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Abstract In this paper, we consider the flow of two immiscible fluids in a one-
dimensional porous medium {the Verigin problem) and obtain a quasilinear parabolic
equation in divergence form with the discontinuous ccefficients. We prove first the
existence and uniqueness of locally classical solution of the diffraction problem and
then prove the existence of local solution of the Verigin problem.
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0. Introduction

Since the 1940s, the after-production of petroleum by means of waterflooding has
been used extensively to raise the production index. The relevant model for perme-
ability can be idealized mathematically as a free boundary problem. Muskat supposed
in 1937 a mathematical model for piston-type driving in [1]. Assuming that the flow
moves horizontally and touches the boundary I' : = = h(t), and using the Darcy law and
the mass conservation law, Verigin obtained in [2] the parabolic problem with respect
to pressure p, called the Verigin problem later on.

The theory about the Verigin problem has been vigorously developed only for the
one-dimensional case. The linear Verigin problem was studied by Kamynin in [3], [4],
by Fulks and Guenther in [5], and by Evans in [6], [7]. Recently, research on quasilinear
equations was set about by Meirmanov in [8] and Liang Jing in [9].

In general case, the free boundary is fixed first. And the problem with discontinuous
coefficients to be considered first is called the diffraction problem. It was studied by
Oleinik with Bernstein method, by Lady¥enskaja with integral estimation, by Kamynin
with potential method.
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We are concerned with

du;, 9 Jugy =
_a'r_a_;(ki{mstaui}'ég) -—f,{[i,t,ﬂ,:}, t_]'!z

d d
ty = ug, h'(t) = —9(31}-‘31(%55“1]% = —Qiui}kﬂ[fﬁhuﬂﬁrﬂ: = h(t)

The paper is divided into three sections. Section 1 discusses the uniform estimation for
approximate solution under the smoothened coefficients. Section 2 proves the existence
and uniqueness of local solution of diffraction problem and discusses the continuous de-
pendence of solution on internal boundary perturbation. Section 3 proves the existence
of lacal solution of the Verigin problem by means of Schauder fixed point theorem.

1. Uniform Estimation for Approximate Solution

Fix h(t) and let Q; = {(z,¢):0 < ¢ < h(t),0 <t <T}, Qz = {(z,1) : Alt) <x < i,
O<t<T}, Qr=0Q1UQ: We are concerned with the following diffraction problem

31!!-.' d "E}u'l' il Rk
5 e (MELwE) = hntw), (m)eq i=1,
du du
1 w1 = u, h{ﬂrhuﬂﬁ} = kz{ﬁatauﬂj'ﬁ: z = ht) (1.0)
[ (0,t) = @), u(l,t) = T3(t), u(z,0) = fig(z), h(0) = b

and we assume

() kilz,t,z2), fi(x,t,2) € C3([0,1] % [0, 0) x (—oo, +c0)) and there exist constants
4 >0, b >0, by > 0 such that ki(z,t,2) = ~, filz,t,2)z < by2? + by,

(I}  d@y,% € CY0,T), 6ig € C0,1], k(z,0,80(z)) gy € C'[0,{] with @p(0) = i1, (0),
ip(l) = @2(0) and denote kb, u) = k(z,t, ), (2,8) € @y, 1=1,2,

(IlT)  k(t) e CYo, 1) !

Smoothen the coefficients and let

ke(z,t,u) = ky(z, ¢, u)(1 - Ho(z - h(t)) + ka(z,t,u) H.(z - h(t))
felz,t,u) = filz,t,u)(1 - He(z — h(t)) + fo(z,t,u)H.(z - h(t))

0 forz < —¢
L Jorx>¢
value and fix arbitrarily o (0,1). There exist g, c*efo), 4, € G’l"'*"‘-"rz[t],Tj,
being smoothened forms of iy and respectively and satisfying the compatibility
conditions of orders 0 and 1, such that

where H.(z) = { , He(z) € C°(~c0,+ce). Smoothen initial-boundary

”k-:{¢:D.~ ﬁﬂc{x}}ﬁﬂsz”a,[ﬂ,ﬂ = ”k{m: ﬂz-ﬁﬂr:m”ﬂﬂa:”&,[ﬂ.f]
[#iell1,jo,m) < C + &llLor), Noellojo < 2| @allojoy, t=1,2

