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Abstract An abstract Riemsamiag metric ds? = Edu® + 2Fdudy + Gdv? ig given
m (u,2) € [0, 2n] x [—4, 8] where E. F. @ are snooth fnnetions of (w, v) and periodic in
with period 2w, Moreover Klo—g = 0. & rlo=a # 0, where K is the Gaussian curvature,
We imbed it semiglobally as the grapli of a smooth surface ¢ = zlw,v), ¥ = ylu,v),
z = z(u,v) of R* in the neighborhood of v = ().

]

In this paper we show thab, if K D)oz < 0 aiid thiee compatibility conditions
are satisfied, then there exists snch an isometric imbuedding,

1. Introduction

Let

ds® = E(u,v)du® + 2F(u,v)dudv + G(u, v)dv? (1)

be a sufficiently smooth Riemannian metric in (u,v) € [0,27] x I, where Is =[-8, 8]
and B, F', G are periodic functions of u with period 2. :

Consider the isometric irbeddin g problem in the neighborhood of A = [0, 2x] = {0},
Le. realizing ds* in [0, 27 x J5, (0 < 6, < 8) as the graph of a smooth surface z — z(u, v),
¥ =y(u,v), z = z{u,v) in B® such that ds? = dz? + dy® + dz2. It is well known that the
above problem was solved by [1], [2] for the cases of Gaussian curvature K (w,%) > 0 or
K(u,v) < 0 respectively. And it was solved by [3] for the case K(p) = 0, DE(p) # 0
in I, x {0} (n is small). In this paper we solve the isometric imbedding problem in
the neighborhood of A with K|r = 0.Bola20.80d.- 5 has different sign with I', on
v = 0. In case K, has the same sign with T2, the. semi. global imbedding problem is
still open. The reason is, in the later case to solve z reduced to Tricomi mixed type
equation, it is difficult to treat for periodic case, while for the former case, it reduced
to a Busemnan mixed type equation and easily to be solved.
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2. Necessary Conditions for Imbedding
It 15 well known that

1
H = —E{EG — FEJ“I{EUH Tk EEHE + G'I.:'I::;I
1

1
21“%1'[‘5'“ - 2E,)+ EI‘{*IGH (2)

1 1
+505Ey + JTHGu +

where T, (1 < 4,7,k < 2) are the Christoffel symbols, i.c.

i, = %{GE“ — 2FF, + FE,)/(EG - F?)
T2 = %[EEFH — FE, - EE)/(EG - F?)

1 )
T%z = E{GEH — FGL)/(EG - F?)

(3)

1 _ n
F%E ¥ E(FGH r FEH}"'II{EG_ F'}
1
2

IS, = =(2GF, - GG, - FG,)/(EG ~ F?)
1
i = E{FG“ —2FPF, + EG,)/(EG - FY)
Let z{u,v) be an arbitrary smooth function of u, v and let the metric g be

g=ds® — dz® = (B - 22)du® + 2(F — z,2,)dudv + (G — 22 )dv?

Assume that g is flat. It means the Gaussian curvature X g = 0. The condition for
K, = 0 is equivalent tol3

1 2 1 2 1 2
{3&1:_ F11 oy — P113v}[31m - Pzgzu o Fzzzi-':l v {zutr s rljzt: T ngﬂu]

— [BG - F? — (G2l — 2Fz,2, 4+ Ez3)]K =0 (4)

Theorem 1 If there exist smooth isometric imbedding functions ¢ = z(u,v), y =
y(w,v), = z{u,v) in the small neighborhood of A and periodic with period 27 in u and
z = O(v?), then we have

(KT < 0 (5)

|
f.:= IT3:I(EG — F*)1/? [ E]y—qdu = 2n (6)

b

j]‘" E(u,0)/? exp {‘*’!__lj:ﬂrfﬂfm? = FEJUEEE}”:”"‘H*} il (")
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Proof Differentiating (4) with respect to v and taking v = 0, we have
_[Ffl '31::-:|.l'l:.l]1'-"='---I = [{EG T FE]-H-Hiu:-D S‘E I:]

Hence
P$1{H1 D:I T_fé I:I:l E‘Uil'{u#n:l -_;E |

and (5) follows,

Since
EG e -fﬂz = I:I:uytl b yumujz = F |:I-fu+"-'w.r = zh:y:r}z + {zuﬂ:v oy x'r.n:-zv}z
we have
|ﬁL’"yﬂ = yux:ulw:{i' = {-E-'G e F?}I"Jﬂh-:n
1 1
il ks o5 1 A AN 3
13 = [E(F EEE) EFE,,:];[EG F?)

