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Abstract In this paper we investipate the asymptotic stability of the discrete
shocks of the Lax-Fricdrichs scheme for hyperbolic systems of conservation laws. For
single equations, we show that the discrete shocks of the Lax-Friedrichs scheme are
asymplotically stable in the sense of 1% and ', For the systems of conservation laws, if
the summation of initial perturbations cquals to zero, we show the 12 stability and [
boundedness.
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1. Introduction

We consider hyperbolic systems of conservation laws

a1 a0ululie j (1.1)

dt oo

Let #; = jAz, {, = nAtl;, Ar and Al are respectively the space and time step sizes.
Denote the approximation of u(z;,t,) by u}, the Lax-Friedrichs scheme (L-I' scheme)
is:
:I'I:-I-l 1 T T2 ":," T ™ )
U, — E':'“:.-'H T “j—l] + E{f('”jﬂ T f(uj—l]) =0 (1.2)
where A = At /Ax. Or, in general, we have the following scheme:

P E n:!ll i a1 b i) n T
wp T =+ (W) - fluf)) = E{“J‘H - 2uj +uj,) (1.3)

2
where 0 < & < 1. When o = 1, (1.3} is just (1.2).

The L-F scheme has been playing important roles both in the theory and numer-
ical computations of hyperbolic conservation laws. In 1950%s Oleinik [1] studied the
existence for global solutions of single conservation laws using this scheme. In 1980°s,
Diperna [2] and Ding Xiaxi, Chen Guigiang, Luo Peizhu [3] also used it to prove the
existence of weak solutions with large amplitude for some 2 x 2 systems. The L-F
scheme also played an important rele in the development of the difference methods. It
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is a representative for monotone schemes. About the monotone schemes, there have
been systematic theories [4]-[6].

On the asymptotic stability of the difference equations, Jennings first investigated
the monotone schemes [7]. But the work is only restricted to the strictly monotone
schemes-that is, if we denote the scheme as

H;:H"l = G[u?—ﬂ u_:f+—r+11' il u‘?-i-t::l {l"ﬂ'
then the first order derivatives of G about each of its arguments rmust be positive.
Obviously, the L-F scheme does not satisfy this condition. Moreover, there are some
mistakes among the stability theorem in [7T]. As much as we know, Ralston pointed out
the mistakes in [7] and made a correction in his unpublished work. Engquist and Osher,
in their paper (8], quoted part of Ralston’s results, but unfortunately, there are still
some mistakes in this part of paper [8]. We shall show this at the end of this section.

For the L-F scheme approximating systems, Chern [9] has proved that the solutions
of the scheme is asymptotically stable provided that the initial value is a constant
state when |z| is sufficiently large. Liu and Xin [10] have proved that, for scheme
(1.3), if 0 < a < 1; the solutions of Riemann problem are single or multiple shocks;
and if the summation of the initial perturbations equals to zero, then the scheme
solutions are asymptotically stable, Besides, on other schemes, Majda and Ralston
[11] have proved the existence of the travelling wave solutions for a class of schemes
using the center manifold theorem. Smyrlis [12] has proved the asymptotic stability
for the stationary discrete shocks of the Lax-Wendroff scheme. Szepessy [13] proved
the asymptotic stability for a kind of implicit finite element schemes approximating
systems. Yu [14] proved that under some conditions the Lax-Wendroff scheme can not
have the travelling wave solutions,

The aim of the present paper is to study the asymptotic stability of the L-F scheme
(1.2). We shall prove that its solution on the odd grid nodes and on the even grid
nodes tends to two travelling waves respectively. We first consider scalar equations.
Although on the grid with double space and time step size, the L-F scheme is strictly
monotone, then following Ralston’s unpublished work, one can get a kind of stahility,
in this paper we will show that the energy integration method gives a better result.
The more important is, our method can be applied to systems of equations. We shall
combine the method in [10] with the method we use for scalar equations to get the
result on systems under the similar conditions in [10].

The organization of this paper is as follows: at the end of Section 1 we show that
the asymptotically results in (7] and [8] can not be generally true. In Section 2 we
shall prove that when the initial value is a small perturbation of a travelling wave the
solution is I* asymptotically stable. In Section 3, we shall prove our I'-stability for
large perturbation. Finally, Section 4 contains the results for systems of equations.

Now, we discuss the stability results in [7] and [B].

