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Abstract An algebraic approach for extending Hamiltonian operators is proposed.
A relevant sufficient condition for generating new Lie algebras from known ones is
presented. Some aspecial cases are discussed and several illustrative examples are given.
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1. Introduction -

It is well known that many nonlinear evelution equations possess generalized Hamil-
tonian structures('~*. Hamiltonian operators play a crucial role in the algebraic and
geometric theory of those Hamiltonian structures®!, Based on Hamiltonian pairs, we
can also construct, under certain conditions, a hierarchy of Hamiltonian equations
possessing an infinite number of symmﬁtrics!'ﬁ*?'gl, Therefore the search for new Hamil-
tonian operators and Hamiltonian pairs is one among the central topics in theory of
Hamiltonian systems, there have been works!®:5:10] concerning the general theory of
Hamiltonian operators, In the present paper, we propose an algebraic approach for
extending Hamiltonian operators from lower orders to higher orders. We show that a
large number of new Hamiltonian operators and new Hamiltonian pairs can be derived
through this algebraic approach.

Let u = (uy(z,t), ua(z,t), -+, uglz, t)), ,t € R, be a g-dimensional smooth function
vector. The linear space of smooth functions Plu] = P(z,t, u*:"‘]'} = P(z,t,u, -, ul™),
m > 0, is denoted by 4, 49 = 4 x--- x A(q times)= {{Py, Ps,*+, P)|P: € 4,1 <i < ¢}.
Two functions P and @ of 4 are considered to be equivalent and denoted by P ~ @
(mod D) if P— @ = DR = dR/dz holds for some R € 4. The equivalent class

that contains P is denoted by P = [ Pdz, we call it a functional. The space of all

functionals is represented by A.
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Definition 1 A Lnear operator J = J(z,t,u): AT — 49 45 called Hamiltonian if
the bracket defined by

- L 5P, 8Q\T 0k SV IrCrel §
— R et R 1.1
P.Gy= [+ (150) e, BGed 5 = (o5 v
s skew-symmeltry
{P,Q}=-{Q,P}, VP,Qeci (1.2)
and satisfies the Jacobi identity
({P.QL B+ ({Q. R, P} + {{R, P},@} =0, vP,0,fied (1.3)

In this case we call {-,-} a Poisson bracket corresponding to the Hamiltonian operator
JI H
We observe that a matrix differential operator

m{g) d
J = Usdoxa Ji = Y. PEMD™, D= (L

m=0

)", Pilue4 (1.4)

may be considered as a linear operator J : 49 — A9, P JPT

Definition 211 jf aif the functions Pi(u],i,7=1,2,. cugm =0,1,--- m(i, 7)),
are linear with respect to u, then the operator J defined by (1.4) vs called a u-linear
operator; otherwise, J called a u-nonlinear operator.

In this paper, we shall consider u-linear matrix differential operators with constant
coeflicients:

mii, g} 1(1.7) 3 () ) aEy 1n
S = (Silogngs  Jij = Z Z Z‘li:‘rm”k D™, up’ = (d_I“J tj (1.5)

m=0 [=0 k=1

where the “fﬁm for all 1,5, k,I, m are complex constants.

2. An Algebraic Approach

Let J = J(u) : A9 — 47 be a w-linear Hamiltonian operators as defined by (1.5)
where u = (uy(z,1), uz(z,t),- -, uy(z,t)). In the following we shall construct a new
Hamiltonian operator J = J(@) : 47 — §% where i — (@', a%,...,a@"), 47" =
Ao x 49 {ﬂ timea}, and @' = {uﬁ—l}q-!-l{i': t.};u{i—l}qirﬂ fl', t}: "5y ey {Eilj]: 1<i<n,
A? = A x ++- x £ (g times) in which # denotes the linear space of smooth functions
P[ﬂ] = P(z,t,a™),m > 0.
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By taking integration by parts and making use of the u-linearity of J we can write

the inner product

(JP.Q) = f Z QiJi; Pydz where P = (Pi, Pay-++, Pp),@ = (Q1,@2,++,@p) € A°
1,i=1
(2.1)
7
in the form of (u,R) = qu,R;dr for some R = (R, Rg,---,B,) € A7, It is not

i=1
dlﬁicult to prove that R is uniquely determined by P,Q and J. Thus we can write

= |P,Q|s and we have

(J(w)P,Q) = (v,[P,Qls), P,Qe A’ (2.2)

For example, for J = 2uD + u,, we have [P,Q]; = QP; — PQ,. It is known that J is
Hamiltonian if and only if A9 is a Lie algebra with respect to the product [, - !}2}.

