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Abstract In this paper by using upper-lower solution method the critical wave
speed of wave front for a simplified mathematical maodel of Belousov-Zhabotinskii chemi-
cal reaction

e = Ugy = u(l — u = ru)
Wy — Vyr = —bup
15 obtained, where 0 < r < 1, b > 0 are known.
Key Words Reaction-diffusion system; travelling wave front solutions; upper-

lower solution method: B-Z reaction.
Classification 35K35

1. Introduction

In this paper we discuss the existence of travelling wave front solution of the fol-
lowing reaction-diffusion system

{ Up — Upr = f{u,v]

|
Vg = Vg = iU, ”]

(1)

A method for finding travelling wave front solution as limits of solutions of boundary
value problems on finite domains has been developed by [1]-|4]. In the paper [4] by using
the method and upper-lower solutions, a general principle for the existence of travelling
wave front solution for the system (1) has been established. As an application of the
general principle, necessary and sufficient condition for the existence of the rmonotone
solution for the boundary value problem

[ u" o' tu(l—r—utrv)=0
v +ev' 4 bu(l - v) =0

< (2)

u(-o0) = v(—o00) =0

[ u(+00) = v(+o0) = 1
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was obtained: for 0 < r < 1,0 < b < (1 - r)/r, it was proved that (2) has a monotone
solution if and only if ¢ € —24/1 = r. In this paper we extend the above result for the
existence of travelling wave front solutions to a principle which is much more convenient
for practical use and in case of system (2) it does not require the limitation on b:

b<{1-r)fr

This also provides a similar result for the existence of monotone solution for (2).

2. Theorem of Existence

We first state our assumptions,
(H. 1): Let I > 1 and « > O be large enough.
(i) There exist a pair of upper and lower solutions (B4, 7a), (g, v,) for the following

system on |—a, a
v’ +ev' + f(u,v)=0
v+ v’ +g(u,v) =0

where ¢ € R is fixed and the functions f, g are as specified below. Moreover .

O<u, £4; 21, 0<y, <5, <!

(i) @, (&) 20, ul(€) =0, (&) > 0 for any £ € [—a,a].
(i) For any £ > 0 there exists A > 0 such that for any £ € [—a, — A

v.(€) <e, Ua(€) <

when a > A,
(H. 2):
(i) On [0,1] x [0,1], the only solutions of the equations
flu,v) =0, g{u,v) =10

are (0, e)(a € [0,1]) and (1,1).
(i) f e C([o,!] = 10,4]), f(u,v) = ufi(u,v), for (u,v) € (0,1) x (0,1),

L 0, 20, 0, f1(0,0) =0

Bu v
(iii) ¢ € C'([0,1] x [0,1]). There exists Iy € (0,1] such that
glu,v) > 0, (u,v) € (0,{) x (0,Ip)

glu,v) <0, (u,v)€ (0,{) x (lg,1), when Iy <!
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Qur general principle is as follows,
Theorem 1 Under assumptions (H. 1) and (H. 2), the system

j u' +eu'+ fluv)=0
v +ev' +glu,u) =0

(3)

u(—o0) = v(—o0) = 0

ulf-l—ﬂ-::-] = v{'F-m] =]

has a monotone solution.
The proof of Theorem 1 is similar to the proof of Theorem 4.1 in the paper [4].
. Thus we only cutline the main idea of the proof.
1) Consider a BVP on finite interval [—a,a] for a > 0 sufficiently large

'

—u" —eu' = f(u,v)

—v" — cv' = g(u,v)

| (4)

u(—a) = u,(-a),v(~a) = v,(-0a)

. u(a) = 4(a), v(a) = B4(a)

2) Using the upper and lower solution method we can prove that (4) has a solution
(2a(£), va(€)) and we get a priori estimates. Let m be any positive integer large enough,
for a = m,

”uﬂ”{?i‘l"f[—m.m] = Mﬂl: “t"ﬂ“f:?'f"r|—-m,m| = My,

where v € (0,1) and M,, is independent of a. There exists a subsequence a,, — +oo
such that

lim (uq, (€), va,(€)) = (u(£), v(£))

