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1. Introduction

In this paper we consider the Cauchy problem for the equation of finite-depth fluids

1]
Up+20U; — G(Uyz) =0, t>0,z€ R (1.1)

which was proposed by Joseph (1977) and later derived by Kubota and Dobhs (1978),
where Uy = U /8t,U, = 80U /8x and etc. We also consider the generalized equation of
finite-depth fluids with diffusion term

Uy = allzz + PG(Usz) + 0.(U) (1.2)
where () is assumed to be a mildly smooth function on R, such that

el ()| < CA+ Juff~7)forj=0,1, ue R
(A)

Glu) =P [ ::ﬂt-h r-% — sgn(zr — y})U[y]d-y

is a singular integral operator; P. denotes the Cauchy principal value; o, 7,6 are con-
stants with @ > 0,6 > 0. Equation (1.1) appears in the studying of oceanics and
atmospheric science, which describes the evolution of long internal waves with small
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amplitude in a stably stratified fluid, propagating in one direction. The constant &
expresses the degree of depth. As the depth of fluid approaches to zero, equation (1.1}
approximates to the well-known KdV equation [2]

Uy + 200, + Ugey =0 [13}

On the other hand, as & tends to infinite, Equation (1.1) then reduces to the
Benjamin-COno equation

Ut + 20U, + H(U,z) =0 (1.4)

where

H(U) = Pf L2 ey

e :I-'}
is the Hilbert transform.

The KdV equation (1.3) and BO equation (1.4) have been studied extensively in
their relation to the existence of a unique smooth solutions, the asymptotic behavior
and soliton solution problems. According to the equation of finite-depth ﬂuids_(l_]].
there are a few works [1-6| which concerned with the integrability and the solitary
solutions, but the solvability of Cauchy problem has not been found to be discussed.
In the present paper we shall concentrate on the Cauchy problem for the equation of
finite-depth fluids (1.1), and the Cauchy problem for the generalized equation (1.2).
Roughly speaking, we shall first study sore properties of the singular integral operator
(-], then with the help of these properties we shall demonstrate the following results:
in H* with s > 2, the Cauchy problem for Equation (1.2) with o > 0 is global well-
posed and Equation (1.2) with o = 0 is locally well-posed in a classical sense. For H!,
the Cauchy problem for the equation of finite-depth fluids (1.1) has at least one global
solution in a weak class L%(0,T; H') for every initial data Up(x) given in H'.

2. Preliminaries

We introduce the following notation: By L(R), H*(R) and W (R) we denote the

W2

2
where p = 1 is a real number, s > (0 is an integer number. By W;'[E]{QT] we denote the
space of function f(z,t) which has derivatives DI DX f(z,t) € L"'{Qr] with 2r + k < s,

where Qr = R x [0,T], T is an arbitrary positive number. By WBLE (@7) we denote
the space of function f(z,t) which has derivatives D DX f(z,t) € LW(D,T, L*(R)) with
2r+ k < s,

We define the Fourier transform F[f] and inverse Fourier transform F~'[f] for
function f{z) as follows

F[f] e j;: f{I}E_Er'—E;dI, F_l[f] - fw f[fjfiﬂi-fdf

=



Lemma 2.1  For any function f{:l:}l given in L*(R), we have
() FlG(f) = —i( coth 28m¢ ~ m)ﬁ'[j‘]
(I (IG(F)llz < Iz '

Proof By the definition of Fourier transform, we have

FlG(f)] = j: G(f)e ™% dg

ARRE S0 R g e m(z—y)
- Ef_me I.f_m (Sgn(m—y] — coth T)f[y}dydz

o AT e m(y — =)
T llira f_ fﬁ-; e (c-::th g + 1) fly)dzdy

f f"r_ anz g {11"2; z) )_f{y]dmdy)

= —Eﬂn’{-’[.‘:+w]
= - ﬁ 11_!;!] f f (c.uth —Eﬁ-—- + l) flw)dzdw

f f - 2mif(z 4 W] e Els ﬁ 3 1) fw)dzdw

= F[_f] hm f o 2"“5"") (mth — — l}d

25
=_EF|f|nm (fmﬂ—‘“ﬁ“‘fzj'dz (A=3)

Il

e™E ] 5

= —il:r:ﬂ!;h 26mE — m) Flf]

With the assertion of (I), by Parseval’s identity we have

[ (ctnas= [~ Fle(nFETNAE

= f_: (mt-h 26mwE — m) |F[f]|°dé

< [T IR = [ (@)

The proofl of the lemma 1s now completed.