Given a set of complex constant matrices
{:‘“. — {c;'j:}n}:ﬂ:— 1 E t. E mn {2.3}

for P= (P}, P%,--- ,P"),Q = QL Q%---,.Q™) € A we define the product [P,Q| of
P, Q as follows

[P, Q] = (IP.QI, [P.Q%,---. [P, Q") | (2.4a)
PQF =Y. &IPLQYs, 1<isn (2.45)
je=1

Then we have

@PQ) = [ e (Pal) da

i=1
- _[Eﬂ S cu((P1,Q o) de = 3 (@, [P7,Q%)5)dz
i=1 j.k=1 i, 5,k=1
= 3 GUEPLQY = T ()P,
i,5,k=1 i.k=1 =1
Setting
J =-j{ﬁ:| = {jj.;j]nqb{nq {Jk; nxn — (EE;#J{ )mm {2‘5}
i=1
we obtain
(5,[P,Q) = (J(@)P.Q), P,QeA™ (2.6)

From (2.6), we obtain easily that (A7, [-,]) is a Lie algebra if and only if J=J(a) is
a Hamiltonian operator of order ng.
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We summarize the above-mentioned results as follows.

Theorem 1 Let o Hamiltonian operator J = J{u): A7 — 47 be defined by
(1.5). Then A%"(n > 1) with the product (2.4) forms a Lie algebra iff the operator
J = J(a): A4in — fon defined by (2.5) is ¢ Hamiltonian operator.

The necessity part of this theorem can provide an algebraic approach to extend
Hamiltonian operators from lower orders to higher orders. The steps for construction
are as follows:

1. choose a special Hamiltonian operator J = J(u) : A7 — 49,

2. calculate the Lie product [P,Q]s for P,Q € 49 by using the equation (2,2):

3. determine a set of constants {cili,7,k=1,2,--- n} such that 79" forms a Lie
algebra with respect to the product |P,Q| defined by (2.4);

4. generate a higher order Hamiltonian operator J = J(f) : 97 — Jan by using
the formula (2.5).

Through these steps, we can generate a hierarchy of higher order Hamiltonian oper-
ators {{Jiidngung 12y, starting from a lower order Hamiltonjan operator J = (J;)gs,.

3. A Sufficient Condition

This section gives a sufficient condition for (4%, [-,*]) being a Lie algebra.

Let B = {ej,e2,-++,e,} be the set of n symbols and let ¥V = Lo(FE) denote the
complex linear space spanned by E. Given a set of complex constants { cj pf gk =
1,2,---,n}, we can define a bilinear operation * on ¥ as follows

Fi
f}'*szzﬂjﬁkeﬁ: goki= 1,2,-v4.n {3.1]
A=l
Now < Y,* > forms an algebra.

Theorem 2  If the algebra < Y% > is commutative and the multiplication =
satisfies the condilion

a*{b#c}:ﬁx[a:&a}j Ya,bce ¥ (3.2)

then A™™ forms an infinite dimensional Lie algebra with respect to the product [-,.|
defined by (2.4).

Proof Let P = {Fl,Fﬂ,*--,P“}, Q=(Q,Q%--.,.Q", R = (B', R%,---, R™) be
three vectors of 49", By (2.4), we have

['Pl@li: z Gj‘-k[Fjlqk]Jr I.:-I,E,"‘,ﬂ.
J k=1
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L

Z 'clr.t[['P: Q]r: RI]J

ra=l

([P, Q], R

L

Z E:‘J E EE#E[‘PJ—:QE]J:RE]J
k=

re=1 k=1

N Z (Zciac;h)[[Pj:leJaRJ]J; I=1,2,"',ﬂ.