Suppose (1.1) is a scalar equation. For convenience, we assume f > 0, u,, 1w and
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s be constants satisfying the Rankine-Hugoniat relation,

Flus) = flw) = s{u, —w)

and w; > u,, i.e., the entropy condition. Then, Equation (1.1) has the following weak
solution,

(o] tiy, forz < zn+ st
e, t) =
iy, for e > &y + st

where zg 1s an arbitrary constant. Corresponding to difference equation (1.2) we have
the following viscous conservation law

e + (flu))e = puge, w0 (1.5)

which has travelling wave solution u = u(z — st) satisfying

lim w(&) = u,, limr =
Jm ulf) =ty Jim oflf) = w
The convergence is at exponential rate, and moreover u'(£) < 0. Hence, the travelling
wave solutions of the differential equation have the following property,

u(z,t + At) = u(z — sAL,¢) (1.G)

Since the solutions of a difference equation are only defined on the grid nodes, (1.6)
does not always make sense. If we assume 5 = A is a rational p/g, we can construct a
refined grid,

Lo={mn+nlg=sdmneZ}

then, if ;7 € £, corresponding to (1.6), we have
H:—i’_ﬂ = G{ujll—:r iecke J'EI:F_' '!_} {1.7}

Suppose & 1s a strictly monotone scheme, the existence of the solution for (1.T) was
proved in [7]. Moreover the u} also tends to w or w, at exponential rate, and it is also
strictly monotone about 7.

In 7] and [8], the stability theorem reads: assume the initial value u; satisfies
u? £ (u,,14), and there is a travelling wave ¢ such that uj’ — :ﬁrg' € ['(L,), then when
n — co, uy tends to a travelling wave in I'(£,).

In general situations, the above asymptoticity can not be true. To show this we can

take an example as follows: let 3 = 1/2, @7 is a travelling wave, we define uy as:

87, for j € Z,

1
o , forj=k+- ke Z
‘i:rH_l. or 2 €

5+

where jp 1s an arbitrary integer. Since in the difference equation (1.4) (» = £ = 1), the
integral nodes and the semi-nodes are independent of each other, u? is still a solution

J
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of (1.4). But no matter how large the n becomes, u? is always a combination of two
travelling waves, which means it can not converge to a certain travelling wave, Hence
the {* stability on £, can not be generally true.

In [11], instead of the refined grid, an expanded grid was introduced to make (1.6)
have sense. Let At, = gAt, if we use At, as the time step size, then, corresponding to
[1.7), we have

ng g 1if]

Ujmp = G g a (1.8)
Here, j — p is already an integer. From now or, we shall investigate the asymptotic
stability on the original or the expanded grid.

2. I* Asymptotic Behavior, Small Perturbation

In this section we investigate the I* asymptotic stability of the L-F scheme approx-
imating scalar conservation laws (1.1).
Using (1.2) iterate twice, we get a strictly monotone scheme

n+1 1 ™ it ! A i 1 "}": ﬁ""% “+%

i T LI Vgt D O et BT B ] 5 O 2 LMl
4= G0 2 ) = Tl = S - SUETE) - £ (2)
where :

ﬂ+-'j'- ']' 71 ‘:!'l ki il

uj+§ T E[“"?ﬂ+“j}_§[ﬂuj+1}_f[“jj]
1

nt g 1 A i .

“_._f - E(“?—l el = E[f{“j] — flul )]

173

It is clear that the results about the existence of travelling wave solutions for the
strictly monotone schemes can be applied to scheme (2.1). Thus, we can define the
travelling waves of the L-I scheme (1.2) at the add (even) nodes by (2.1).

About the initial values, we have the following lemma.

Lemma 2.1 Let ul(j € Z) be an initial value and satisfy

Yol -yl <é

JCE
where ¥V {5 a tmueﬂmg wave of scheme (2.1). Then, there must exist another travelling

wave o such that
2= =0
JEE

ard

> luf - ¢l <26

JEZ

The proof of Lemma 2.1 is a consequence of the fact that a travelling wave contin-
uously depends on its value at a point (see [7]). We omit it here.
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Our main result in this section is
Theorem 2.1 If f' >0, w » u,, Amax|f'| < ey < 1, and, if uf satisfies

(i) there exists a travelling wave v] such that

> lud -5l < b (2:2)
i
where by > 0 1s a sufficiently small quantity,

(i)

2 = wlu) = O(F1™) Ll =0, #> 3

then there is a travelling wave ¢ of scheme (2.1), satisfying

ST - ¢if =0, n-teo

J+n=add

where u} = G(uj_{, ulny ), ¢ = G( L @0Ts), by the scheme (1.1).