This lemma also shows that the transform G(:) is a linear bounded operator of
Hilbert space H*(R) into itself for any s = 0.

Lemma 2.2 Let f(z),g(z) be given in H'(R). Then

0 G5 = @)
[ s6lgz =~ [~ 4G(f)da
M) GV = () - 26(:G(£2)
= 21601~ 16U + [ 1G]




Proof By the Fourier transform and Parseval identity, it is easy to prove (I) (I1),
which is omitted here. In what follows we shall demonstrate the equality (III}.

In fact, let G(f) = T(f) — L(f), here L(f) = %F,fm sgn(z — y)f(y)dy. It is easy
to show that =

FIT(f)] = —tcoth(26x £) F[f], F(L(f) = Eé'zrﬁF[f]
and i
L{fz) = (L(f))= = EIL’IJ {E-I}
In crder to prove (III) we shall first check the following identity for the transform
T(-)
T[.fn:JT{gm} = fxﬂ': = T{sz[.ﬁ'x}+ F:T[fﬂ:.” {22}

Indeed, let ¢(€) = —i coth(267€) for € £ 0. We have
FIT(f2)T(92) = fagel = FIT(£2)) * F[T(g2)] — Flf.] * Flga]
= (©(E)F(L2]) * (0 (€) Flgz]) - F[f2] * Flg,]
=472 [ (P (Fl(€ - )26 - 2)(1 - p(@)o(e - £))dz
On the other hand, we have |

PIT(1:T(9:) + 9.T(f2))]) = 0(€) FIfT(02) + 0. T(1.)]
= Q(&)(P(f2] % FIT(g.)] + Floa] + FIT(L)]

o

=4rt | (FI@))Flel(€ - 2))(€ - 2)(-p(€)p(€ - z) = (z)p(€))dz

=

We define

—— asxr =20
2657’

One can easily check that i"(z) is a continuous function in R. In addition, by a simple
computation, we get

(€ = z) = p"(2)p" (£ - 2) = —zp(E)p"(£ - ) - (¢ - z)e(E)e’(z)

for any z € R,
Therefore, on account of above identities, we obtain

F[T(f2)T(92) = f29:] = F[T(f.T(g.) + 9:T(f2))]

which means the identity (2.2). Particularly, taking f (z) = g(z), we then obtain

{T{fx}}g 5 {fz]z . ET{.FFZT{IEJJ {2-3}




With the above identity, we are going to prove the identity (III).
From (2.3), as G(f) = T(f) — L(f), we have

(G(f:)+ L(f2))* = (f2)* = 2G(f2(G + L)(f2)) + 2L(f(G + L)(f2))

By the properties (2.1) of the transform L(-), there is

GU = (o) + 572+ 2£(2)G(12)
= 2G(LG() + 36/ £2) + 2L(£G(1.) + 2L(1 1) (24

In addition, we have
_ 1

and

LRGN = 5 [ 1:C(f)ds

With the above two identities, (2.4) achieves the result (I1I). The proof of the lemma
is completed.

Corollary 2.1  Let f(z) be given in W} (R)n HYR). Then

[ reyas+ 2 [7 inetras=1 [ (r) 25)

Proof  Multiplying the identity (III} in Lemma 2.2 by f.(z), integrating with
respect to z in R, we then obtain the desired identity (2.5) by using the integration by
parts.

Lemma 2.3 (Sebolev’s inequality) Let f(z) € LY(R)NW™(R) for q,r € [1,00].
Then

I1DLf1ls < CUDTFIZIAN;™ (2.6)

where C' 15 @ constant independent of f(z); j, m are nonnegative numbers that satisfy
jim<ag<landlfp=3+ca(l/r—-m)+ (1 -a)/g.

Lemma 2.4 Let f(x) € H'(R),9 € H*"'(R) and h € C*(R), where 3 is a positive
wmteger such that 5 > 2. Then

1D02(f9) = 1 Dzgllz < Ca(l| Dz fllool| D2 gll2 + llglleo |l D3 f Iz

and

ID3A(A)lz < Co SR Dllsall AN

n=1

where the constant C, depends only on s.




