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In this paper we consider weak solutions of the equation

OED> (s u{-c}—-) £ 5 (8) 0L = fupt (1)

1. 3=1 =1

in a domain
S(0ioo)={z:& € w,0< 2z, <00}

with the boundary condition

5 = ;-,.,Z-_:l al-j(ﬁjajm =0 on o(0,0) (2)

where £ = (24,---,2,), # = (21, - ,2,_1), w is a bounded domain in Rg“l with a
smooth boundary Aw,

o(0,00) = {2 & € 0w, 0 < 2, < 00}, ¥ = (w4, -, 1y,) is the exterior unit normal

to o(0,00), ai;(i), ai(Z) are measurable bounded functions,

mlé]* € 3 ai(2)6€; < MIE]?, £€R®, i€w

T,0=1
aGn(@)=0fori<n, a,(£)=1; m,M =const >0, p=const > 1
We denote
S(a,b)={z:& cw,a< ez, < b}, ola,b) ={z: &£ € fw,a < 2, < b}

The function u(z} is called a weak solution of problem (1), (2), if for any T > 0 function
u(z) € H(S(0,T)), u{z) is bounded in 5(0,T) and

from 2o, Ozt t [ 5 aa
S(0,T) Oy du; S(0,T) = dz;

for any function ¢ ¢ H'(5(0,T)), (2,0) = 0, (&, T) = 0.

2 / WP lupdz  (3)
(0,7
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Many problems of mathematical physics lead one to consider the solutions of prob-
lem (1), (2) and to study the behaviour of the solutions at infinity (stationary states,
travelling waves, homogenization, boundary layer problems, Saint-Venant’s principle
and so on). These problems are considered in many papers (see, for example, [1]-[5]).
For linear equations such problems are investigated in [4].

We shall use the following propositions for linear second order equations.

1. Consider the problem

L{u) + glz)u = Z jz'fj in §{—o0,too), g—: =0 ono{—oo,+o0) (4)

i.i=1

under condition
Jul fi) Ef e?u|fi|*de < 00, i = 0,1,-++,n (5)
S = oo 400)

with constant k& such that the eigenvalue problem

ri—1 5 au Sy E?u
2 Bus, R LBl s o ;
E () + S e g - =0 W
'g_: =0 ondw |:T':|

has no eigenvalues A with J. h = Ju A, Then there exists a constant £ > 0 such that if
lg{z}] <& in S(—=,+e) (8)

there exists a unique solution u(z) of problem (4) and

Z

T (1) plia L0 fil2e?™ v da < O Y T I(F) (9)
i=1

B[ =, o) 'SIJ::.) S{— oo, +00)
[see [G]).
2. Assume that q{z:} = 0, u{z} is a solution of problem (4}, satisfying condition
Th;;'[ﬂjl < oo,
Jn'ul:f*.:} < 00, J."e--_rl:.fi} < 00, 1= Ur]-:u“'rn‘

and, in addition, in the strip Ay < JuA < h: there is only one sigenvalue Ay of the
problem (6), (7), b1 < Jmda < k2. Then

ke
= 3 Cielgi()e™™ + (e
J=0

Ty (u1) < C Z Jn, ki), C,€; = const (10)

1=l
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where ¢g, @1, -+, ¢y is a chain of eigenfunctions and adjoint functions of problem (6),
(), corresponding to the eigenvalue X = Ay (see [7]).

Let us prove some auxiliary results.

