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Abstract We give an example to show that there will be anomalous singularities on
the forward half light cone issuing from the reflection point after the reflection at the
boundary of two progressing waves carrving singularities. It perfects the results of [1].
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1. Introduction to Questions and the Main Results

There have been many works on the propagation of singularities of the solutions to
semilinear wave equations so far. In [2] and [3],J. M. Bony. considered the case of
Iwo progressing waves after intersection,and the elementary fact of his conclusions is
‘that there could be anomalous singularities on the other characteristic hypersurfaces is-
suing from M, [] H, after the interaction of two progressing waves propagating on char-
acteristic hypersurfaces i, and f, as shown in Figure 1. In particular , for the following
2-dimensional wave equation ;

(e = f(w) (1. 1)
sWhere a=u(l,x y2,), (I, 2,,2,) E R, X Hf,we know that there does not exist any
anomalous singularities after the interaction of two progressing waves by J. M. Bony's
conclusions. But,J. Rauch and M. Reed presented an example to show there are exactly
anomalous singularities after the interaction of three progressing waves in [d]

In this paper we consider the case that two progressing waves carrying singularities
intersect at the boundary. For this case,Chen Shuxing ([ 1]} has proved for conormal
distributions that there could be anomalous singularities on the forward half light cone
issuing from the reflection point after the reflection on the boundary of these two pro-
gressing waves. This paper will give an example to show the existence of such singulari-
ties. ;

Denote by (f,r,,x,) any point of HF}{EE. "ﬂiﬁ: consider the following problem in
B <RE ) {2, =0)

[(Ju, =0 ., zy > 0 C143)
Ehis.= upt. (1.4)
‘z_':]:ﬂ ) b= |12:3 ':15)

JEI::, =—2) (1529
|
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Suppose that u,u, are as follows
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We will consider the singularities of the solution u, to (1. 2)— (1. 5) on the for-

ward half light cone €= {(¢,z,,x,) [t= ,,f":::fizg v, =0} as £>>10. For simplicity , we

introduce some notations as follows

Ey={(t,x,,2,) |z, +z,+ \.-"'Eizﬂ} +i. €. the plane OF ¢ in Figure 2,

Bf=(a ot 2020}, 57 =z 42+ J 21<0)

|

Zo=1{yzys2) | —zyF 2.+ \a"'?e:=t]} ,i. e. the plane 04 B in Figure 2.
Z¥={—az 4o+ /20=20); Zy={—uz+z,+./2t<0}
Zi=tyz42y) |2, — 2.+ ﬂe"f 2i=10},i. e. the reflection plane OB of OB ¢ about

{z,=0} in Figure 2.
E;I:{$]_33+ -.-"'-IE'E;'}}'E Ea—:'{xi

—+ J 21<<0)

Zo={(ya,%) | —2,— 2, J 2¢=0},i. e. the reflection plane OAEB of 04 B’

q
about {z,=0} in Figure 2.

Ej-:{'“IL_IE+ v'rgf;n}i L= {_zl_iE—f_ v“I;Eg{{]}

Zi={{t,z,,z.) |z, =0} ,i. e. the plane OBB'.
ZE={z,20}; Zf={s<0)
Zi={(tyx,,2,) |t=0},i. e. the plane OMN.

Tr={t=0}; Z;={t<20)

& =X N2 N EZ; N ZE] ,i. e. the pyramid O-BMB N in Figure 2.

6 =the symmetric region of & about {z,=0},i. e. the pyramid 0-B,M,BE,N,,
where B, , M, ,B|,N, are on the stretched line of ﬁﬁ,@,ﬁﬁ,ﬁﬁ respectively.