Proof The second calculus inequality is known, the reader is referred to [7] for

procfs. Here we only verify the first one. Since

|Di(fa) = FD3gl2 = D*‘“fﬂiy]
g—=1
26,y |ot *‘f|| 2s-1 gl|ﬂiq|zf-=_11 (2.7)

j=0 a—-l=g
Applying the lollowing Sobolev inequalities
127 fllze=1) < CUDLANZ I P=S 1%,  [1Digll2 iaz1) < C|\D; gl llglles
2—1—3
in which @ = j/{s — 1),0 £ j < s — 1, we thus obtain from the identity (2.7)

—1
ID2(fg) — fD2gllz < Co > IDEF 131D f 12 12 gllS llgllas ™

§=0
< Cs (|| D2 fllool| D27 gll2 + llgllco | Dz £]i2)

The proof is completed.

3. The Solvability for Equation (1.2) with o > 0

In this section we shall prove the existence and uniqueness of smooth solution for
the following Cauchy problem

Up =~ aUzy — BG(Usz) — 2(U) =0 (3.1)
U(z,0) = Up(z) (3.2)

where o, J are constants.
Lemma 3.1 . Let T be a positive number, f(t) be a nonnegative function on [0, T
such that

f LfRd <Gy, fECIYC fﬂ “fr)dr, for te[0,T]
O

Then

sup f(t) < Cyexp(CoC,T)
0<t<T

Proof Itis ;1 direct consequence of Gronwall’s inequality.
Lemma 3.2 -Let b(z,t) € WEFH(Qr), f(2,t) € Wy M(Qr), Uo(z) € H¥(R),
and let oo, # be any real numbers with o > 0. Then the following Cauchy problem for o

linear integral-differential equation, t.e.

Uy - all,, - 8G{Uzz) + bz, 1)U, = f(z,t) (3.3)




(3.2) has a unique global selution Ulz,t) € W;'*'E’HHENE]{QT], moreover, Df DET1-2s
U(z,t) € L=(0,T; L*(R)), here k,s are integer numbers with 0 < s < (& + 1)/2].

Proof By using the method of parametric extension, one could prove the results
of the lemma exactly as what we did in [8]. The detailed process is omitted here.

We now extend the existence result of Cauchy problem for the linear equation (3.3)
to the nonlinear equation (3.1) with (.) satisfing the condition (A) by using the fixed-
point technique of Leray-Schauder and the method of induction.

Let o, f be constants with & > 0, and let Us(z) € HY(R), ¢(-) satisfy condition
(A).

We denote by By the space L®°(Qr). On account of Lemma 3.2, we may define
a mapping: Ty : By — By with a parameter A € [0,1] as follows: For any V & By,
Ui= TV & WEE'I{@] be the solution of the following linear equation

Ug - I'_"I:UIE e ﬁG“-"rz::J - @]{V]UI =

with the initial condition
Ulz,0) = AUs(z) (3.4)

Since the injection Wf’ll[@?] —+ By is compact, it is easy to see that the mapping
Ty 18 completely continuous and T(Bp) = 0. Thus, in order to verify the existence
of a generalized global solution of problem (3.1) (3.2), it remains to obtain a uniform
boundedness in the space By for all possible fixed-point of T, with A [0,1]. Namely,
we need to establish e priori estimate for the solution Us(z,t) of the problem (3.1)
(3.4).

Taking the product of Equation (3.1) by U = Us(z,t) and integrating with respect
to o in ft. we get, by the integration by parts

TGO+ 20 [ 1020, )l3de = Vol (3.5)

for any L £ R,
Moreover, we take the product of Equation (3.1) by U,, and obtain

[tz [z =2 [ o)., < o [U+ > [uzew)

Here we have

é f U1 (U < Clalle' (D203 < Cla)(1 + U402

< Cla) (X + WUIENU=ND V=7 < Cle, [Usllz)(1 + [|U2][4)

where we have used the Sobolev inequality (2.6), condition (A) and the identity (3.5).
We then obtain

el : )
EHUTE':I}”% i ‘lllazz{':””% < Clay, [|Usll2)(1 + |fU2“§}




Applying Lemma 3.1 with the identity (3.4), we get

U2, )IE + @ [ 10z, Bt < € T, Vsl (26)

for any t € [0, T].
With the above inequalities (3.5), (3.6) and the Sobolev embedding theorem: H!{R) —
L= (Qr), we thus obtain the desired estimate

Uz, < Cle, T, [|Vozl2)

Theorem 3.1  Let Ug(z) be given in H'(R), and let o, 8 be real numbers with
o = 0, and (-] satisfy the condition (A). Then the Cauchy problem of the generalized
equation with diffusion term, ve. (3.1) (3.2) hes a unique generalized solution U{z,t) €
W (Qr) n L(0,T; HY(R)).