= [(2% + ¥2 + 22 )(Runo + Yuulo + Zunzo)

~{Zuzy + tidte + 2z ) (Bi2un + Vel + Zuzuu )| [[EG — F?)
= [(Fubun — Ve )(Zute — vuza )/ (22 + v202 + o(1) B2 /(EG — F2)
= KA\E*?[(EG — F2)/2|,_o + o(1)

in the neighborhood of A, where K is the curvature of curve A-the image curve of A
in the (z,y) place. Hence

[Pfll:EG R ngifi.’{Eer:U = I{A[u:ﬂjﬂ{ugu}lfi - g

where 6 is the turning angle of A. The conditions for A being a smooth closed curve
are '

§do = +2r
jg{-:ft + /= 1dy) = j:fa“"_”?ds = j(eﬂﬁﬂ{u1ﬂ]lfjdu =0

Hence we obtain the compatibility conditions (6) and (7). The theorem is proved.
Theorem 2 The form (1) can be reduced to

ds* = B(U, V) dU? + dV? (8)

where B{IU, V) is a sufficiently smooth function of (7, V) in the small neighborhood of
A, and B(U,V') is periodic in U with period 2x. Moreover we have

I (0, 0)

V) = E(U,0)' +
B(U,V) = E(U,0) " BT 0)

[E(U,0)G(U,0) — F(U, 002V + 0(V?)  (9)
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Proof Comparing (1) with (8) we see that U(u,v), V(w,v), B{u,v) must satisfy
B+ VZ=E BWU,+V.W,=F BW:i+Vi=G
Eliminating B, [/, we have
(B -VIIG-V) = (F - VW)’

or

GV} - 2FWV,V, + EV} = EG - F* (10)
Solve (10} with the initial stripe conditions

V|1.l=|:| . D:- I"):rll.-'=|:|' = [{EG B FE:IIJIIE]].JFEL-':H' {11} i

It is easy to wverify that (11) is not the characteristic stripe of (10). Hence by the
theory of first order PDE, the solution of 10), (11) exists and is unique. Since (10)
has periodic coefficients with respect to u, and the situation is similar to that in (11).
Hence ¥ is a periodic function of v with period 2x. Then solve ' by

= I"ll;t-vv
Ulr === WU14 {12}
with the initial value
Uln:ﬂ = U (13]

Since

[E - Ullo=0 = E(u,0) >0

there has §; > 0 such that B — U2 > 0in [0,2r] % I5,. Therefore (12) with (13) has a
unique solution. Since {12) has periodic coefficients and the initial value (13) satisfies

Ulw+ 27,0) = U(u,0) + 27

Hence we have
Ulu+ 27,v) = Ufu,v) + 2=

for |v| < ;. Therefore I, and U, are periodic function of v. Consequently (E—-V?)/U2
is a periodic function of u. Since (E — V.2)/U2|,=q = E(u,0) > 0, there has a §, such
that (E - V2)/UZ > 0in [0,2m] % I3, .

. Let B=[(FE - E’f},-"ﬂf]uz. It is easy to get the following expansions for 7, V, B,

F(u,0)

U=u+ E{uﬁﬂ}wr@[ﬂ?] (14)

v [E{u,D}GLﬁ:Ei]{}E F(u,D]E]IFEU +0(u?) (15)
1/2 E,(u,0) ) F(u,0)

B = B(u,00" + {EE{u,D}”E mifis0) ”[E[u u)] fot ie)
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Let :
B = Bo(U) + BA(U)V + O(V?F)
- Bm( EEE g; F O(v?)) + By (u EE:E;E} + C-'[*UE]I)
{[E{“ﬁﬁfa] i 0 af;un} L 0@?) (17)

Determine Hy, By by comparing the coeflicients of (16) with (17) we obtain (9). By
the periodic properties of U7, V', B we obtain that £ is periodic with period 2% of U,
The theorem is proved completely.

