dim(u)D%u) =0, in Qr = (0,T) x (0,1) (3.1)
Du(t,0) = Du(t,1) = D*u(t,0) = D%u(t,1) = 0 (3.2)
u(0,z) = up(z)  ~ (3.3)

We have the following

Theorem 3.1 Let m(s) € C'P¥(R), ug € Cite(T), Diug(0) = Diug(l) = 0
(i =0,1,2,3,4), m(s) > 0. Then the problem (3.1)~{3.3) admils a classical solution in
the space C'F %'H“I{ﬁﬂ, the norm of which is determined by the knoun gquantities.

Proof It suffices to restrict the consideration to m(s) € C™(R), ug € C§°(I).
We apply the Leray-Schauder principle of fixed point to solve the problem (3.1)-(3.3).
To do this, we need some priori estimates on the smooth selution u of the problem
(3.1)-(3.3).

Multiplying both sides of the equation (3.1) by D%y and integrating the resulting
relation over @; = (0,t) % (0,1), we have

f / %Dzudsdm-l— f fﬂ D(m(w)D*u) D*udsdz = 0

Integrating by parts and using the boundary condition (3.2), we have

%fﬂl[ﬂu[i,m)]?dz-l-fL: m{u}{ﬂau}zdsdz = %Ll{ﬂuﬂ}id:
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It follows that

SUP liﬂu{t, z))’dz < C (3.4)
0<t<T JO
f fq m(u)(D%u)?dtde < C (3.5)

The integration of (3.1) over the interval (0, 1) yields
1 1
f u(t,z)dz = f ug (2 )dz
0 a
By the mean value theorem, there exists ¢; € (0,1) such that
1
u(t,z;) = ] ug(z)de
0

and hence for any (t,z) € @,

[u(t, z)| < |u(t, 2] - ult, zf)] + |ul(, z7)|
5 |[ mm}@hf luo(z)|dz

Taking this into account and using (3.4), it follows that

sup |u(t,z)| < C (3.6)
AT
Further we may obtain the Holder estimate for w, namely
1
u(t,z1) = ult,22)| < Clz1 — 2|2 (3.7)
1
lu(ty, z) — u(ta, 2)| < Clty — t|8 (3.8)

The estimate (3.7) follows from (3.4). For (3.8), we only consider the case where
1

1
ﬂimi‘:%,&t=t1—£g}ﬂ,{&£]3{

S Integrating the equation (3.1) over

(t1,62) (4,9 + (A2)3), we have
y+[ﬂ.t]i
fy [u(ty, 2) — u(ts, 2))dz

= [ m(ato,y + (AOR)D*us,y + (80F) = m(us, 1) D, )l
or equivalently

(At) f.:. 1 (ulta,y + O(AD)T) — ulty, y + 6(AL)E)]d0

= — tﬂ[‘]"ﬂ.l['!.l.{ﬂ:,y + [&t]%]]ﬂau{a,y + {ﬂtj%] — m(u(s,y)) D*u(s, y)]ds

t
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L
Integrating the above equality with respect to y over (2,24 (Af)4) and using the mean
value theorem, we get

u(ts,2") — u(ts, 2*)] < C(AL)3

where »* = y* + ﬁ‘{.ﬁt]%, y" € (2,24 {ﬂt}l-;_}, #* € (0,1). By virtue of this and (3.7),
the estimate (3.8) follows immediately.

The key estimate is the Holder estimate for Du, which can be obtained by the result
in Section 2,

4 iy
|Du(ty,z1) — Dufts, z2)| < C(|z1 — 227 + |t — ta|T6) (3.9)

where (' depends only on the known quantities. In fact, w = Du — Dug satisfies

Z—tj + D¥m(u)D?*w) = —D*(m(u)D?up) = D*f in Qr
w(t,0) = w(t,1) = D*w(t,0) = D2w(t,1) =0
w(l,z) =0

and hence by (3.5)-(3.8) and Theorem 2.7, the estimate (3.9) follows.
Now we change the equation (3.1) into the form

%;-E + a(t,2) D% + b(t,2)D%u =0

where
a(t,z) = m(u(t,z)) = inf m(u(t,z)) = mo > 0

bt,z) = m'(ult,z))Du(t, z)
From the estimates (3.7), (3.8) and (3.9) we see that
L 1
la(ty, 21) — a(tz, 22)| < C(|z1 — 22|27 + |t — 2]8)
? i} L
|-E?{t1,$1} - b{tz,ﬁz}l “_: f:-’“ﬂﬁl m— 33"1 -+ -|f=1 = f2|15}

and hence by the classical linear theory (cf. Theorem 1 in Section 4 of [4]),

d ad g

Eu{thmlj = 5—?[121ﬂz}| < C(|l21 — 22f® + [t = ta2]1) (3.10)
g

1D4ul[tl,31] = ﬂ4ﬂ{t3,xg}| E G“:ﬂh = i:2|'ﬁ 4+ |1ﬁ1 — '!511‘1] {311]