1Baellzjo,612] + |1 Boella,jp 40y 20 < 2[[gollz 0,072 + 2llg0ll2 fb+)/24
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Here, we smoothen iig(z) first, then determine the value of &, (0) and take C depending
on |ul,(0)|, and finally we smoothen ;. :
Lemma 1.1 The gquasilinear parabolic problem

5 au-g .
Ugp — E(k;{fﬂ,i,ﬂ;} 5‘2:] = fﬂ{"’::tnuﬂ

u,(0,t) = G1:(2), vl t) = Ba.(t), uelz,0) = fig e (2)

(1.1)

has o solution u, € CFral+ait(Gr) n C¥talt(l+a)/2(Qn),

For this classical result, see Chap. V in [10].

In what follows we shall give a series of estimations independent of ¢,

(1) Maximum norm estimation and Hélder norm estimation

On the basis of assumption (I}, it follows from Theorem 2.9 of Chap. I and Theorem
10.1 of Chap. III in [10] that

luello g < Mo (1.2)

iall I‘]

ltellg g, € M (1.3)

where 0 = 8 < 1 and My, M, 3 are independent of &,
(2) Local estimation for u..
First, introducing the barrier functions

1

ml{I:,t} — :l:ffl

l6(1 + Ka) 4 01 (8), iwalet)= iﬂilln(l + K1 — 2)) + ige(t)

yields the estimation of u,, on z = 0 and z = 1, i.e. the estimation of w.; on the
parabolic boundary d,Q7. Applying the transformation

y=z—h(t), t'=t (denoted by ¢ still)

Al k :
Next, letting v = k,a— yields the equation with respect to v
Y

() - E (O =g =

Simplifying it yields

. v
v — kovy, —vyh'(t) - kiﬂuy + Eisz — k)R () Hey) + Ay, t)]

= k,[(f2 - f1)HL(v) + B(v,1)] - (19)

where
.r"-l{y,t::l .- —.IEGHHE{H} =i k“{] B Hs} T ksuf; Ay k.:f-:u

B[L’J—] o nyHE{y] + fl:,r{l W H;I[y]l}
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¥
Construct an auxiliary function W = Gy + 8t + (1 +f H,,{z]dz) a, where Cj
0

1s the maximum norm of v on the boundary. Take suitable o, 3, it follows from the
comparison principle that there exists ¢; > 0, g > 0 such that

" N
vy, t) < wly, ) < Co+1+ (1 +,[{:. H,,[z}dz) a, t<it, €< &g

Therefore we get,

“ucx“ﬂ,cj,] < M [I_E}

where M; depends on M; and d, and d is the shortest distance between the internal

and external boundaries.

(3) Hélder norm estimation for k. (2,2, u.) iut

We shall first prove that % ( k. "5;1:

) 1s uniformly bounded near z = 0.
Obviously, we have

felz.t,u) = filz,t,u.), ko (2, t,0,) = ki(z,t,u.), 0<2< -, 01 <t

=g~

Let Wz, t) = F:,%, then W satisfies

Wie = Bz, t,u. )W, + F(z,t,u,, W)W, + G(z,t,u )W + D(z,t,u,) (1.7)

where
B=kr s, tiug), F= —kmkl_gw

G = —ky (ki + ko f1 + k1fiw), D= fiz(z,t,u,)

L
Construct an auxiliary funetion W = Jlw) = =2M" &+ EEM'f e"“ids} where M’

1 : . 0 !
stands for the maximum norm of W. It follows from Beinstein estimation method that
|u£!| = MS; |uczz| <My, O0< 2 <=, 0=t i

Hence, |te(0,81) — uez(0,13)] < 4Ma|t; — t2]V/2, where My depends on d and is inde-
pendent of ¢.
The similar discussion works near z = 1.

du, ) :
18 unj-
5-7: ﬂﬂﬂlpc;lll

Therefore, by smoothening the initial-value, it follows that | ke
formly bounded and denoted by My still.