When ds? is represented by (8), (4) is reduced to
b , B 2 2
(,?'.{j{'_.r == FUEU o '.B.Eyzv)zyv g (E{,r],r o %EUJ — [B"[l - .ET?,-J - ,EE;]H- —a 0 (15)

3. Solving Imbedding Function =

In the following we discuss how to find a periodic smooth solution of (18) in the
neighborhood of A such that z = O(V?). The method is a variant of [4].
Substituting z = V*[z3(U) + Z] into (18) and dividing it by 2B By V223 we obtain

1 4 By ! 1 By
{3—2 E(E.;:Ei'y - Eﬂgg%jv-l-zz-l- (EBEVEHU_ EEEEHEH)V*{ 7 4 VE?,.-*]
(% “ zg +4Zy +VZyy) - E;E
_EEE;BV I( %FV) + (E = %V)Etf +1’FEU1,-']E
_Bf‘f-—‘i.E’:,erg 1

(B2 + 22 + VZy P+ Vb + Zp)PlK =0

522BvV? ' 22,BBy
Applying (9) under the assumption (5) we have

Ay s [__%r.‘i'_
'B.B'p-' V=0 3%

i EX, | g
-["J;I-EBU w=0 {Eg— _.|._l'_|?]|j:"2 .i1.|=d_I|

11

Hence we can take 23 = %[B(H,D}Iﬁr(ﬂ,ﬂ];"ﬂﬂﬂ,ﬂ}]”z and the above expression
becomes

V(1 +fexV)avy + (5+ V) 2y + (4 + fqﬁf’}E

&

+§B— Zyy + f1%0 + f12V Zov + —(EF + 42y + VZyv )22 + V Zv)
+F(Z,VZy V3 Zyy, 2y, Zuy, Vi) + (U V) =0

where fi;, ‘f._,-[D < 4,7 < 2) and f are bounded smooth functions of (I, V). And F is a

bounded function of homogeneous quadratic terms of its arguments.
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Let

E‘E
I’r = —2"}'", A= 1
U >
¥ = cf [B(U,0) By (U, 0)|/?dU7
0
where ] :
LS Errff [B(U,0)By (U,0))/3dU
0
We have

L{w) = (1 + &Y faa)Ywyy + 5(1 + %Y fo)wy + 4(1 + EEYJ’D]; + e (wxx + frwx)

2 i E__._ e g '
+&°Y fiawxy + e (E}’ 4wy Tt"wvf)(?w*r?wr}

-+~£3F{w1 }’tu}r,}’zwr}r,wx,wxx,?'wx;{} Ef[X,EE?]

— I:1+EF32}?'—W}-'}' -4 {5 -I-EF-Q:]’LU}-" + {4 - EEPJ:;E +EE(]~ i EFII:IWFF

+e? Frwx + €Y Fawxy + ef(X,e2Y) = 0 (19)

where F' has the similar property to F. And Fii(0 < 4,7 < 2) are bounded smooth
linear functions with respect to w, Ywy, Y wyy, wy, wyy, Ywyy. The linearized
approximation of (19} is

0=L{u+w")= L(w")+ L'(w")u
where w”™ = w — u, and

L'{w)u = Ejna[L[w + tu) — L{w)]/¢

s

¥:

+e* (1 + eFn)uxx + e? Fyuy + £2Y Fauxy (20)

= (L + e Fp)Yuyy + 5(1 + e FB)uy + 4(1 + ¢ Fy)

where Fi; have the similar expressions to Fi;(0 <4,7 < 2).
We are going to study the linearized equation as follows:

L'{wu=g¢(X,Y), (X,Y)eG=[0,2r]x[-2,2] (21)
where g is a given smooth function. Consider a boundary value problem of (21)

u(X,2) =0, X € [0,2x);u(0,Y) = w(2r,Y),|Y] <9 (22)
Let the vector V be

V.= 15 I—’;,Vg}* = ewﬂ{w,uﬁ’aﬂ'ﬂxl*
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Equation (21) is reduced to

av av
AP b orietl n t
R AH}" +55}{ + CV = (g,0,0] (23)
where ) p g
Y(1+eF) 0 0
A= 0 4Y 0
0 0 —(1+eF) |
Eﬁlg 0 E{l -+ Eﬁll:l ]
N = 0 0 0
| e(L+eFi)y 0~ 0
5 ) v ) ) g g
5(1+eFy) = S(1+eF) 4(1+4cFo) e Py
Y
= L Leir
4 4= 0
0 ] —(1 + Eﬁ‘n]
Equation (22) is reduced to
Valy=z = Valy=2 =0, z€[0,2x;V(0,Y)=V(2=,7),|¥]|<2 (24)

Conversely, and solution V & C(G) of (23), (24) satisfies —Vay + Vix + %Fﬁ =0, or

e(e7 V8V ) x = (e7Y/®V3)y. Hence there exists function u(X,Y) such that
1 T -
Uy = Ef_—_‘ I’IB'L.EIT Uy = e ﬂ'&vh “.}:|T=1 = Hl}’:g s ot e

Taking the above constant to be zero, we have

uy = e V81 = e Y8V oy 4 (1 — Y/8)15] = (e Y8V W)y
u=eTBYW + C(X)

Letting ¥ = 2 we obtain C{X) = 0. Hence u is a solution of (21) and (22).