F=1*¥3+l
Proof From Lemma 2.1, we can find a travelling wave ¢7 of scheme (2.1), such
that
Y (ut-¢¥) =0, YneZ, (2.3)
;|'~|-11={:?¢'M
and

S |ud - ¢ £ 26

Jn=odd

From condition (ii), we have
i — wefw)| = O(13[7%)

Define
vy = E (u} — &7 )2r

B<gktn= ool

then v? — 0 and [v]] = O(|j]~#*1), so all the following summations with 7 are reason-
able. From (1.2), we have

v?-l-l - %[ _; 1 T t"y+1]
h

;i'-l-l} f{¢3+1 - [2'4}
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Multiplying (2.4) by [-u_r 1 + 23y, ) and summing over j for § + n = odd we get

pitl

.:r'-'l H¥ H—l 3

>

T8 %{"-',?—1 +v74,)

Jre=add E

h

o 1
Ehz[ “]‘ _-;.~1+'”+1} 2 j—i"‘“ﬂljﬂ

(2.5)

1 i1 Ti n n T
T Zh& [[”i+ V= (@) of (vl 4 oy)
J
1
——'[”?—1 B ”_?+1]EJ
L ﬂ__4_1 ﬂ_ 1 i o 'I_I'ﬂ'_ = 'tj-r.l o€
e hZ[{U s E[’-tf‘j-q ‘|‘1-'j:.|_:|}}3'_( - 9 J-H) ]
We can see that
- ve_ 4 vt 2
Z {L.:}H }3 » J=1 .i'+1
j+:1=nf.t-r£[ ? ( E ) ]
— . 1 '
i mi+13%2 n 7
r 2_, 'f'”j } Z E{E{“yﬂ}g T E{ﬂj--l}z '[’“,.-+1 _-;'—1]2]
4 te=palcd 4=t
— gl 2 1 11 1 T
o Z (ﬂj :l & E _[Tr’j+1]:z_ E ih’_ﬁ—ljz
Itn=odd J+it=add Fn=odd
+ Z f'”;u 1]2
j+:r|.:{|dd
_ 143 T
e Zﬁd“”j | e “1;'3"' '|:"'—’J+1 '”j—i]E]
Jtn=
From (2.4), we obtain
[ﬂ"'t--l--l s l( Te 1 r|. 4 T hE* 1t
] 2 vi-1 ”J'H]] = Ef(“j+1]' f( 341]]
50,
1 n-1 1 Tt n : 7 2
oh > [”j - E[”;r'—l +’”j+1]'] L A flu uty ) — f(#%:.))
FLn=add .."l"“ erld
1 —u? g
T Z RGN (15 — 7100 = = RE(FI(EN) 41 = Y
; +1
2h J+n=oxdd : : 4 2h j+nz.;dd ( 2r )
1 :I1- ti 2
T Z [-f (650 (Vi — o7, )

j-lrﬂ.zariri
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From CFL condition [E ik
5

< ¢n < 1, we have

L Y [gr-gemv e T SIETep v @6)

j4+h=cdd _;r+u=ﬂ.;i.;i
(2.5) and (2.6) yield
n+1

" " li.m "
Z Ueqh My L e g(vi g +vi,)
2 h

dFr=odd

=g 5 [t (R

1 %
5 +1
_Eh_'i'-l-ﬂ odd lu? - -i{y?—l - ﬂ;}ﬁ‘l]

1 i 1 s 1 ) Tt
. T X [('”_-,'“]3 — (vy)? + a|[-uj-+1 + 1,1._1}2]
Frn=odd

Cn 2
T E {'”.v+1 vily)
Eh -I—ﬂzu.:l’d

i"l_h Z [(U-'?-HJ? (v ,r+1}? i '[1 c%}{“?q-l - 1’?._.1]'2] (2.7)

= odd

I

AP R
S BRI () ~ f($h)]

F+n=gdd

240
_ | Z Vi1 > Yit1 .f [£j+1][:u;}+1 o ‘ﬁ?-[-l]

Jtn=add
) j+n§cﬂd = J?r U RAEEY — ;;u;*_l
= _FEM [(344)” = (301 (64)
jtn=
) +Ead.:1 F (@5 M(wh ) = (25-1)]
" jan=c
+4_3+;addf (@) — $74)(0741)° — (¥51)7]

where it is a mean value. It is easy to see that

[€31 = i1l < Juli = ¢4
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therefore

Z (@71 )(v Vi) - (vi_1)?]

;r—u odied
= _l_ Z f [:'i' Tt }2 1 Z fr{ e 2
4 i+ i) - — Yy
T dbn=add 4r Jdn=odd +1:|{ }
1
T EJ—J,E“ 1} ': 741 ]( _-1.1'1—1;-"‘.:

. . ; i
Since ¢ is decreasing, f = [, we can get

1
e }_, £ {¢}J+1 (vih1)” — [U;?—tjj] =0
Jn=add
Besides,
i 1 |
T I — AT 4 T 2
\4? 2 S - 605 - )
L
s ir Z[H;?+1 = @il [(v744)° - {(vig)?
) viy =l
e —*.'.'+1 1
- QVZJ |'[;-+1Ji (n JII
_gw 3+1_t’ |]trj+1+t.l
SO
.1 'I' 'U”
R T
Jtrn=add E 4 H} f({}lJJTl
L&
= gy 2y = viaal|ufyy + Uiy (2.8)
A=l
Fmally, from (2.7), (2.8), we get
0 = Z ﬂ—r + U _ ”}HII - (v + Vi)
Itn=odd . h
vy o, 4+ e
t 2 ot TRy~ fle
i+ re=add 2 J * 1 |: j+1}]
1 e
T n+14%
= o L [('[”j Fre _i-+1:l 12 {I ‘:u}r:“nl = ”;:'L--l.]?)
2hC
~ 5T e — VPl + o
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= o T = (03))