ika=1 r=1

Because the multiplication * is commutative and satisfies (3.2), we have

e ™ E
Ef:i-,ﬂ;j: o Ecﬁ'j'cia: I:uj:r 'E::E — 1: 2:—"' L [33]
r=1

r=1

Thus
(P,Q], R} +cycle(P,Q, B)

= 30 (2 ) 1P, Q¥ RO + cycle(P, Q8 )}

ika=1 =1
=i, =, d s (3.4)
In addition, since < ¥,* > is commutative, we see that -::1_‘;-# = cij-, 3.0, k=0
Therefore
T T
EF1QF — E E;k[F::Qh]J Sl Z cij[qk}PJlJ - _[th]": i=12,,n {3+5}
Jlri'::l 7.k=1

The equalities (3.4), (3.5) show that (A9",[-,-]) is indeed a Lie algebra.
According to Theorem 2, once we have a commutative algebra < ¥,% > which
satisfies (3.2), we can obtain a hierarchy of new Hamiltonian operators { Fiiloscn =

n
. i o0 5 ! _
(E_; ched (B ])mm}m=1 from an old Hamiltonian operator J = J(u).

4, The GEI_IEI‘&] Solution of Two Dimensional Case

When n = 2, the commutative algebra < Y,* > only possesses six different struc-
tural constants. In this case, we can obtain the general solution of (3.2} or (3.3).

Theorem 3 Let < Y,+ > be a two dimensional commutative algebra, then
the multiplication * satisfies (3.2) or (3.3) iff the structural constants O = {f.:; )2x2,
i =1,2, are one of the following forms

: 0 00
ol g ] (4.1)

C? =
0 0 0 n
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[ af+p 0

il al +n ot £ 9 J (42)
| 0 0 n —an

Ghi= e ‘E] cﬂ—[mf xR } (4.3)
i A an & — Bn '

where £, 1, o, 3 are arbitrary constants,
Proof We know easily that (3.2) or (3.3) is equivalent to

{

. o | S ST I .3 -
{ C116z2 + ¢3y¢3, = 12621 T Cppc3) = cppeq; + €32€12, {=1,2
1 e R Jiiimin 1 L. .2 i
Ci2€1y + e3qe}; = 11z +enefz = eyel; + cney, {=1,2

Since two right equalities in the above equations hold automatically, we see that the
equation (3.2) or (3.3) is equivalent to

[

{ '551'3%2 T '3’121‘3‘%2 = '3!12'?:1*1 + Gizzﬂgl: [= 1,2 [‘14]
Cizc1y + ffaz"-’fl = ejyely + encty, = 1,2 (4.5)

We observe that the equation (4.4) with I = 2 is the same as the equation (4.5) with
I'=1. Thus (4.4), (4.5) are easily seen to be equivalent to

1.1 =8 oy

( €162z + 31033 = cyqpeq, + €33€3 (4.6)
- U

\ €11C22 = Cjacy [4.‘?]
2 1 2 2 _ g 2 1

. C12C11 Tt €201 = efyepp + oyl (4.8)

Obviously, the equation (4.7) amounts to
11
€12 Cag
det [ } =)

Z z
€11 €1z

and Equations (4.6) and (4.8) are equivalent to

1 1 ) 2
Cia €33 €11 €1z
det ‘ = det = ()
1 - 2 1 2 1 3
€11 — 12 €13 = 5 Cl1 — €1z C13 — ¢34

Thus the set of constants {r:‘}|:‘, 1,k =1, 2} satisfies (3.3) if and only if

|
i
o =

1
Clz Cag

rank $3% ciy <1
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Iﬂ:ﬂhnﬂéz} = {‘:Ell c?ﬂ) = ﬂ: then EEt'ting '5,;[1 = 5: 5%2 = H{E: =E0ﬂ$t.7 the same
below.), C! and C? take the form of the case (1).

If (c15, ¢32) = 0, but (cfy,cfy) =: (£, 1) # O, then (ef; — cfp, ely — ¢f;) = (€, 1), and
C!, C? take the form as shown in the case (2).