In the following we denote various constants by €, (s, - - -; and scalar product and
norm in L*(G) space by ( ,), || - ||; and the norm in H(G) (functions having k’s order
generalized derivatives belong to L*(G)) by || - ||»; and the norm in C*(@) (continucus
function with its k's order derivatives in &) by | - letigy-

Assume |w|gagy £ 1. We can choose £¢ small such that when 0 < e < gy, (21) is
symmetric positivel®) since

1+ C+0C — Ay — Bx
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[ B L R f| 11 -0) O
Y]e=0 = 0 P e T 1 o T ) I G
0 O iy R

and (22) are the admissible boundary conditions of (21). Hence we have the energy
inequality

L
v, &V) = (V121 4 (v,8B)f -0 2 GIIVIP

where 3 is the boundary operator of R. Hence

1 1 -
IVI* € ==(V,RV) < —[IV|| |BV|| = CalIV]] [lg
o5} C
IVl < Callgll

It is obvious that

d

{Do=1, Dy = 5 D2 = :::2[1’}5? D3 = as(Y )Y - z)

forms a complete system of tangential differential operators of (21) on G if az(Y) +
as(¥)=1and ax(¥) =1 {}" < %), as(Y) = (Y = 1). Take functions e(Y ), aa(Y

to be sufficiently smooth.
A is nonsingular when 1 < ¥ < 2,0 < ¢ < £y. Hence we have

&
ﬁzﬂgﬁ-&gﬂ_il{RHBDl—G}
hE=DxR=A g —+ B 2 +Cx + RD

RiH = DIR—-ﬁlx[ﬂg-}-ﬂgfi 1{R—EH1 "“C:]}— Bxﬂi—{jﬁ'

3
~ 3 P D+ (D1 - 4)R
=0

where
Pip = asAx A"'C +Cyx, P11 = —azAx A7'B + Bx

Pia=Ax, Pis=0, f) = azdx A™!

Similarly we have

a3
RDy= -9 PpDy+(Dy —t,)B (9=1,2,3) (25)
T=Il

Denote B|.=p = et | PR AY.

(R + 0o AY)Dy = =55 + (Do — t5)R° (7 = Pro) (26)
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0 fe=1, 3
where 1), = Hence the ¢ = 0 part of RD, + Z Frrr B 18
1 {L‘T - 2,3] =1
RO 0 0
0 R%4+84% 0
0 0 RY + §AL

: 3
which is positive symmetric. Hence we can choose £, small such that RD, 4 2 ol i 38
T=1

is positive symmetric when 0 < € £ £1. And the term (D,V, P,V') is estimated by
(DaV, ooV < G|V 1V

where we denote

ilgr”lf 3 Z “D-!'-':l ""Dﬂ:vllg
n<l<s

Hence the energy inequality for D,V with DaValy=2 = DaValy=a = 0 (¢ = 1,2,3)

1ves

i
VI < [IVI+ D IID-VIE < VI + 3 Dy — to)RV| + C3 V]

a=1 F

= Callglls + (1 + C5)Callg]] < Cxligllx

Next we study the higher order reduced system. From (25) we get

a3
RDg Doy = = ) " Pyy2 DDy, + (Dy, — 1y, R Dy,
=0 "
3 3
= _EP#]TET-‘DJE = ZE‘DI'-"] _fn:rl j{Fﬁ"?T'DT} 'Il‘ [-Dﬂ] _tg]][ﬂﬂ _tdg]R
=0 T=0

Hﬂﬂ'j r”'E:l-'.'-";. = J_ZFJJTDT-E'}-:T? 1"-Dn', = F\ED'TI I 'ine'ﬂ :I{P-:T-ET-ET‘D!T; “"IDJ;}

o
T

= Z(-'Dm £5) 'EJTJ ] =t IID'H-F_, i tﬂ,-.-_l ){Pﬁ,ﬁﬂrrpﬂ ﬂm]‘ fia® a14
= E{‘D'?L — g } Z L"D-:?p—| =8y }[P#JT'DT::I v H{ﬂﬂi T ':l’rJ'i]R
=1