G 7 T 71 T
T2 (E‘.h = c0) = goalii + vial) (5 = o)’

We choose by = u{;—ﬁﬂl then if z [u = qf;-“| < ba, we have

j=odd -
Zmlu}‘—éffl <by Wne Zy
j+ﬂ= i
Then
|vF| < b
Then
1 n.+1 ey s i 2 gt 2
0= T 3 ({v] —~ (v )+ E 16k |'”3-+1 =y
jtn=odd Jdr=odd
i.e., :
1 : 5
o 3o (TP -+ My Y i, —f P 20
J¥n=odd it n=add
ie.,
1 _ 1 L
g e Y (@R M Y bRl (29)
= 1_|;-|-'|-i.=|'_'.I|'.|!|:,|! j+u=|_‘n:.|f{.|!

where Ay 2> 0. Summing (2.9) from n = 0 to n = N, we obtain

Z [u”"’i]ﬂrh + My Z Z: vy = ' L |Frh < { - Z [vﬂ}zrh (2.10)

3+n_ad'd n=0 j4rn=culd j+:1._add

(2.10) shows that the series

L E h"ﬂ] :,'L,,llll“':-{'m

=10 _||+1L—|;:d{.|1.

thus,
Jim ), e -¢3 =

I:.l-+ Te=gnldd

which completes the proof of Theorem 2.1.
It can be seen that through the same argument process, we can prove that there
exists another travelling wave ¢o of scheme (2.1) such that

> (W= (42))) = 0
J=vuen

and

>, i —(#)fP =0, n— doo

JF Tess T
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We define
8= b (¢1)5, 7= odd
i [r,ﬁg}ff', § = even
then
(= gl) =0
JEZ
i =85l < 30l = (B0 + S0 el - (42)]]
JE& J=odd J=cven

and under the conditions of Theorem 2.1, we have

21 =3P =0, n— teo (211)

JEZ

where u} = G(u] {,ul ]}, ¢} = G(¢37], 4771 ) by the L-F scheme (1.2).

We notice that 4;":? may not be monotone about 7, but it decays to u, or u at

the exponential rate as [j| — +oo. We might as well call it “a travelling wave of the
Lax-Friedrichs scheme”,

3. I' Asymptotic Behavior, Large Perturbation

In this section, we shall make use of the [* results in Section 2 and obtain ! asymp-
totic behavior of scheme (1.2). At the same time, we shall relax the requirement that
the initial value must be a small perturbation of a travelling wave.

In this section, we require that 5 is a rational number,

ﬂ‘“—'g pgc d,g>=0

In the following process, we shall often use the operator T introduced by Jennings
(see [7]). Its definition is:

{Tu}i-ﬂj 5 G[uj—r:-“j—r.;l: AL i-t:h e f'r: fﬂ-ll
It is easy to see, if u; 1s

o n—1 n—1 =loa
u"—G(u_-,i_r:u"H JH} Je Ly

then
i [T““u}j—ﬂn (3.2)

When ¢ is a travelling wave of a strictly monotone, we must have

8 I |
';a_',l' = ";E'j--.'u;l {3'3]

this 1s because travelling waves are the fixed points of T
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Jennings investigated the I' compactness of {(T™u"),}12] in [7]. Denote

ol £T NP B = E |tz — v| < 400, vz is a certain travelling wavey} (3.4)

H ]

If v is a travelling wave, then for any g, 0 < p < |u; — .|, there is a sufficiently large
2 € Ly so that

U Cup Sup—p, fore > zo, up +p S0 S, forz = —2o
Denote by E{ve, g, zg) a subset of E as the following

Elv,,u,20) = {1.:,T : Z I, — vy < p:vl,ulare two travelling waves, such that

EH
wy < ug < vl Ve > 2o < up <, Y2 < mu} (3.5)

Then we have
Lemma 3.1 (Jennings) The following statements are frue

[E"'} TE“":E:#:-EHJ 0 E{Um}'f*r EIﬁl:];-
(b) Every E{vy, p,To) 18 compact in the I} topology.

Qur main result in this section is the following theorem.