Fl—+
and (u(€),v(£)) satisfies the equation in (3).
3) We can prove that (u(£),va(£)) is monotone increasing in £ € [—a,a] when
a > 0 is sufficiently large.
4) From steps 2) and 3) we know that (u(€),v(€)) is increasing in £ (—o0, +00).
Obvicusly, the limits

lim (u(€),(€)) = (wr,04), lim_(u(€), 0(6)) = (u-,v-)

f—+o0

exist. At last we can prove that

(us,04) = (1,1), (u-,v-) = (0,0)

Thus (u(&),v(€)) is a monotone solution of (3).
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3. Application

As an application of Theorem 1 we discuss = simplified mathematical model for
Belousov-Zhabotinskii chemical reaction

U~ Uzg = Ul = r — u + ry)
Vi = Vzz = bu(l - v)

Now we can prove
Theorem 2 Suppose that 0 < r < 1, b> 0. Then there ezists o number ¢* with

—2y/max(1 - ribr) £ g -2/1 -1

such that

(i) If e < ¢*, (2) has a monotone solution;

(i) If ¢ > ¢, (2) has no monotone solution;

(i) If 6 < (L=r)/r,c" = -24/T—r. Ifbh < (1=7)/r and ¢ = ¢*, (2) has a monotone
solution,

The proof of Theorem 2 is divided into the following lemmas,

Lemma 1 Suppose that 0 < r < 1, b > 0. Let F21~—rand > br. Then for
any ¢ < —2v/B, (2) has a monotone solution.

Proof It is easy to check that

f(u,v) = ufi{u,v), filu,v)=1—-r—u+rv

and
glu,v) = bu(l — v)

satisfly the assumption (H. 2) if we take [, = 1,1 > 1. To prove Lemma 1 by using
Theorem 1, we only need to find a pair of ordered upper and lower sclutions of systern

—u —cu =u(l—r—usrv)
(5)

ol — ev! ='bufl - )

on (—a,a) satisfying (H. 1).
The following result is well-known. Let A > O be a eonstant. Then the BVF
—u" — et = Au(l - u)
(6)

u(—oco) = 0, ulf-}—-:sc-} =1

has a monotone solution if and only if ¢ € —2v/A. For XA = B, 1 = r we denote the
monotone solutions of (6) by 4(£), ug(€), where 0 < r < 1 is given and 8 > 0 is to be
determined.
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Let 2 1~ rand § > br. We can choose ky,k; > 1 such that (g,,9,) = (ky@(€),
kpii(£)) is the upper solution of (5). We can also choose 0 < [, < 1 such that e Yomm
(fauo,0) is the lower solution of (5) with (u,,v,) < (fa, Ta)(§ € [—a,a]). Now the
conclusion of Lemma 1 comes fram Theorem 1.

Lemma 2 Suppose thet 0 < r < 1, b > 0. Then for any ¢ > -2/1—r, (2) has
no monotone solulion,

For proof see [3].

From Lemmas 1 and 2, we have

Lemma 3 Suppose that 0 <r <1, b= 0. Set

E = {clc € R' such that(2) has monotone solution},
Then there exists the supremum of E
" =gup £

with

—E\f/rna.x[] —rbr) e < -1 -r

Espectally if 0 < b < (1 — r)/r, then ¢* = =24/1 — 1,

Lemma 4 Suppose that0 < r <1, b > 0.

(1) Feor any ¢ < c*, (2) has a monotone solution;

(2) For any ¢ = ¢*, (2) has no monotone solution.

Proof Let ¢ < ¢”. We consider the problem (2). There is ¢ € £ with ¢ < ¢ and
the problem

; —u”—Eu’=u{1—r—u+ru}

—v" — v’ = bu(1 - v)

u(—00) = v(-00) =0, u(+oo)=v(+ec) =1

]

has a monotone solution, say ((€),5(¢)). Since &' > 0, ¥ > 0, it is clear that
(#(£),8(£)) is an upper solution of (5). As in the proof of Lemma 1, we can choose
0 <y < 1 such that (u,,v,) = (laug,0) is a lower solution of (5) with (u,,v,) < (&, 7).
Thus from Theorem 1 we see that (2) has a monotone solution for any ¢ < ¢*. According
to the definition of ¢*, the second claim is obviously true,
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