i Z Pg!’l"ﬂﬂ'l =y ‘D"’.l-—l D'T-Dﬂ;u-inl i D-:n
T

i ¥
s L“ D g v Dlisigg D% Py DDy o Dy H(gm = tErJRU
i=1



The semi-global isometric imbedding in... 71

And from (26) we have

[RG + (7]'::'1 Tt TFF::IA?’]D*JW - Dy,

= _Emm — 2 ) Dy =t

p=1
n

}ngDFFH v Dy, + H(Dﬂ. — tc':',:]Rn
i=1

Hence the £ = 0 part of

Rﬂ”’ e Loy ZP”.I-T‘D#J ”"D'i’p—J ﬂ-;.—ﬂ.;PH - Dy,
T4

{Z D¢, - D%=‘t, DWP, D.D,. - D,
15 |
(R + (0ay + -+ + M0, )AY) D, -+ D,
T Z[D”' = tﬂl :I 3 {D'ﬂ'p—l i tg’p": ] ¥ "EEIJ'J»"D-EFP+I i D{n

Consequently, the reduced system of order s for (RV)" is symmetric positive.

Assume that [w|gig) £ 1. Wecanchoosee, > 0(s=2,3,---,5,60 261 2 -++ = &)
sich that the reduced system of order s is symmetric positive. By energy inequality
we have

1IVIll2 € Cilll{Dey = to) M Dery =t )RV + [[IV][[2] < Crlg]l2

When s > 2,

VIl < Cot (| TL(Des - o) RV| + 11V llo-s
=1

2 v Z ”.D{“ ETL --.ﬂ'ﬂ—:tﬂ_iﬂ'ﬂ Ijan]EIETDFJ-H ”.D”rvll
gyt Fapzl
II..I.|.....,|||.-i-|'—]-|-IE-'|
= Coll + |[[V|[|acs + 1) i

where 4|H]|; = H{e) - H(0).

IT < eCha o |\ D™ Fy .- DM Ry D, D

gt el
prchecEpptr=iti s

D V|

Titl

where Fi(1 < i < [) are 8w (differentiating with respect to X, Y} of order |a| < 3. By
use of Holder inequality we have

||ﬁﬂp"'ﬂ'ﬂ"_“ﬁf|| < ; [/ | D Fjlzam.lrﬁf'ih']
1 =

i=t

(BT L]

I { ')
[, E—Z]'}_I; Eaf{amzluj]][&—zﬁj Ji{2a)
! 1
[/
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By use of Gagliardo-Nirenberg inequality we have

2s) 18 —pis atefa),1—n/s
[/ 1o o5 < [ f1oole itz = iptoppopt?”

Hence ] :
I 1= pifs S pifs
IT < eCop [JUND* F5Pi o\ F5 122y vl T (V) 26
1
]
i Zr:PJ'.l'r‘ I—Zﬂjfﬂ
= eCalllwllseallVilg) ™ V], !
< eCulllwllapa|Vie + ||V]l.) (28)
Similarly,

r= [T - todo| <llglot 30 D%, - DU, D7
1

it tgpdrZa
et zl

< Cuslllglls + llwllstslglen) (29)
Substituting (28) and (29) into (27) we get

IVl < Caslliglls + llVlls + 11V lls=1 + Il asslgloe + |V]go)

OT

HVIlls < Carlllglls + ellVla + lhwlloxa(lglce + |V]go) (30)
Denote the differentiation with respect to X, ¥ of order la| = s by 8. Since % —
% = Dy + a3 A~ R - ED, — C'), these expressions can be put together as

' =) E(X,Y)D, +¢cY F.D.+ FyR
where F_.(0 < 7 < 4) depend on the derivatives &% w of order |a| < 3 only. Hence
0* = OWEAX,Y)D,) + 8" (e Y F.D, + FiR)
= B.D,0' + E,D; + 8" (¢} F. D, + FyR)

15 Z Ef-iqﬂn 5 4 g E E (X, ¥)&" (EEFTBT -E—Fqﬂ)

=2 lee]<1
= 3 Bl Dt N Bald )8R {E S D FL;R) (31)
|ex| < |ex]<ta—1

When 1 < 5 < 2, since ||w||cs <1 and |||V, < Callgl|,, (31) gives

Vlls < Gy {{IVIILs + VIl + 1V la-1 + 1BV [la=1) < Ca(llglls + eV Ila + [V ]laz1)
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Combining the above inequality with ||[V]| < Cyllg|| we get
IVIE < Collgll, IVl £ Csllgll, V]2 £ Callglle (32)
When s > 2, by use of (31) and (30) we have
Vlla = CallllVIlls + ellVils + ellViicollwllsra + BV [la-1 + | RV [|oll20]lat2)
< Caalllglls + llVlle + [lwlls+s(lglee + [Vigo)