0 =1 i
where 7 = min (E’ ﬂ:), (' depends only on the known quantities.
Taking (3.10) and (3.11) into account, we may improve the estimates (3.7)-(3.9) as

1
|u(ty, 1) — ulte, z2)| < C(|ey — 22| + |81 — 22]2)

1
|Du(ty, 21) — Dufts, 23)| < C(lz1 — 23| + [t1 — t2]%)
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and so the exponent # in the estimates (3.10) and (3.11) can be replaced by «.
Define the linear space

14e L, ;
X = {ﬂ €0 4 ~1+EE[.’QT}1' .DHI[ﬁ,D:I' = 'Du{!': 1} =0, ﬂl:[],:l::l = uﬂixj}
and the associated operator T on X,
T:X—+X, ur—uw

where w is determined by the following linear problem

%w + m(u(t,z)) D% + m/(u(t, z))Du(t, 2) D*w = 0
Dw(t,0) = Dw(t,1) = D3w(t,0) = D®w(t,1) =0
w(0,z) = up(z)

By classical linear theory (se¢ Theorem 2 and Theorem 3 in Section 4 of [4]), the above

4+0 o
problem admits a unique solution in the space ¢ ¢ ""*#(QL). So, the operator T is
well-defined and compact. Moreover, if u = ¢ T u, for some & € (0, 1], then u satisfies
(3.1) (3.2) and u(0,2) = oug(e). Thus from the discussions above, we see that the

norm of u in the space (' ﬂ:-EE"H’“{Q_T"] can be estimated by some constant € depending
only on the known quantities. By Leray-Schauder principle of fixed point, the operator
T has a fixed point u, which is the desired classical solution of the problem (3.1)-(3.3).
The proof is completed.

Theorem 3.2  The problem (3.1)~(3.3) has at most one solution in the space

dda e

¢ 4 ,4+Q[QTJ_

Proof Suppose u; and u; are two solutions of the problem (3.1)-(3.3). Then
for any smooth function ¢(t,z) with Dp(t,0) = De(t,1) = D3%p(t,0) = D3p(t,1) =
@(T,2) = 0, there holds

f f LS eg R / f [m(11) D%y — m(uz) DPus] Dipdtde = 0
L ot Qr

or

fj;h-{ul = uz}aﬂ—fﬂ#"' fj;h.(“l — uz) D¥(A(t, 2) D) dtda

5- ff (w1 — ug)B(t,z)Dypdidz = 0
Qv

where
A(t, 2) = m{u(t, z))

1
B(t,z) = f m/ (A + (1 — Aug)dA - Duy
0
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For any fixed f € C5°(Q 1), consider the linear problem

%8 _ D(A(t,2)Dp) + B(t,2)De = f(t,2)
Dp(t,0) = De(t,1) = D*p(t,0) = D?p(t,1) = 0
o(T,z) =0

S+ . o ——
Since A(t, z) € GT’H&(QT]T B(t,z) € C'2°(Q1) by classical linear theory, the above
4Ly 5T
problemn admits a unique solution ¢ € ¢ Pﬂi""“"“[@gﬂ}, Thus

/ffe,i_(ul — ug) fdtdz = 0

By the arbitrariness of f we see that wy(t,2) = ua(f, 2) and complete the proof of the
theorem.

Now, we consider the general problem (1.1)-(1.4) which is clearly equivalent to the
problem (1.1), (3.2}, (3.3).

Theorem 3.3  Let m(s) € C1*°(R), A(s) € C**?(R), uo € C***(I), Diup(0) =
Diup(1) =0 (i = 0,1,2,3,4), m(s) > 0. and for some p > 0,

H(s) = -/;A(cr]da Sy (3.12)

Then the problem (1.1}, (3.2), (3.3) admits a unique classical solution in the space
Cv'l"'%"l"":‘{ﬁ] , the norm of which is determined by the known gquantities.
| Proof Most of the estimates needed in the proof of the theorem can be established
by using the arguments similar to that in Theorem 3.1 and hence is omitted here. Some
differences arise in the derivation of the estimates (3.4) and (3.9). For the proof of (3.4),
we set

ik
F(t) =f [5(Du)? + H(u) + ] de
0
Using the assumption (3.12), we get from the equation (1.1)

X dDwu du
! A St D
1) = ﬁ [F.:El'u 51 + A(u) ﬂt]dﬂ:
Iﬁ'ﬂ.