If (ciz,¢h2) =: (€,n) # O, then (cfy, cfs) = €, 1), (c1y — ey, cis — c3a) = B(€, ).
Thus the corresponding matrices C!, C? take the form of the case (3).

According to (2.4), we can easily calculate three Lie products, corresponding re-
spectively to (4.1), (4.2) and (4.3), as follows:

{[RQP=EWh@mr T
[P, Q1% = 9[P%,Q%;
{ [P,Q* = (aé + n)[P*, Q" w10)
[P, Q) = &[PY, Qs + ([P, Q% + [P%,Q"s) — an[P%, Q%
[ [P, Q]! = (8¢ + an) [P, Qs + £([PY,Q%s + [PE,Q)s) + n(P%, Q% i
[P, Q) = a€[PY, Qs + an([P1,Q@%s + [P2, Q") + (£ — Bn)[P2, Q%5

By Theorem 1, the relevant three kinds of Hamiltonian operators are as follows:

oop iy
- gJ(@') o ]

| 0 nd(a?)
3 [ (a€+n)J(al) + &J(a?%)  nJ(a?) }
2-:

! nJ(a?) —anJ(@?)
5 [ e eni@) rag@  ea@) + ans(@) ]
3:

gJ(al) + anJ(@®) nJ(8Y) + (€ - Bn)J(8%)

We observe that three Hamiltonian operators contain arbitrary constants £ and #:

g [ J(a!) 0 0 0 P 4
Ji=¢ ‘ﬂ[ ]=EJ1‘+ﬂJf
gl o 0 J(a?)

[ ad(@) + J(&%) O J(al)  J(@?
ggg| A ]H e A ]:e.fgw%
0 0 | J(#*) —aJ(i*)
[ aJ(a') + aJ(a? i | aJ(al aJ(@®
Fom¢ gJ(n') +at(a®) J(a’) ﬂ[ J(u) J(@*) ]=£f§+nf§
) J(a') J(@?) | aJ(@®) J(a') - gJ(z%)
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From g&neral theory of Hamiltonian operators, we thus obtain three Hamiltonian pairs
Jo e

5. Special Commutative Algebras

Let ¥ = C|[z|,, denote the set of complex coefficient polynomials in z with degrees
less than n. In this case, we may choose ¢; = z*~1 { = 1,2,---,n. Let r € Z be an
integer, we introduce in ¥ the multiplication * as follows

a*b=[z""a(z)b(z)]37*, a,be Clzln (5.1)

where the notation [¢{z)]§~" denotes the part of a Laurent polynomial ¢(z) with dagrccs
0,1,:¢=,mn—1.

Theorem 4 Whenl-n<r<0orn—1<r<2n—2, the a!gsbrn < Clz]n, ¥ >
w5 commutative and satisfies the condilion (3.2), the multiplication * being defined by
(5.1).

Proof Set

h—l
-

r h ) ‘
*Z2T = c(;'-_.&i}[.i:ﬂ}g;‘, Tik=0:1 n—1

By the definition of multiplication %, we have

n=1
m-“':x [J"!-'J+E 1-r:—1 Zai,.?+k rﬂ: j:k:{]:]‘?”'!ﬂml
t=0
Theorefore
{:;—,i: = EI:-;I-"l':|.|.'||l'.|"E—1"! 'I.,j,.liﬂ' i ]-}2:' b ;ﬂ {5.2}

Evidently, the multiplication * defined in this way is commutative. We now turn to
prove the property (3.2). Choose a=z',b=2/ c=z* ¢ j k= 0,1,---,n—1. Then

a*(bke) = 2t (27 % zF)

n—1 n-1 n-1
. F - = 4
= z* % ( > 45,:1-.;_#_,3") = E ( E Et,i-l—s—r'£a,;n'+.l:—r')$
=[]

t=0 a=0

2EHIHE=Y when O < s+ 4k =2r < ~1 and O Ci+k—-r<n-1
0, otherwise
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and

b#(cxa) = x? :r[:cj‘ ::z"}

: =1 n-1 n=1
AR i #s Yot
= & ¥ ( 5&,1‘.—]—1—?I ) —_ E ( E :51,_;'+.$—r5.5,£:+1'—rJI
a=0 =0 &=