Proof The theorem is achieved as soon as we verify the uniqueness of the
generalized solution U{z,t),

Indeed, suppose that Uy(z,t), U3(z,t) are two solutions of the problem (3.1) (3.2).
It is easy to see that the difference W = UJ; — U; such that

Wi — aWie — BG(Waz) = (p(Uh) = (Uz)): =0

W(z,0) =0 (37)

Here we have

((01) = (U2)): = 5 (' (V1) + &' (U2))Wa
+%|{Uh + Ug;}-j;l .@'I{EU:[ -+ {1 = S::IUEJIEESW

Therefore, by the fashion of estimates on the L*-norms, we could easily prove that
W =U; — U =0 for (z,t) € Q7.

The proof 1s completed.

Theorem 3.2  Let Ug(z) be given in H¥TYR), ()€ C*+?) satisfy the condition
[A), the constant & > 0. Then the Cauchy problem of the generalized equation with
diffusion term, 1.e. (3.1) (3.2) has a unigue global solution U(zx,1) W;H’ikﬂ"r?][QT}ﬂ
wEREH(Q, for k > 0.

Proof We shall prove the theorem by induction.

For k = 1, as Up(z) € H*(R) c HY(R) and ¢(-) € C3(R) c C?(R), by the result
of Theorem 3.1, we conclude that the solution U(z, t) of problem (3.1) (3.2) belongs to
the space W, (Qr) N L*®(0,T; H'(R)). Thus the Cauchy problem (3.1) (3.2) can be
written as follows, with Uz(z,t) replaced by V(=z,t)

Vt EE &V::: e .EG[LIE::J = 'iﬂta:[UJ: V{I,'D] = U[]I_[E] = H]'{R}




Since U(z,t) € W3 (Qr) N L(0,T; H'(R)), together with the Sobolev inequality
1Uslls < ClIvally 02113

it is easy to check that w.-(U) € L*(Qr). Thus, by the results of Lemma 3.2, we
see that V € W, (Qr) n L®(0,T; H'(R)). This means that U(z,t) € Wy (Qr) N
BE(0,T; H2(R)).

Moreover, suppose that the assertion of the theorem is true with k = n > 1, we
have to justify that the solution U(z,t) of the problem (3.1} (3.2) belongs to the space

W;+3,§[ﬂ+3}.'“2] (@) N W;TE“-H“””E]{QT} fork=n+1

In fact, since Up(z) € H™*(R) € H*(R) and () € C"*3 ¢ €%, one can then
find that the solution U(z,t) of the problem (3.1} (3.2) belongs to W;"'E'[[”"'E}“]{QT}-

Differentiating Equation (3.1) (n + 1)-times with respect to z, we obtain, with
DU (xz,t) replaced by V

Vi, = aVyy — BG(Vee) = DPYp(U), V(z,0) = DUy (z) € HY{R)

Notice that U(z,t) € Wrt+22 51y and the assertion of Lemma 2.4, one can

easily see that U(z,t) € L®(Qr), moreover, D3 (U) € L¥(Qr). With the help of
Lemma 3.2, we conclude that

V = DyF'U(,t) € W (Qr) N L™ (0, T; H'(R))
which, together with Equation (3.1}, implies
Ul{-l'".a,i} = Wﬂn+3,[{n+3],-'2][QT:| HW::‘-:-EE,[[H-E-E];“E;[QT]

The proof of the theorem is now completed.

4. Local Selvability for Equation (1.2) with a = 0

This section is devoted to the local existence of a unique smooth solution for Equa-
tion (1.2} with @ = 0. On account of the results of Theorem 3.2, we have just to
establish certain a priors estimates for the solution U(z,t) of the problem (3.1) (3.2)
with & = 0 which are independent of & and which might be used to pass to the limit |

as o tends to zero.

We first state our result.