By use of imbedding theorem we have

lglee £ Cillgllz, |[Vigo € C2||V |2 < Csllgllz

Combining it with (32) we have

IVlls < Caalllglls + Cllgllzllwllsss) (33)

{ﬂ (0<s<2),
where { =
1 [s-23)

Theorem 3 ILet w € C*(@), G'=[0,2x] x (=2,2), lwlgigy £ 1. Then ¥y €
C=(G) and ¥s > 0, Je, > 0 and C, > 0, such that when 0 < ¢ < &, (21) and (22)
have a unigue solution u satisfying

i e HJ{G}, ’l'.l-,l'rl" e Hul:G]
lells + N/ Yls < Culllglls + Cllgllallwllara) (34)

Proof Substituting V = e"/8(uy,u/¥,cuy) into (33), we get

lu/ Y. < Caslllglls + Cllgll2llw|ls+a), s> 3

Equation (34) follows from the above inequalities combining with
O O u = YO OF (ufY) + 820 0 M (u/Y)

The theorem is proved.
We proceed to find a sufficiently smooth solution of (11) in the region (X,Y) ¢

. 1
(0,27%] x [-1,1]. Taking a constant # > & we have 5, = 1 — [t 4+ .-+ E_':“_”] x 5"
Denote &, = {{X, V)0 X £2n, Y| < 29,}, then G, C G. Let v € C* (G,) (5" is

an integer to be determined later) be of period 27 in X, then

(XY = i a; (Y )exp(v/—1jX)

F=—



74 Dong Chuangehang

with coefficients a;(Y) € C*"(-2n, <Y < 25,). Denote the mollifier by

Jav = 3y (J(8.Y )0na;(Y)) exp(v/ =15 X)

|JI|£EE

with 8, = 87" {g <7< 2)and J(Y) € C*(RY) sa.tisfyiung{Tt”]dE" =el, f?’”i(}’jd}’ =

0,p=1,2,-+,5 (5 < s, s to be determined later), and supp J C (=1,1). It is well
known that for any v € &' (Grn),

I Favlla,, (Gat1) = Cls1,82)00 % I0]la,, (Gn), sz <81 <5 (35)

(L - Jn:'””:":f.,.;{nglj < Cls1,85)80r " ”'U”!-.\’_.l (Gn), 52 €81 <5 (36)

The constant in (35), (36) will not change when 8, is mcreasing. Consider the boundary
value problem of linearized equation of (21):

L'(wn Jun = — L{w,) (37)
ual{ A 2n.) =0, Xec [0, 2r]; (0, Y ) = wn (20 D 2N f38)

and
iy = 'j: Wpyy = w, + YJ"% ) {39,]

By Theorem 3, (37) with (38) admits a unigue solution in H,(G,) for given s if 0 <
£ = £,. Moreover by use of (34), the solution satisfies

leller, e + lad ¥l < Calllgrllie, e,
Hllwellw,,eallgellme,)), 0<k<n (40)
when |tu;,.]cr.1{@h_] < 1(0 =k < n), where g, = — L{wy) and C, is independent of & and

W
Lemma 4 Let

|W}:|S-lq¢,,} sl |whf}f|rji’¢fr'¢_] =L 0Lk<n (41)

Then we have
lgella, e < Colllwellg, .o, + lwee /¥ (e, 160y + golla, o)) (42)
kil atgusy + 1Wad/Ylla, 60, < G:k+]ﬁf+1||§'ﬂ“ﬁ,[-3] (43)

for some constant 8 > 9 and 0 < k < n,
Proof Equation (42) follows from

lgeller, oy = N1 E(wr) = {wo)llg e,y + 1 E(wo)ll o, q
< ‘5’"1[J|1Ura]|H,__.-_~|:::1.wakf}rfrj“[ﬁ*.] T ”w-'!-:.-'lll};”H-{GJ.-]”w-"'-:“":!['jt}

+lgollz, (o]
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and (41). From (41), (42) we have

lgellgaie, < Callwlla e + e/ ¥ e, + lsollaie] € Coz (44)

Substituting (44) into (40) we have

lunll ey + e/ Yl e < Calllgellmen + Cllwella,aenl (45)

By use of (39), (35), (45), (42) we have

llwk-i_-l ||H,+1IG¢-+]] i g |1wk+1.l'fFHH.+3|'Lﬂ'g+j]