Denote @i = {{y,t) : =h{t) <y <1 —h(),0<t < tl.}, on which we discuss v. Let

W t) = Fu(y,8),wp = (w - k)*,Q(p,7) = K, x (to, 10 + 1) € Q)

where vra.i@ll:nai-: w(y,t)— k<1, K, = (yo — g, ¥0+ p), yo and tg are arbitrary fixed by
T

Qo.7) = K, x (to,tg+ r) € QY. Take 7 as a truncation function such that 0 <<,
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with n = 0 on the lateral face of Q(p, 7). Multiplying both sides of Equation (1.4) by
the test function wen® and integrating by parts yield

w 3 [f 2 2
-/]:Jl'-f',rj (A;E)!ww Q{e.7) il

bod-T 1
< G[[fm ]wﬁ{rﬁ + nlme]) + U; mea%klp{zjdt} 2] (1.8)
T 0
where A ,(¢) = {y € K,, w > k}. Taking suitable 5 we have

max f _“";': {yjt} dy
:UEE£1{|+T Hlp—-ﬂlp k; [y}tﬂ}

dy + E’[fﬂnz}}_i ff wi+C
Qle.r)

- WE {I.f, f":'J fokr

= Jk, ki(y,to) mes ﬂﬁ,p[tldt}li] (1.9)

LA

2
rl“-’;;]tﬁ'{.ﬂ—#m. T—=aar)

Bas s f K- i ff w? dydt
. to <ttt r—gar Ke—ayp He—vypr—oar) g

|

= 'r::’{Jl{r:mﬂr]"2 +(27) T lwellZa g, + ( /;
« kg

meszﬂklgfﬂﬂ) %} (1.10)

where k*(y,t) = ke(y + h(t), t,u(y + h(t), t)). Here, (1.9), (1.10) correspond to (7.1),
(7.2) respectively in Section 7 of Chap. II of [10]. According to Section 7 of Chap. II
and Theorem 8 of Section 8 in [10], we have

Theorem 1.1  Let the boundary @} , satisfy the uniform ezternal cone condition,
and let v(y,t) € VEI'D[QL} satisfy (1.9), (1.10) and be Hélder uniformly continuous on
the boundary, then v(y,t) is Holder uniformly continuous on s

Therefore, there exists My and A (for convenience the Holder coefficient is denoted
by @ still), independent of e, such that

(4) Multiplying Equation (1.4) by a suitable test function and integrating by parts
yield that there exists Mjy, independent of &, such that

ff@ ufﬁff% [% (k,,&;:)r < Ms (1.12)

Lemma 1.3 In the region Q, or (2, ue has the derivatives occuring in the equation

ﬁu_g
dx

Ii:![I:l't:-t'l:-s}

<
8G., = My (1.11)

and having their internal norms independent of €.

39




2. Existence and Uniqueness of Solution

of the Diffraction Problem

From the uniform estimation in Section 1 and the discussion about compactness,
it follows that there exists a subsequence of u, (denoted by u, still) and u = C(Q,)

v € C(Qy,) such that

(e, ) Jue C(G,) J, du Ay, 8*u  Au,  Hu
e gy THumenomd g, SRSl T

du

in any internal closed region of Q. Hence, v = ﬂra— and u is just the classical solution
- T
of problem (1.0), satisfying

lullog, < Mo (2.1)
lullgg, < M (2.2)
[ttt 52], . < GO, 23
!!““{Iﬁ*J“Jg_ﬂu,@” < M, (2.4)
I, Tt + (5 (£52)) o < as 23

Assume that u', u? are distinct classical solutions of problem (1.0). Let W = o1 —y?
then W = W;"D{Qh] N C(Q¢,) and Wla,g., = 0. Multiplying Equation (1.0} and
integrating by parts on Q, yields

: ., Ou' W :
i J it ST aw :
-/];ET u;Wdzdt + j};}r k(z tut) S s dzdt ij flezt, u' ) Wdzdt (2.6);

where 1 = 1,2. Subtracting (2.6); from (2.6); and arranging yield

d Lieon f dW 2 "
= L) <cff.w

It follows from Gronwall inequality and Wli=o = 0 that W|;—, = 0. Therefore u! = 4?2
and the diffraction problem (1.0) has a unique local solution.
 Theorem 2.1  Under assumptions (I)~(III), there exists a unique locally clossical
solution for problem (1.0), satisfying estimations (2.1)-(2.5).