Theorem 4.1 Let Up(z) € H'(R),s = 2, and let p(-)(e C*T1(R)) satisfy the
condition (A) and |'® (u)| € Co(1+ |u|*?), here sg and s are positive integers, Cp is a
constant. Then the Cauchy problem (1.2) (3.2) with o = 0 has a unigue smooth solution
U(z,t) such that

U(z,t) € WilY(Qr,)



where Ty is a positive number which depends on sg, s, Cy and T ozz ]|z

Proof By a standard process, we can determine a finite interval [0,T5] in which
we can establish some a prior{ estimates, then we obtain the local existence of smooth
solution for the Cauchy problem (1.2) (3.2) with o = 0.

Multiplying Equation (3.1) by U = Uy(z,t) (solution of the problem (3.1) (3.2)
with & > 0) and integrating over R, one can casily obtain

sup_||Ua(- )|z < ||Uol|2 (4.1)
D<EST - _

In a similar manner, multiplying Equation (3.1) by DE“_U and integrating by parts,
we have

Eafjﬂgﬂﬁﬁ—afmi“m”: {—1]’_[53@{U]D§’U

- f DU D' (U)DU) = f DUD (' (W) D.U) — " (U) D2 T]
+ [ (@)D DY

< || D3U|[2|| D (' (U) D, U) ~ ! (U) D30l

-5 [ ¢"W)D.U(D2vY

= ClIDzU2(I Dz (D)lleo | DU ||z + || D2V [los | D2 (U) | 2)
Hle"(U)lloo | P2 Ul oo || D3V |13

£+1

< Clle"(@loo + 3 12U o )| Do |loo|| DLU |12 (4.2)
r=2

where we have used the assertion of Lemma 2.4 and Hélder’s inequality.
With the assumptions on @(-), we have the following inequality from (4.2) for s = 2

d | J
EIJDEUH? + 2a|| DU < C(1+ [[U][3)1 D2 ||oo || D2U |2

where s' = max{sg, 3}.
By the Sobolev inequalities

3

1 = 3 1
IUllee < CIDZUNZITNE, 1P| < C|ID2U|FUYIE
by a simple calculation, we yield
d
- ZID2U|E < o + | D2u )
where [ = (11 + ') /8, the constant C is independent of «.

10




With the help of Gronwall’s inequality, it is easy to see that there is a constant
Ty = 0 which depends only on {,||DZUg||s and the constant €, but «, such that

sup ||D2U|\z < C(Tb, 80, ||DiUs||2)

0<t=Ty

Therefore, by Sobolev’s imbedding theorem, we see that U € L*(Qqs ), DU €
L=(@1,). Once again, comming back to the inequality (4.2), we thus get, as « = 0

d 4 a2
EHD;UH% < C([|U]leos 122U [loo) 1 DU |12
for t < Th,s > 2. This implies the following estimate

sup || DUz < C(Ty, | D2Uol|2) (4.3)
O=t=<Ty

Combining (4.1) with {4.3), comming back to Equation (3.1), we finally obtain the
desired estimate
||U[ﬂ:l t}”B = G{Tﬂs g, HUDHH']

where B = W;;llgﬁl{ﬂyu]-

This means the existence of a local smooth solution of the Cauchy problem (1.2)
(3.2). In order to complete the proof of the theorem, it remains to check the uniqueness
of the solution.

Let U',U" be two solutions that belong to the space L™ (0,T'; H*(R)). Accordingly,
the difference function W = UJ' — /" satisfies

We — BG(Waz) — (0a(U") - 9o(U") =0, W(z,0)=0

Taking the Li-inner product as usual, by a simple calculation, we may have

_ £
17,011 < GO s 10"lws) [ 1%, 0l

which implies that W{z,t) = 0 for (z,t} € @1,. This completed the proof of the
theorerm.

5. Global Solvability for Equation (1.1)

In this section we are going to verify the global existence of sclution for the following
Cauchy problem

Ut g G{Utz] +EUU:E - ﬂ

—
[ |
ot

L

U(z,0) = Up(z) (5.