258
< |fwrll sy n (Gagr) T 1/ Y5605 + Coa||Iem

Hopa{Grsr )
< g,y cin ) + e/ Y 1H, i + Casbillun/Y la,6,)
< Cabilllwelti,aen + lwe/Y g, e + lellaen

< Coab¥lwillag, sz + 10/ Y s + ol z6)]

By induction on & we obtain
lwitt |Hupa@aen) T N0k Y g, a0
< (k+ )06 - Oillgoll ey 0 Sk S
in the last step of the ahove inequality we make use of wy = 0. We have

I'.'? Eﬁ- E:}[T -|--|-E-+J_|_ k1) S E3[Tﬂ-+l_1:lln"['r 1) { Ef g2 ,8 :3 9

4 X :
siTLCe 3 < 7 < 2. (43) follows by replacing eC,3 by C7. The lermma 1s proved completely.

Lemma 5 Let (41} be true. Then there erists a constant x > 8/(2— 1) such that
for any 87 > B+ 2 + y7 the inequality

||.§'.1:+1||L1[Gt+.:| < E,t:flugulls- U: L R ,n] (45}

holds when @ = 8" and 0 < ¢ < £,.(#) for some constants 8% and £,+(0)
Proof We have

u , Uy u
— g1 = wk+1 L(HFL-'-FJJL—L) = LEW];]"‘L{WL]?JL?L+Q(WLrJL'}__E)

= F'(w)[y (i = D] + Qw57 ) (47)

where () is the quadratic form of

B (), (A2, (W) () ()

with bounded coefficients beeause of the condition (41).
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Using (22), (41), (36), (42) and (43) we have

i i 1
”L fw‘fj[y{J“ I) Y Mz, = Gl””" ||H:|;G*+.J
< O, 000" || 2k Ws* > 2
s Y &, (64) (rmia]
< Coalllwlli,. i + e/ Yy 600 + lgollz, ()
< Gf-iﬁﬁ_’-+ﬁ|igu||ﬁ,{a} (48)
Using Gagliardo-Nirenberg inequality, we have
ap, uz |4 1/2
(o053 5 T [, (8 e
Y8 T,
< ol
Ei:.j”J"L= ||H1[E'LT]]|JL i GﬂfGt+[:I {‘igj
Using (35) and (40}, we obtain
uy, ;:
“JL-? Ha(Gray) = G!C!H.L-H [L:. S Cabillaell(a,) (50)
Using imbedding theorem, (40), (42) and (41), we have
L,
J};? o) = C'lu L‘}‘;‘ H.:.-[G:-+|!l = ” v |fHﬁ[a ) = E”F.LHHn[G,,}
< Cslllwellam, (ae) + 1w/ Yl e, + ol e)] € Co (51)
Combining (47)—(51), we have
lgx+1llz2(eryy) S €67 Pllgolls + CobRllgel3a a,) (52)
Let
max(Co, 1)8; |gell L2 (60) = de
where x is a constant to be determined. From (52) we have
g 1
dety < di + 2 ligoll. (53)
if
84 x(r—2)<0, s">2+83+x7 (54)
and
max(Cp, 1)CF < 7 (+"~2-F-x7) (65)

are valid. These constants x, s and @ can be chosen consecutively such that (54) and
(55} hold. Since gu = —L{wg) = —ef(X,e*Y), we can choose a small £,+(f) such that
when 0 < ¢ < £,-(0)

Igallsr = llef(X, Y lsr(a) < 1
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and 1
max(Co, 1)*85|gollz2 () < 1

1 : 32 A a1,
hold. Hence we have d2 < ||go||,- /4 < T Inserting this inequality into (53) we get

1 it 1 1 1
dr < Sllgoller da < llgol3: + Zllgoller < Fligollors+ =+ duss < Zlgollsr, 0 < k <

i.e. (46) is true. This proves the lemma,

Theorem 8 When E, F, G are sufficiently smooth (€ C*°) and periodic on u with
period 2w in [0,27] x [—4,8], and (5) is valid, there exists a constant §,(0 < 8§, < §)
such that (4) has a smooth solution z(u,v) (€ C'®) and periodic on u with period 2w
in [0,27] x [—82,8:2]. And z(u,v) = 0(v?).