Theorem 3.1 For Lax-Friedrichs scheme (1.2), if Amax|f| S e < 1, 7 = ‘E,
' q
and the initial value u! satisfies
(i) 3 [ — wf] < 400
i
where w? is @ certain travelling wave of the scheme (2.1),
5 o S : 3
(i) g — ()l = O(d[7") 5] = +o0, p> 5
then there are two travelling waves ¢y, ¢ of scheme (2.1), such that, if we define
¢1)] J = odd
¢ = (@), (3.6)
(#2)7 7= even
then,
Z |uf —¢%| =0 n— tco
JEE
where ulf = G{u}‘h_%, T 1), ¢" = G} g ;‘4_:] by the L-F scheme.

Proof Let T be the -:spenl;c:r defined by scheme (2.1) in the manner of (3.1).
According to the relation between the Lax-Friedrichs scheme and scheme (2.1), the
solution of the L-F scheme on the 2ng level u 4 can be expressed by

uﬁnq A {Tm]- “:I'jun}.l {3-‘-}
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If ¢ is defined by (3.6), we also have

P =gl (3.8)

We notice that if p is even, then 7 and j — p in (3.7), (3.8) are odd (or even)
simultanecusly.

Now, asswme the initial value u? & E(vg, pt, zp), where v, is a travelling wave of
scheme (2.1), E(vy, p, 20) defined by (3.5), then {(T"%); : j € Z} is compact in NZ).
So there is a subsequence {n;} and a @; such that

ST u); - @5 - 0, k — +oo (3.9)
JEE

On the other hand, if uf,f satisfies the hypothesis in Theorem 2.1 then by (2.11) we have

z |u§nm e ¢§nﬂ|2 — 0, n-— 400 (3.10)
JEHE

Using (3.7), (3.8), we can rewrite (3.10) into

Z [(T7+9u°); — ¢5’|3 -0, n— +oo (3.11)
JEZ

Combine (3.9) with (3.11), we can see @t; = ¢%, j € Z.
In fact, by the process above, we have proved that

2T~ ¢ = 0, n = +oo

itz
Using (3.7}, (3.8) again, we have

> (w5 = @5 = 0, - +oo
JEZ

Similarly, {{T"%u');} (u} = Gluj_y,uf,,)) is also compact in I*(Z), and we also have

Z|u2_nq+1 4 ¢I‘%m;+1|2 ]
y .

4
JeZ
50 we can also conclude that

Z (T™u); = ¢} = 0, n— +oo
JEZ

In fact, for ¢ = 0,1,2,.--,27 — 1, we can ohtain

YT ) — g5 = 0, n— +oo
JeZ
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which is
3ot — g S0, n o oo, D<i<29-1
JEZ
This means
Elu}‘—:;ﬁ;-‘] =0, n—+x
JEZ
At this moment, the initial value not only needs to satisfy the conditions of Theorem
2.1 but also belongs to U E(vg,pt,z0). Now, let us remove the later requirement.

Vo6, ED

In fact, it can be proved that

il -
U Elve, p,2q) = {um ; z |z — ve| < |t — u,|, for some travelling wave -um}
W 44,70 z ;

(3.12}
Let us prove (3.12). Assume there is a travelling wave v, such that
D e = ve| € Jry — 2
& -
First, if
Z|uﬂ—vm| < o< fup — u,
HH
then define
e U, |2 =W
=
- ] S
It can be seen that
(i) Z |'”'!cm] — | = Z e = ve| < g
5 |:e| <o
(i) =z >me™=v < 22 -mul™ =u, >0
that is, every u‘;"]‘ m = mp, My + 1, -, belongs to a certain E(v,, u, zy), moreover,
Yo lul™ —ugl = 3 Jup—ve] =0, m— +oo
% |:::|:_:bn|

This means

Uy © U E[:ﬂ-l‘-lﬁ'l“nilﬂ}hl

Ve Jhaiby

Secondly, when u, satisfies z |ty — | = |1y — ], we might as well assume up— vy > 0,
e

TIL 1
set ué” = uy — —, and define
m
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then

1) g =Y i =] + L g
x ; m

1
= Z [tz — va| = — (m > 1)
TEL, i

I iy
= |y —u | — — < lug — u, |
m

() 3 ful™ -] = W™ -
TE -|:r.l

1
=——=0, m—= 400
m ; :
For every fixed m, there is a sequence
e d
MY U Elve, sy zo)

e Jhy

and

Z Dbl Ty TR S
el

Given an arbitrary ¢ > 0, there exists a sufficiently large m, such that
— : £
2 e =™ < 3

xCly

For this m, there is a ! such that

T A i a
Julmd) - gyl < 2
2

2ELK

Hence, there are m and [ such that

z iuim:f} L u:n’ < z |’-[£.£,m:l i ﬂ-m[ f Z Jug-:”“!} 23} uzlsemjl < g

fI:'E.E” iﬂEE” ;BE-'!:W

_.‘rl
which implies: w.,. € U Elve, p, 2q)
ST PN
We turn now to show that if the initial value uy satisfies the conditions of Theorem