By means of integral estimation and by reference to the method of estimating weak
mazimum norm, we have the continuous dependence of the solution on internal bound-
ary perfurbation.
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Theorem 2.2 Let = = h;(t) be internal boundary and h;(t) € C[0,44], 1 = 1,2,
then the solutions wl, u® of corresponding diffraction problem satisfy

max /:[ul — u?)idz + [[ . [%ﬂ']jdﬂ:dt

O=t<ty

<6 L "R — Ry ()]t (2.7)

[ ”EHDJQ:I < Collhy — hal|1joty] (2.8)
where Cy, Cy, My, My depend on ||h;(t)||1[04,)-

3. Existence of Local Solution of the One-dimensional
Verigin Problem

We are concerned with the following Verigin problem

EEEE = e

at oz ki
4 I a a
uy = ug, h'(t) = ~g(ur)ka (2,1, u1) 5 2L g(un)ks(z, ¢, up) ”’*, z=h(t) (30)

S 2 i’:):mx,hw} (2,8) €Qiy i = 1,2

| w(0,8) = (), ull, 1) = azm,u{m,ﬂ} = io(z), h(0) = b
under assumptions (I}, (I1) and

(Iv) 9(z) € C'(—o0, +o0)

Consider the closed convex set A = {A(t) € C'[0,%a], A(0) = b, E < h(t) < ——
|h'(t)] < M} in Banach space C![0,1y], where iy is to be determmed and M =1+
|g{ﬁﬂib]]kl[b‘.ﬂ:ﬁu[b]}%(b}|- It follows from the results in Section 2 that for any

h(t) € A there exists a unique classical solution u with smoothness to a certain degree.

f-l—b

Define the operator T

T(h) = b— j{;t“ gl{ur)ker (h(t), ¢, ui(h(t), ”] o1 [h{ ), t)dt

Obviously, the definition makes sense and it follows from (2.4} that

T (B)llossormpose) < COO)[Ea(z,t, 1)

L) 4y~ IT) ()] = Jg(unyr 22

=, 5 laCe)llg g, < M (b, 0)

((2),t) = g(ur)kr——

dT'(h)

o (3.1)

= (6, 0)| < M*#I*

Take t; = M* ™" When ty < i, | | < M. Again, since [T'(h) — b] < tM?*,

2;“ ;ﬁ:{f) When fg < i3, g < T(h) < # Therefore, we take

take t3 = min (
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tp = min(t1,%2,t3). The operator T will map A onto A. By Eq. (3.1), T is compact in
A,

In what follows we discuss the continuity of the operator.

Denote b;v u, up the solutions of problem (1.0), corresponding to h, ky, respectively,
where hy, 2 h. Due to compactness, there exists a subsequence of A, (the subsequence
is denoted by Ay, still) such that for the corresponding solution u,, we have

Ol n'::' F
un(2,0) vz, t), k() 2o T g

ki for z < hy(t)

. By Theorem 2.2, obviously we have v(z,t) =
ky for z > hn(t) :

where k™ = {

T..L

. u{z,t). It can be proved b}r Egs. (2.2), (2.4) that W = ﬁ:{x}f,u]— Hence we have
Ot €@ :
glun)k"(z,t, n] el I[ ]ka— thereby we have T'(h, } T'(h), i.e. the operator
e
1" 15 continuous. E}f means of Schauder fixed point theorem, we have
Theorem 3.1  Under the assumptions (1), (I1), (IV), problem (3.0) has a classical
solution in [0,¢p], where ty depends only on IR ()l crfo,e0) -
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