1
L ‘/{. (kD — A(u)] 5 de
= — j: m(u)[kD%*u — DA(u)’de < 0

Thus F(t) < F(0) and the estimate (3.4) follows. Set w = Du — Dug. Then w satisfies
the equation

Z;T + D*(km(u)D*w) = D*f
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where
f = —km(u)D®uy + m(u) A'(u) Du

By Theorem 2.7, we have
|Du(ty, 21)— Dults, z5)|
< C(1+ sup | )12 ~ 2a]T + |tz - ta]76)
= C(1 4 sup | Du|)(|z1 — :-':z|‘1l + 61 — t2|11_'3}

Taking this into account and using the interpolation inequality, the estimate (3.9)
follows at once.

The remaining part of the proof of the theorem follows from the arguments as in
Theorem 3.1. The proof is completed.

4. Appendix
Consider the problem
%-Faﬂ‘iu:f in Qr = (0,T) x (0,1) (4.1)
u(t,0) = u(t,1) = Bi{D)u(t,0) = Bo(D)u(t,1) =0 (4.2)
u[ﬂ,mj =0 [4'3:]

where @ is a positive constant, f a sufficiently smooth function defined on Qr, B;(D) =
Dot D e =12

When f(0,0) # 0 or f(1,0) # 0, the problem (4.1)-(4.3) does not satisfy the com-
patibility conditions. We devote this section to a brief discussions on the smoothness
of the solutions of the problem (4.1)-(4.3), which have been used in Section 2.

1°. The global smoothness _

Choose a sequence {f;} C C°(Q¢) converging to f in L*(Qr) and consider the
equation

% + aD*u = f; (4.4)

; L
The solution u; of the problem (4.4), (4.2), (4.3) are clearly in C*°(Q7) and satisfy the
following estimate

1 1
f{) wl(t,z)de + j} (D%u;(t,))2dz + f j;} (D*;Ydds
< U[ijj;h fidtdz < C
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from which and the equation (4.4) itself, we may further prove the estimates on the
Holder norms of u; and Du; by using the usual arguments

1
ity 21) = ujlta, @a)| < C(T)(|e1 — 22| + |t1 - ta]4)
1 1
| Duj(ty, 1) — Duj(tz, zz)| < C(T)|z1 — ®2|2 + |t — ta|8)

It follows that the solution u of the problem (4.1)-(4.3) satisfies

1 i R
ue C1'(Qr), Due C®I(Q7)
du

w € L*=(0,T; HE(I)), 5 € L}Qr), D% e L3Qr)

2°, The smoothness for ¢ > 0
For any & > 0, we choose a sequence #5.(t) € C*(R) such that Me(t) = 1 for ¢ > 2¢,
Ne(t) =0fort <eand 0 < n(t) <1 for any ¢. Set w, = Me(t)u. Then w, satisfies

Gwe
--Ig;— + &.dee — ﬂc{ijf y T}';[ﬂu = fe

and (4.2), (4.3). Since f.(0,0) = f.(1,0) = 0, by classical linear theory we see that

we € Gl""ié‘ﬁ'ﬂ (@)

for some 8 £ (0,1). By the arbitrariness of £, we see that u is classical in (0,T) x [0,1].
Moreover, if f is sufficiently smooth, u is also sufficiently smooth for ¢ > 0.

3°. The behaviour of D®u as t — (

Set

H(t) = f;[ﬂzuft, z)) da

Then from the discussion in 1%, H(t) is bounded in (0,T) and

H'(t) = EfDl f(t,2)D%(t, z)dz — 2a ﬁlfﬂ‘lu[t,m}}idﬂ:

Thus )
! 2
j; |H'(t)|dt < GET]_/‘/;?T_:: didz

This shows that H(t) is absolutely continuous in (0,7) and hence the limit H (0) =
!.ma H(t) exists.

We conclude that H(0) = 0. Let a.(t) be the kernel of mollifier in one dimension
and set

we(t) = £+mn£[3 —g)ds
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Multiplying both sides of the equation (4.4) by (1) D*u;, integrating the resulting
relation over (Jo and integrating by parts, we have

5[ [ et o [ [ o)D) dtds
i f f.;;, elt)fiD gt

Letting 7 — oo and then ¢ — 0, we immediately see that H(0) = 0.
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