2.1, then

I~ 651 =0, no oo
JEE

: ; : : 1
We notice that if the constant &, in Theorem 2.1 is smaller than §|u; = tiy |, then u”
il
belongs to | | E(v.,p,20) . For this w, choose a sequence {(u,, )i} E such that
LR
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every member of it not only satisfies Theorem 3.1 but also belongs to U E(v., tt, 20)
URNTE. )
and

EHH,,L}]? —u?| -0, m— +oo
JEZ

From the conclusions above, for every m, there is a travelling wave ¢y, such that

E ()i = (@ )51 =0, n— +oo

E=r4

It follows that

Z |{Tﬂq“m]j i {fﬂmjgl — 0, n— +co
JEE
Let mip, mg € N and ¥e > 0, then

Z |{‘.ﬁ'm-3 ‘J_? _{"1"'.:'"1! :I_I}J}

JEE

< ZI(T““"H”;. Jj = (o )51 + z (T™ums )5 — (Soma )3
j j
a5 Z (T ™ g )i = (Tt s

< Z (T umy )j = (omy )51+ Zl (T™ ¥ty ); = (Bma )5
+Z| (% i = (2amy )i

We choose n sufficiently large, then

Z {Tﬂquﬂi‘-u T {‘ﬁm :I' | = £, = 1,2

therefore

Z |'|:‘§"I’ﬂ-tz }EI - {‘ﬁ'm:‘ﬂl i Z |[um?]j — (g, )41+ 26

JEE

Since £ is an arbitrary small quantity, and {(u,,); 315> is a convergent sequence, {dm }
must converge to a ¢, l.e.

El{‘if’m s =¢il =0, m— +o0

JEZ

Now,

Dol = @71 < D [uf — (um) |+Z|u |:¢,n);-‘|+}_:1¢;?—(¢m}?|
EZ]J_[”m]ﬂ‘FZH“mL ¢m}“|+2|¢3 (¢ )3




a4 Ying Lungan and Zhou Tie

We first choose m such that

Z'u?_l:um |{E Zl‘i’ _{[ﬁ’mﬂ'{'g
¥
Fix the m, choose n sufficiently large, such that

Zl F.I-I- “ ':Ilﬁﬂl-:lnl .'-:‘ £

Thereofe, it follows that

Zlu}?—qﬁ?i-—!ﬂ, o— o0
i

- -, ' a x -] ﬁ
Finally, we can remove the restriction: L |u§,-" — @] < by
:
Suppose u satishes the condition of Theorem 2.1, except the condition (1) is relaxed

Z |u? - w;ﬁ'l < 400
i
Let ¢7 be the travelling wave defined by (3.6), and assume

S h - 6 = b

to

We choose a positive integer N, such that 7 < bq, define

i oo
Eif“ij? - ‘;ﬁfjl-'l g E(u? . '535;]}:- t=1,2,---, N

Let us first exam (u;)?, since
2 M) - #51 < —Zl - 8= S < by
-

and
2 ((w)f —¢) =0
i
we get
2 1(m)f =31 =0, - +oo
3
By induction, supposing

Y lw)} — % = 0
J
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we study (wi41)7,

> i)} = 871 < 3o Wwga) — ()l + z 167 — (w)}
< Y l(wira)§ — (x |+E| )
= TS 147 — ()]

From the inductive hypothesis, we can find a sufficiently large ng, such that

> usg1)3® — 9301 < b2
¥

thus,
> |(wiga); = @5 =0, n— +oo
;

i

So, for (up)] = uj, we also have

Z|u?—qﬁ}-‘[—}ﬂ, n — 400
V]
which completes the proof.

4. Asymptotic Behavior for Systems

In this section, we investigate the asymptotic stability of, the L-F scheme {1.2)
approximating general systems of conservation laws (1.1). For simplicity, we focus our
attention on the single-shock case, because the discussion for the multiple-shock case’
is similar.

Let (1.1) be a m x m system. We assume that it is strictly hyperbolic in the sense
that at each state u € R™ the Jacobian ¥V f(u) has m real and distinct eigenvalues,

A(u) < Azlu) < -+ < A (u)

with corresponding left and right eigenvectors [;(u) and r;(u). We can normalize them
into Liu)re(w) = 8, and let

L{u) = Ul(’“]T1 LA :!:Tt[“]T}TT Riu) = (ra(u), - Tm(u))
Afu) = diag (Ap{u), Aa(u), -, An(n))

Assume that the k-characteristic field is genuinely nonlinear, ie., VAx - r # 0.
Given two constant vectors u_ and uy, such that, (1.1) has a single-shock sclution
which satisfies the Rankine-Hugoniot relation and Lax's geometric entropy condition,