Proof The thecrem is true if we find a smooth and periodic solution 2(U, V) of
(8) with z = O(V?*). The function z(U, V) exists if we can prove (41) by Theorems 3,
4, 5. The sufficient condition for (41) is true when the following inequality

lwellggieny + e/ Yl pyey €T (56)

helds for every &, where I' is a suitable constant. We prove (56) by induction. {5"3} is
true for & = 0 since wy = 0. Assume (56) is true for 0 < k& < n. Using (39), (43) and
(40), ¥6 < 5 <.5" we have.

.ﬂk |

1
il il 2G|
” T-"|'1E|H (G 4._1] '| "'t‘H-n"J ||H_,[¢..-.-j] = ~1 E k bl EH_,[ﬂr;.q.ﬂl
™ T
o T, afa® T | 1—afs*
<C - <C | s v
=) ; || Y WH Gy — & %‘\' | YIHE (el Y l LA G)

T

=k A - a

< €5 Y (O lgolla Y7 (677l gollas )+ ~*®
0

T
< Gy o (eshep ! T g e (57)
i

4
: 4
*=28> 2+ B4+ yr, 5 =16 < ES“’ and take & suitable large. Then the right-

Take 8 = 9, 7 = - + ¢, where ¢ is a small positive constant. x = 124+ O(e) > 8(2—7),

hand side of (57) converges. Hence < C||go||,+. Take £,.5) suitable small, then when
0 < & < e,e(gy, we have Cy|{goll,» < T,i.e. (56)is true for k = n+1. By induction, (56) is
always true, so is (41). Hence w,, and w,, /Y converge uniformly to functions w and w/Y
in H,(Gu) respectively. From H,(Gy) = Hi5(Go) C C¥(G), we have w, w/Y C
C*3(Ge). From L{w,) — 0 we have L{w) = 0 in C*3(G..) D C3{[0,2x] x [=1,1]).
And z = V¥[2*(U) + ew] is a solution of (18).

By Theorem 2, B(U, V) & C([0,2x] % [=6;,8,]) since B, F,G € C*([0, 2x| x[—4, §])
and K € C*([0,27] % [-4§,§]), we can take s™ = 28. The theorem is proved completely.
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4. Finding Imbedding Functions i

Theorem 7  When E, F, G € C*([0, 2x] x [, 8|) are periodic functions of u with
period 2w, and (5),(6),(7) are valid, there exist smooth isometric imbedding functions
2(u,v), ¥(u,v), #(u,v) satisfying ds? = Edu? + 2 Fdudy + Gdv® = dz® + dy® + d2? in
u,v € {[0,2r] % [—d2,8:]}. And z, y, z are pertodic functions of u with period 2r.

Proof By use of Theorem 2, we have ds? = B(U, V)2dU? + dV?, where B(U,V)
satisfies (9). Find a z = 2(U,V) by Theorem 6 such that z ¢ CH([0, 27] x [—8,, 82])
with z = O(V?) and g = ds* — d2? is flat. By use of Theorem 2 again we have

g = ds? - dz* = B(U,V)3dU? + dV2? — d»?
= (B® - 2{)dU? — 2zy2ydUdV + (1 — 22 )dV'?
= B(U,V)d{i? + qir?
From (14}, (15), (16) we have
U=V -lzpzv/(B? = 2})ly=oV + O(V2) = U + o(v?)
V= {[(B* - 24)(1 - 2}) - 223 /(B® - G2 lv=oV + O(V?) = V + O(V?)
B = (B? = )% veq + {(BBy - zyzuv (B - 2 )M
—(B* = 25)' [~ zp2v /(B = 23y }v=oV + O(V?)
= B(U,0) + By (U,0)V + O(V?)

I3(0,0)
E(U,0)

= a(U) - B(U)V + 0(V?)
- =all) - U)W + 0(V?)

where

= E(U,0)V/? 4 [E(U,0)G(U,0) — F(U,0)%]/2V + O(V?)

o(U) = B(U,0)/

g Ffl[UrD]

Since g is flat, we have Ko=D or

[E{(U,0)G(U,0) — F(U,0)2)1/2

Ky=-Bys/B=0

Therefore we have

o s -

B = of0) - g0y
1:1-
Denoting U* = /' B e A
S
ds® — dz? = [a(T) — B(U)V)2d0? + di?
= [a(U)/B(T) - VI*dU? + 4172
=d»* + dy?
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where

A _ ek :
B f o(T7) sin U™ diF
]

. it +
Y :VsinU"‘—j o) cos U™ dU
0

Compatibility conditions (6), (7) garantee that =,y are the smooth functions of 7,V
with pericd 27 of U.

The theorem is proved completely.

Finally, the author would like to express thanks to Professor Yu Yiyue for his
valuable help.
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