Lemma 1 Any Solution u(z) of problem (1), (2) satisfles the inequality

u(z)| < M,22/0-9) ap = [-E“Jr—pﬁ?] HiETY (11)
Proof Let us prove firstly that
Jm u(z) =0 (12)
we consider the function v(z,) such that
v, — |oelP o = 0, wft) = >0, vi(t) =0, 2, > ¢ (13)
For .n solution of the problem (13) we have
(I"Hg__l)w f:r[mf‘”““ — PtV w = g, — (14)

From (14) it follows that
limw(e,) = +oc asz, —t4 K{e)

where K (g} does not depend on t. We extend the function vz, ) fort — K(eg) <z, < ¢,
seting vy(2¢ — 2,.) = w(z,). If (12) is not valid, then there exists a sequence t,, — oo
such that

|w(Fm, bt )] > £, € = const > 0 (15)

From (15} it follows, if u € C*(5(0, 00))NC? (5[0, 00)), then for u,,(z) = w(e) —uy, (2,
we have

?g—T =0 on ot — K(e),tn + K(2)), (8 tn) > 0
o

T [ o o T (16)
limuy(z) = —o0 as 2, — £, + K(e) and 2, — £, — K{e) (17)

Ll{um) = (Juf™ u = Juy, [Py, Wu = vy, ) e = 0 (18)

From (16G) and (17) we get that w,, must attain a positive maximum in S[Jtm — K(g),
tm + K (e)). It contradicts (18). Thus, we have (12). From (12) and maximum principle
we obtain (11).

For a weak solution of problem (1), (2) we can get (11) approximating u(z) by
u*(z), where u*(2) is a solution of problem (1}, (2) with smooth coeflicients af}, af(z),
which approximate a;;(z), a;(z).
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Remark  Using the maximum principle and approximation of coefficients of (1),
we get for u({z) > 0 the estimate

Mz + 007 < u(z) < M,e2/0-P (19)

where ¢ is a constant, independent of u. ;
Theorem 1 If a solution u(z) of problem (1), (2) changes sign is 5(0,00) (it
means that u(z) takes positive and negative values in 5(k,c0) for any k > 0), then

lu(z)| < Cyexp{—h=,} (20)

where G, h are some positive constants, h does not depond on u.

Proof It is known that there exists A > 0 such that the strip —h < JauA < h
contains only eigenvalue A = 0 of the problem (6), (7) [8]. Since according to Lemma
1 u(z) — 0 as &, — oo, there exists ¢y such that [u["~! < £ for z,, > £, where ¢ is a
constant defined in {8). - ;

Let #(t) be a function such that #(f) = 1 for £ > £, + 1, 0(t) = 0 for ¢ < g,
fe C=(R"),0<6(t) < 1. Consider function v(z) = #( =z, julz). This function satisfies
the linear equation

L=y (65(8)5m) + X @) o ~ ale)e

=1

2

8 du & (u@iﬂﬂ) a7 (21)

+
dz,. 8z,  Ozn

in 5(—oco,too), where g() = |u/P™! for 2. > to + 1, g(z) = 0 for 2, < ty, and the
boundary condition

— =0 one(-00,+00) | (22)

Functions Fy and Fy have compact supports. From Proposition 1 it follows that
there exists a function v;(z) which is a solution of the problem (21), (22) and

Th{n) < oo (23) -
It is easy to see that the estimate (23) provides the estimate
[ ()] < Cexp{—hz,}, C = const (24)

Indeed, according to E.De Giorgi theorem [9] and (9)

max |wn(z)]® < C‘1] v P dz
S(T-1,T41) S(T-2.T+2)
< CEEazaﬁT/’ vy [2e2hen dp < (e—2hT
S(T-2,T42)
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and therefore we get (24). The function va(z) = 81(z.)v1(z), where {2y} = 1 for
Za <tg—1,01(zx) =0for 2, > tg,0 < 81(zn) £ 1, th € C™(R), satisfies the eguation
of the form (21} with ¢(z) = 0 is §(~co,+oo) and the boundary condition % =)

~
o(—o0,+00). According to Proposition 2, since Ty (v2) < oo, we have

v2(2) = a + bz + vp(z) (25)
where a,b = const , T_j(w) < co. From the last inequality it follows that
[vo(z)] < Cye™™n,  C4 = const (26)

for z, < 0. Let us note that va{z) = vi(z) for 2, < t9— 1. The eigenvalue problem (§),
(T) has an eigenfunction ¢y = const and an adjoint function ¢; = const . corresponding
to eigenvalue A = 0. The equality (25) is a consequence of (10].