An(ug) < 8 < Nlu-)
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From the results in [11], on the expanded grid the L-F scheme has a corresponding
discrete shock solution. Now, suppose u} to be a scheme solution satisfying
2

Aim g

=u_, _lm u=uy
j—r—s0 j—+oo

4

Our main result in this section is as follows:
Theorem 4.1 Let ¢ and Wi be two discrete shock profiles satisfying

2o wl-¢N =0, 3 -yl =0 (4.1)

J=odd I=cuven

and there are three constants ¢, e, c3, such that

£ =luy —u_| <o (4.2)

2 M+ =P+ 3 A+ RSl < e (4.3)
d=aodd Jj=even

Asup [Ay{u)] < e (4.4)

then

lim | o Fe auul =Bk S0 |u;%_¢;r|3)=u (4.5)

o= O
F+re==calid Jitn=ecven

Furthermore, if

2 O+PPP] =P+ 3 (14772l - 992 < +oo (4.6)

J:=':"'-'!'1-'! J=ower

then we have

sup ( ST JuT - ¢+ > |u}‘—'c,&;,-‘|){+m (4.7)

O<n<oo ddn=ord J+r=cnen

Proof Most of the proofs for this theorem are the same as those of Theorem 1.1
in [10], we only give the different part here. And we only discuss the case for odd grid
nodes, the discussion for the even nodes is a simple rewriting. Set

W=, ),  [(ug-dp)

ke =iddd

then from (1.2), v] satisfies

=T {'Iﬁ + ﬂ?}— ":1‘ T L7
g _L?.___-Q B E[f{ujﬂ = f(#%4)) =0 (4.8)

Let

0 = L(g}),7] = R(8}), A} = A(¢]), 0} = I7o7 (4.9)
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then we have

7 = 1ol (4.10)
and
wiis — @41 = Tjpa — T (4.11)

1
Left-multiplying (4.8) by E{j? 1T ), we get

L1 T TL
a1 Vi P At {fa

Yy 5 2 3 Flufy, = #5n
1 1
e +1 & — mritl
o (I? = EI.'?-!-I 9 3_1)1!_?
'E-r“~1 . j!T'1+‘1 " ‘”'I-l " J‘”:'+1. -
S Eih e o g (4.12)

where f' denotes that each element of the Jacobian W f(u) takes a mean value (need
not at the same point). By Taylor’s formula and (4.11), the left hand of (4.12) can be
written into

% ;igﬁfriﬂfﬁ-i — ¢l
Al bl sl
= %ﬁ;}-‘_l —; ﬁ'?_l {1‘?+1 . ";}—1] + %ﬁ?ﬂ{f}*-l i E?H]ﬁ?ﬂ
A i z _.
4 ?+1[I;r'+1 B f?—l]“:fl—‘l + D{lmﬂ?ﬂ i ;}—llgj (4.13)
From (4.8) and (4.10)
ot = %["’?ﬂ”?ﬂ +riavioa) - %f’(f?ﬂu;,ﬂ = i1
Hence,
(5% 30— 30)35 + A3 = )T
‘|‘§ﬁ3}-1“?+1 S L
= (- %13-11 = %f:f.-l + ?U}‘H — 7)) - %ir;*ﬂw,.?ﬂ + 517 1)

5 DA I
- ("rr'“ — gl ~ inml)Ef{T;ﬂ-I”EH — e,

l A i T
‘l‘E{ A E}U?H £ I?—ﬂ'"?-ﬂ‘}}—l i E{ﬂy-_q — s} e I?-l]‘"ﬁﬂ‘?ﬂ (4.14)
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Substituting (4.13), (4.14) into (4.12), one can get

o+l vier T U E( it T AT ) )
J 9 2 5 —=(vT - v )
= _“Ujﬂ ']—1;'("?-&1“;11 i "'_-?—1“?—1}

i1 e 1
+(Ej+ g£3+1 E?—1+ Uﬁ+1 G 1]) E{THH’ 1t T vi)

1 Az
+1 1 1 1
_(‘!? > g*r,r+1 = E?—l)ﬁfﬂ{?’jﬂﬂﬂl ri-1¥j-1)

e Tl T3 7L n '::" L T :I'I
+4 (Af - ]{I:."H = 'Ej—ljr;i—l'”j—i i E{ﬁj—i }“_-;-+1 1]T'_g+1 i+1
+G{|TJ|1?‘J+1 _.' -1 _.l 1| }
= (A) + (B) +(C) + (D) + (B) + (F) (4.15)

Taking scalar production with (vfq +v7,), and summing up with respect to j, one
can get

: P )l
Z (Vi + v 1}(1:}"’1_1’*""1 E'U;r 1)