{Ii+j'+k—3f}when{]5::—|—j—|-.i:—Erﬂ_in—1mdl]f_:k-i-:-_rﬂﬂ—]

0, otherwise

Suppose first that 1 —n <r < 0. Thenwehave i + 7+ k—-2r >0, 7+ k- r > 0.
fit+7+k—2r<n-1, we have

J+k—-r<it+ij+k-r<n-14r<n—1

k+t—r<it+ij+k—r<n—1+r<n-1

Therefore
o g2 yheni+j+k—-2r<n-—1
a+(b*c) = (5.3)
|3 otherwise
and
L g IR wheni4+j4k—2r<n-1
be(cka) = ; (5.4)
0, otherwise
Thus

ax(b*c) = bx(c*a)

Suppose next that n — 1 < r < 2n — 2. Then we have i + § + k — 2r < n — 1,
kt+i—r<n—-1 Hi+j54+k—2r >0 we have

Jtk—t2ititk-r-n-1)2i+j+k-2r20

k+t—-r2i+j+tk-r-(n-1)2i+5+k—-2r>0

Therefore
2% pitith=3r when 1+ 54+ k—2r >0
a *{b*-’:] = (5"5}
0, otherwise
and
) L HItE=2r  yhen i+ 7+ k—2r>0
b*(c*a) = (5.6)
0, otherwise
Thus

ax(b¥c) = b*(c*a)
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By the bilinearity of the operation %, we see that the multiplication * satisfies the
condition (3.2). '

Remark 1 Whenl-n < < %—{l—nj or g[n—-l} <1 = 2n-2,1t follows from (5.3)

or {55] respectively that < ¢ [:z:]n,; > is the algebra with null double product(13.14]

Remark 2 When0 < r < n— 1, the multiplication * doesn’t satisfy the condition
(3.2).

We can obtain from (5.2) the following matrix expressions concerning the structural

constants Cf = [c; kInxn, 1 <4< n, of the algebra < Clz],, * >:

(1) Whenr=1-n,

f T 405 deeeig ]
R A LY
E'1=C'2:”-=C'_“-I=ﬂ,f3"=
0 0 -{}J
(2) Whenr=2-n,
_ (11 0 0]
[1 0 0
1 0 0 0
L I 0]
{:Ichzrnz{:’“"zzﬂ on-l o AT = 000 .- 0
0 0 0
- 0 0 0 0
(n) When r =0,
) i 0 0] [0 0 0 1
1 0 0
1 0 0 0 0 0 1 0O
0 0 . 0
¢l — :{:liz 00 0 0 " ,Gn=
' 0 1 0 0
o0 0
0-0-0 ] 1 O 0 0
4 4
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(n+1) Whenr=n-1,

[ 00 01 ]
00 1 O
= Y =
01 00
10 00
!
(n+2) When r = n,
0 0
0 0
s
1 ]
0 0
(2n) When r = 2n — 2,
[0
% g
0

From these expressions, we find easily the following 2n new Hamiltonian operators

J(%):
J(a™) 0
0 q-.
0 0

[ 000
000

001

10

g L

0 1

-

00 |
01

00
00

il

:{'_';2:['::-'3

| J(@*Y) J(E*) 0 --- 0]
J@) 0 00
; 0 0 0«0
0 0 0---0

rtzcn

Il

€7

Il
=]

J(@?) J(@®) .-

J{@*) 0

(@) J(@) - J(@) ]

0

a3




0 - 0 J@y 1 e o o 0 ] 0-.---0 0
o 0 J(@!)
o Sy dle el b P [do e ke
(@) - T(@) (@) | [0 @) e aen | 00 (@)

6. Examples of Hamiltonian Operators

In this section, we give some illustrative examples.