[ ]
-
—

11




As a matter of fact, in this note we shall prove the existence of a weak solution for
the problem (5.1) (5.2). In what follows, we shall first obtain certain g priori estimates,
which are independent of & as & tends to zero, for the solution of the Cauchy problem
(3:1) (3.2) with & > 0, #=1and (U) = U?, namely

Ut — alUzz — G(Uzz) + 20U, =0, U(z,0) = Up(z) (5.3)

Lernma 5.1 Let U = Ugy(z,t) be a smooth solution of the problem (5.3) (5.2) with
e >0, Then L

1Ua(-t)]l2 < ||Uoll2 (5.4)

Jor t € [0, 00).
Lemma 5.2 Let U = U,(z,t) be a smooth solution of the problem (5.3) (5.2) with
& > 0. Then

1008l < € (5.5)

for t € [0, 00), where C is a constant depends only on the norm ||Ug|| .
Proof By the assertion of Lemma 2.2, and the integration by parts, we find

(1) %[Uf = 2[ sl = —zftrﬂiaﬂxﬁ G(Uz) — 2UU,)
:_zafﬂﬁ,—zfnf
) g [@@ =2 [ 6w)ew.y
= —2 [ G(U2n)G(alss + G(Us.) - 201,)
iy f (C(U..))? + 4 f G(Ups)G(UT)
ST f (G(U,,))? - 4 f UU,G(G(Uss))
(I3) %f{f" = 4f Uiu, = 4[ Ualzs + G(Uy,) — 2UU;)
. = mfﬂﬂtrm -~ IE/UEUIG[UZJ
Combining the above three identities, we see that
%f (%Uﬁ ¥ g{c(m}}“ +U4) + a-f"uﬁm + Eaf{c:[i':fu]f

- 4.1[{!3{;,,: —faf —EfUU:GfG[Uﬂ]} 2 IEIUEMG{U,} (5.8)
In addition, we have

12



(L) % f UrG(U,) = f UG(U,) + 2 f UUG(U,)
- —zj UU,G(aUsz + G(Uss) — 2UT,)
42 f UG(U,)(alss + G(Uss) — 2UU.)

= —Eu:xf UUG(Uzz) + Eﬂ:f UU,G(Us) — EIUU:GfG{Uu]J

- [v(cw)? - 4 [ vPu.as) |

%fﬁ{;{ﬂzj = sz[fo]U
_ s f G(Uz)(aUss + C(Uss) — 2U )

= 2 f UG (V) - 4 f UU,G(U,)

Hence, from the last two identities, we get

= f{:a;U G(U,) + iuc[ﬂ )

T f UU,G(U,.) + 6 f UU,.G(U,) + -2 f U,.G(U.)

—'E:fUUEG (Usa)) - sfu (U,))? - IEfUEU G(U,)

6
=% fUUmG{Uz} (5.7)
Finally, on account of Eqs. (5.6) (5.7), we obtain
i, g =% L3 4 3
= | [5U2+ 36 + Ut - 3UPG(Us) - —UG(U,)]
+u[ Ut + Ectf{G{U“j}E
- 4fyﬂuu -I—Eftfﬂxﬂ{Um] 3 EIUUHG{U;] —gfuﬂc;[m}]
iﬁ[fU{G{Uzj [UUGU]——]UE
= fx[q,fUaUﬂ +E/UU¢G{UH] —ﬁfUUHG{U,]
Efu G(U.)] 5.8)
5 s I { ¥
In the latter identity we have used the assertion of Corollary 2.1.
13




By Holder’s inequality and the following Sobolev’s inequalities

10 g 8

Ulls = ClU=lZ1UNF,  ||U]|eo < G‘EIUuII;,'-‘IIUH?
1 1 i

NUzll2 < U212 11U11F,  ||Us]ls < G'I’UHH 1|32

the integrations in the right hand side of the identity (5.8) can be majorized as follows
[4[{53{@# -ﬁfUU G(U) = stUMG fUﬂG{Uj

< C(8)al||Uzz|l21U11E + U231 G (T2 ||

+i|G{U :IHIHUHWHUEIHE+ ”UE:HE“U ”3]
5 5 31
< C(5) aiI[UuII 1UNF + U2l ”UHE + Uz |3 [|U]1 ]

< S10=l13 + (6, | Tollz)

where we have used Young's inequality and Lemma 2.1.
With the above inequality, we take the integration with respect to t for (5.8), by a
simple calculation, we get

é”u,{-,z}”% —IIG (U=( )z + 1T ()18
< C,Vollm) + 3 [ U2G(02) + f UG(Us)

= €05 [|Uollas) + BIG UM + NG 2]V ]2

2:5'
< G + O, Vol )(1 + 1V ]2)

1 \
< ||G(U:)]|3 + E”L":H% + C(8, ||Un||z:)

1 1 2
where we have used Young’s inequality and the fact that |U]|y < 23 ||U,||#|U)|£.