Consider w = v; — v. The function w satisfies the equation

Li(w)=0 in §(-o0,4oc)

and the boundary condition

g—l‘f =0 ong{—os,+o0)
Since v = 0 for x,, < tg, ve(z) = v(z) for 2, < tn — 1 and (25) and (26) are valid, we
have

w(z) = a+ bz, + vo(z) (27)

for z,, <ty — 1. Let us prove that w = 0 in S(~00,+oo). It means that v(z) = v;(x).
For v;(z) the estimate (24) is valid and since v(z) = u(z) for 2, > to + 1, we get (20).
First we prove that & = 0 in (27). Suppose that b < 0. Then w(z] > 0 for 2, < Ty,
where T} is negative and sufficiently large by modulus. From the maximum principle
it follows that w > 0 in 5(To, +00), since w(z) — 0.as r, — oo,

It 15 easy to see that for 2, > ¢ + 1 and #,, > 0 we have Ll{ﬂfpzim”ﬁ}j > 0. Let
us take f; such that ¢; > 0 and ¢; > #y + 1. There exists a constant £ > 0 such that
¢H < wfor 2, = 13, & € w, where H = M,zZ/"". Since Ly(e H ~ w) > 0, g(z) > 0
in §(t;, +oo), according to the maximum principle we have e H — w < 0 in 5(t1, +o0).
Consider the set z of points 2, where v = u > 0. For the points of z we have

eH(z) € w(z) < vi(z)

This inequality contradicts (24). In the same way we prove that b can not be positive.
If & = 0, then similarly we prove that a = (. Therefore, w(z) — 0 as 2, — —oo
according to (27) and (26). Since w(z) — 0 as z,, —» +oco by the maximum principle
we have that w(z) = 0. The theorem is proved.

The case, when a solution of the problem (1), (2) preserves sign in §(0,c0), is
considered in [3].
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: o O = du
Equation (1) has no termm with This term in contrast to terms Z aif &)=
53” TN ai:"l:

has an essential influence on the asymptotic behaviour of the solutions of problem (1),
(2). Consider the equation

e
dr

Afu) - u’ =0 in S(0,o00) _ (28)

_and its solutions satisfying the boundary condition (2). Suppose that u(z) > z(z,) for

Zo =1, ufz) —+ 0 as 2, — o0, where z(2,) = (22,)"Y2%. Then A(u— 2) - —(u —

.,

3 il ;
220, By the maximum principle we have that

ey e AT (L
z)— u® + =2 Az 4ﬁmﬂ
u(z) > z(z,) in 5(1,00),u(z) = (22,)7/?. It means that (19) is not valid for Equation
(28). It can be proved that, if u(z) > 0 and u is a solution of Equation (28) with the
boundary condition (2), then u(z) > a(z, + 8)"? in 5(0, ), o, 3 = const > 0.

Equation (28) has positive solution in §(0, co). Such solution can be obtained as a
limit of the solutions of the problem

f}?..!.

A o
* Fip B

*=0 in 5(0,7)

g—f::[] on o(0,T),u=0forz, =T, u(z)= () forz,=10

as T — oo, for any smooth function @{z).
Similar considerations can be done for the equation

&
Ay =i—u'3

=— 0 (29)
For any solution of the problem (29), (2) we can get the estimate

lu(z)| < €y exp{—hz,}, C1,k = const > 0 (30)
For a positive solution u(z) we have

Coexp{-ho,} < ulz) < Cyexp{-hz,}

In order to prove (30) we use a function z(z,) = fe ™", a,F = const > 0. For a,f

sufficiently small Az + oz Freill
da.,
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