Example 1 Let the Hamiltonian operator J be given by J () = 2uD + u,, where
u = u(z, 1) is a scalar smooth function and set @ = (a!, 4?) = (11,u2). From the results
of Section 4, we obtain three kinds of Hamiltonian operators as follows:

5 E(2u1 D + tiyz ) 0
Jll:ﬁ} = [
0 I‘]I[EUED -+ u.;z:]
@) [ (af +0)(2w1 D + ugz) + €(2u2D + uzz)  (2uaD + uy,)
Ty ;
’ 7 2uz D + uy,) —an(2ug D + uz,)
Ja(a) {{ﬁf tan)(ZuiD + uiz) + af(2uzD + uz.) £(2u1D + u1z) + an(2uz D + uf}J
aju) =

E(2u1 D + uy.) + an(2ua D + uzz) (2w 0+ uge) + (€ = 8n)(2uz D + Uz )

where £, 1, o, are arbitrary constants. _
Example 2 Choose the same Hamiltonian operator J(u) = 2uD + u,. Set
&= (#',4%,%%) = (v1,u,us); P= (P, P2, P%), Q = (Q1,Q%,Q% € A3. We define

[P,Q]' = [P',@%s + [P%,Q%; + [P%,QY;
[P, @QF = [P2,Q%; + [P2, Q@Y
[F:Q]S = !PRJQE]J

£ opmg : . 2
This is just the Lie product corresponding to the algebra < ¢ |z]s,* ». Therefore we
obtain the following Hamiltonian operator discussed in [14]

0 0 2uy D+ uy.

J(z) = 0 2ui D+ g, 2up D+ uy,

_EU1D+I-111: Zus D + ug, EHED‘I'US:_
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Similarly, define the Lie product [-,-] of 4% as follows
(PQ' =[P, QY
P, Q1 = [P',Q%, + [P*,Q']y
[P,Q)* = [P1,@%s + [P2,Q%s + [P*, Q'
We can obtain another Hamiltonian operator
i 2uy D 4wy, 20D+ uze, 2ugD + ug, -

j{ﬁ} e E‘HED + o, 2us ) + us, 0

2u3D =+ Uz 0 0

which carresponds to the algebra < G[iﬂlg,g s
Example 3 Choose ene Hamiltonian operator given in [13]

U1z + 2uy D w1z + (u1 + uz)D
Jiu) =
uzz + (ug + uz) D gz + 2uz D
Set @ = (@', 4%) = (w1, uz,u3,u4); P = (P', P?), Q = (Q",Q%) € A* x A*. Define
[-FrQ]l - [Pqul}.f

[P:Q]z = [PI:QE'IJ + [PEJ Q]']J

which is just the Lie product corresponding to the algebra < G{z]g,g >. Then we
obtain the following Hamiltonian operator

uyy + 2uy D w1z + (uy +uz)D ug; + 2uzl) usz + (usz + ug)D |
uge + (ug + uz}d ugz + 2us D uge + (us + uqg) D Uiz + 2uy D

J(&) =
Uzy 4 2uzD wsy + (ug + uq)D 0 0

| ugg + (us + ug)D U4e + 2ugD 0 0

Example 4 Choose a scalar Hamiltonian operator J(u) = 2uD + u; again. Set
§ = [El,ﬁﬂ,ﬁs,ﬁ"} = (1, ug,us,ty); P = [FI,PE,PS,P*], Q= (Q1, Q% Q% @) e A1,
Define '
[P,Q1 = [PL,QYs + P4, Q% +[P%,Q%s + [P, Qs

[P, QI ={P% Qs + [P, Q%5
[P,QJ° = [P3,Q%s + [P, Q%s
['EI}:'{';-)]‘II ste IP‘l:Q{]J
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It's not difficult to show that (A%, [-,-]) forms an infinite Lie algebra. By Theorem I,
we can obtain the following Hamiltonian operator

] 0 0 EHID + uyg
) 0 0 EHID + U1r Eufﬂ + sz
J(#) =
0 2ur D)+ 1. 0 Qus ) + uz,
[ Eulﬂ =+ Ui EHQD + o Eugﬂ + 18T Eﬂ.iﬂ + Uy i

Through these examples, we see that, from a lower order Hamiltonian operator, a
hierarchy of higher order Hamiltonian operators can be easily obtained by using the
algebraic approach in Section 2 and no additional verification is needed. As a compar-
ison, if we try to verify directly from the definition that they are indeed Hamiltonian
operators, then even if we know the forms of those higher order operators, we have still
to make a large amount of calculation.
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