This completes the proof of the lemma.
Lemma 5.3 Let U = Uy(z,t) be a smooth solution of the problem (5.3) (5.2) with
@ > 0. Then
10, &)l < € (5.9)

Jor t £ [0,00), where the constant C depends only on the norm U]z
Proof For all ¢(z,t) € C§°(R), since U(z,t) € L=(0, co; H'), we have

f s f b(alUss + G(Uss) — 2UT,)

= - [0, - [v.6@) -2 [yuu,

< CllIUollga )]l g2
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where the the constant C' is independent of & as & tends to zero, This achieves the
result of the lemma.,

With the above three lemmas, we now show that if for any a > 0,U = U,(z,t) is
the solution of the Cauchy problem (5.3) (5.2) with Up(z) given in H'(R), then there
exists a subsequence U, (x,t) such that U';.{z,t) converges weakly star to a function
U(z,t) in L%(0,00; H'(R)), and the limit function U(z,t) is a weak solution of (5.1)
with initial data Uy, Namely we have

Theorem 5.1  Let the initial data Ug(z) be given in HY(R). Then the Cauchy
problem of the equation of finite-depth fluids (5.1) (5.2) has at least one global weak
solution U = [/ (x,t), t.e.

(1) U(z,t) € L™(0,00; H'(R))

iy - -/;Tfﬂq.'l'gd:tdt 3 Ef%c:{uz}dzdt_— f;fﬂigﬁ-xdmdt
| - f Us(z)w(z, O)dz

for any number T > 0, where the test function Y(z,t) € LE(0,T; HLR)) with o €
L*{0,T; L*(R)) and (z,T) = 0.

Proof Let U, = Uqy(z,t) be a smooth solution of problem (5.3) (5.2) with a > 0.
By the uniform estimates of Lemma 5.1, Lemma 5.2 and the weak compactness in a
bounded reflexive Banach space, we can take subsequences if necessary, U, — U in the
weak #-topology of L=(0,T; H'(R)), moreover, by the estimate of Lemma 5.3, together
with Lemma 5.2 and Aubin’s theorem [10], it follows that

Ualz,t) — Ulz,t) in L¥0,T; LE(R)) strongly

By a standard argument, it is easy to check that U, Uy, — UU; weakly in L*(0,T; L*
(R)). Consequently, we immediately see that the limit function U = U{(z,t) € L*(0, oo;
H'(R)) is a solution of the Cauchy problem (5.1) (5.2) in the sense of distribution.

Corollary  Let U = U(z,t) € L®(0,c0; H') be a solution of problem (5.1) (5.2).
Then

U (=8| ¢, = C
c(f'

-

)0
where C 15 a constant depending only on ||Us|ly:, Qe = BT x R.
Proof Since U(z,t) € L*(0,c0; H'), by Hélder’s inequality, we have

U (21, ) - Ulas, b)) = |L Us(z,1)dz]

1 1 1
< for - wal2 ([ 1Wltdz) ® < Clon ~ ol

or

1
sup |U{=zy,t) = Uz, t)| < Clay — m3|2 (5.10)
Qoo
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for any z;,z: € R.
On the other hand, since U; € L®(0,00; H~!), then for all y(z) € L*(R), setting

T f (z)dz, V "'f Udz, we have

fﬂﬁ.—*} f:,!: Vi= fﬁ&'ﬂ: = —ftff’”t
= f¢r|{; ez) = 20U, = fafJGfU}— ]
< Clltbll 2y

This means that V; € L®(0,00; L*(R)]. Thus by Sobolev inequality, we get

:EEIU(:E:-M] = Ulz,t2)| = Va2 (-, t1) = Va(,t2)|lo0

1 3

< CIV(t) =V ta)llf Vael(- t1) — Vaz (-, t2)|3
m L : E
< Clty — tag|d SI:PEHW{*J}HE 1Tz, t)]|2)

1
< Clty — to4 (5.11)

On account of Eqs. (5.10), (5.11), the theorem is now proved.
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