Jdrn=odd

T 1 TL
> 3 (07 - ol + (1 - Ces)lefys —visl?) (4.16)
_';:+l|.:{..-dd

Since A is a diagonal matrix, the second term of the left hand of (4.15) equals

ﬁﬂ _I_ JIil.‘l'i-
Z {".Jrl g L = I[UT'L' —vi_,)

J+1
_r+:1 avdid 2
Td
- & Z {v .-'+l T "‘LJ -1 e {?_J }'T' ‘L.?'H 1§ ﬂi"l o™
) .:l+l 9 J-I- 1 =1 “ Jj=-1
Ftn=odd
1 n
S E Z (Uﬁ ]Tﬁf— Ia'L_.I' lﬂu
i 5k 2 -
Jdr=odd
-:!'l ] -"'Ilrf Sy [y 1:.'
_ E L [{U:.},_l:]T kj=3 : -_J+1v:}e_l
Ftn=add
n n 1% TR, o)
_I_{u?_'l ]IT(I.LJ_H' B Jlll_.l'"‘l _ }‘AJ J JI'L J+1 lill'|'_i. J
iR 2 2 37t

of which the first term has the following lower bound

Z }LEJ—I a AE.J'-F']. | n |2‘
2

Jrre=rudd

el
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From (2.24c) in [10], the second term can be estimated as

A w DT Afi fita o OL gt
E Z {v:i:—'lj 9 gt 9 t‘IJ 1
dt+ni=add
e S N e HI[EI o1l + 1 — v P
Fdn=culd £tk
<C ¥ (i hﬂijﬂ}( Y o |vdoalf v - t='}1_1|2)
J+me=adid 12k

Next, we estimate every term in the right hand of (4.15). From (2.24b), (2.24¢) in [10],
we get

F4n=awiad
1 T 5 5
=E| DI O R e (Rl IS | A -1:|+[1*j+1—r;?'_1::|u;3_1]|
dtre=coulid
E1! 1 3 ' 2
$C Y (Njor = Mg = vimal + (e = A pa)lfal)
4 =addd

2
< Ce Z (i~ TP+ (AR ki1 = Abs)lvi-al”)
= aeld

In order to estimate (B), since ¢ satisfies (1.2}, we have

i _%f.?ﬂ =ifd ?“}H I 1)
=1+ ﬂ{s}]?ruﬁ;_lj(c&j;“ L8t~ 380t S (O - #0))
= 1+ 0N U (S — ) — ¢5-0))
= 0(e)( N j1 = Mojar) (4.17)
Therefore,

Y (i +upa) (B)]

Jn=orld
< Of¢) Z LA = — _'f'-l 1)“'”1—1}3 + |‘{,T1 £ ’”}-‘1—1|2]II

J+n=add
From (4.17),
1
n+1 L ;
I - sl ,ij‘ 1 = 0L o0 = M)
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Therefore,

>0 (v ) (0)
Jt+n=add

£ B ( 5 (0850 = M)l |? + O(e)ulyy = o7y )
. Jdri=cudd
Similarly, from (2.26b), (2.26¢) in [10] we have
2. (B +95,)- (D) + (B))|

J4+re=odd

() PN (Afi-1 = Mp)(l0foq [ + Joly, = }l—1|2}
Jtn=add

Finally, since

|[7'°;?.il+1“;'1+1 _’“;‘—-1“_-?—1;”2
= ?“r3+1{"’3+1 2l ‘|‘]'[T‘J:.1 1]"‘* 1%
Cl (v = ”? HE [t AELH1HU;;—1|‘}
therefore,

Z '["“_;+1‘|""--r :‘{F}|

Ftn=odd
< fﬁﬁ“]ﬂﬂui 2_, I':|"1",.-+1 ;}¢-1|2‘|‘[ E,j—1 . .;+1]'|’”3 1!23J

dn=add

By taking e¢q, c3 suitably small, and a priori assuming that sup |vi | is sufficiently small,

L
then we have
E (|'”J-+1 L+ |ﬂ.-'+1 o al® + [}‘LJ— i EJ'H}[T“EJ—‘-JE}
4=l
B L0 (4.18)

i+ re=odd g

In order to use the results in [10], on the grid nodes which satisfy j + n = even, we
ternporarily set
L

par ﬂ_:ll.
up = up_y, ¢ = ¢

then the distributions of the functions on odd and even nodes are identical. Hence, on
even nodes, an estimation like (4.13} holds. If put them together we can get

A
Z ( ;|+1|E |T"T'i..1|2 3 1 |“.1JL+1 1|2 + EHEJ' W }‘E-jH}fvEdlﬂj

g
<C YO0 = M) R
a

ik
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We can see that this is already identical to (3.20) in [10], and all the process followed
(3.20) of [10] can be applied here without any change. So we complete the proof.
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