Obviously ,u, can be considered as the solution to the following linear problem

Dl‘s:f‘k’m_xﬁ
1< 0

ﬂaﬁﬂp

(1. 6)
(L.7)

where % . and Xy are the characteristic functions of & and & respectively.
By the general expression of the solutions to wave equations we know the solution

#y to (1.6) and (1.7) is

ug(p) = (Bx ¥y — B* xﬂ:ﬁrﬁ)(ﬁ)

(1.8)

where p= (¢,z,,12,),t>=0,Cis the backward light cone issuing from g, E is the funda-

mental solution to [ ].
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For the singularities of u; we have the main theorem of this paper as follows
Theorem 1  For (1.2)—(1.5) ,we suppose u, ,u, are the fwo functions given as abone
and 1y = as {<Z0. Then there are new singularities of Uy to be produced on Cy= { (£,7,,1,) |

L .,-'"'rf—!—;rg,rg}ﬂ} as ¢ == ; furthermore , the third total dif ferential of u, does nol erist on
{?ﬂq-

The proof will be given in Section 2 and Section 3. ¢}

new characteristic

] IR

Figure 1 Figure 2

—

Now let's analysis the singularities of u,. Denote by GDEF = Cyl) {t=1} as shown
in Figure 2. Obviously, it is sufficient for us to consider the singularities of u, on

{t=1}. By the choice of Z.(1=1,2,3,4) we know the singularities of u, on GD are the

same as those on EF. So we may only to consider the singularities of u; on G0 and DE.
The method we will use is the socalled “Jump”,i. e. for any ¢ belonging to { ({,z,,z,) |

t=1,7,>0},we consider the singularities of #y (p) with respect to § as 4 is small e-
r———

nough ,where & is dist(g,@DEF).

Definition ] Sﬂp@fﬂ.ﬂe that u(p) and v(p) are two functions defined in a neighborhood of
o If w(p)—v(p) is smooth al py,then the stgularities of u(p) are the same as v(p) ot p=
7y Deniote {his by u{p)f;:u(p}.

By the above definition we obviously have

Lemma 1 Suppose that the planes o, and o, intersect in R®,and one of wedges W caused
by the intersection s divided into two pyramids W, and W, by the third plane o,. If
(E = :‘fc"nw}{{i') w smooth with respect to q for any q belonging to a neighborhood U of p,where
P s an arbitrary point of R, then we have

(F = :fn:nwl;'(*?} “';““ — (B = xc;'nw!){‘f.] : Y get
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2. The Singularities of u; on GD

First,let's introduce some notations (see Figure 2% -

&=t (D5 B =57 (T

A =E;NEFNZE,i.e. the pyramid O-BNC;

A,=Z7 (1 X7 N 2] ,i. e the pyramid 0-B N4 ;

A,=ZF N XS NE7 ,i. e. the pyramid 0-B,M C';

Ay=27 N Z; N &5 i e. the pyramid O-A B, M, ;

A,=27 NEZ; A=A\, =27 N ZF N ZF .i. e. the pyramid 0-A NB, ;

A, =F5 [\ B d,=aN4,=25 [ EF | 27 i e. the pyramid 0-A°M, B.

We have the following conclusion.

Proposition 1 .o = (.= (%) e U4, U4, ,0nd the sets of this expression have
nol any common internal poimts ;8 = (L %) | GF 1) A, 1) Ay, and the sefs of ths expres-
sion have the same properiy as above. :

Proof

(o N&F) U |4 U4
=(Zy N E Nz NZHhUE Nz Nsfz)
JernzinzsinzhHh U@ neine Nz
JErnNITNsEnNzhHhuernz Nznz
=1 ]l rmiUnivyuwu

Clearly 1 UV =2 "NZiNZ;yand I UE=Z  NEFNZ7.

For any point (¢,z,,z;) € N ,we have
ClixiszayEeEy =iz o3 g =1
(ty3y,2,) € ZF = — o+, + J26<T0

{E'riﬂx.'.g) =y = — T, 4+ ..-".I 210

LEyxy,2,) € ET T ey ., L ﬂ.
These equations have not any solutions ,i.e. IV is empty.

By the same way,we have V =37 X7 N Z: £ is also empty.

Hence

(' NBYUY U Us=(1 UmUCr U I)=
Similarly , we can conclude .
o= (e VS EE ) Ay L) A
- It is obvious that the sets of each of these expressions have not any comimon inter—

nal points.

For any g,= (1,cosa,sing) € GD where o€ (0,7/4) as shewn in Figure 2,we
consider the singularities of u,(p) expressed by (1. B) at p=7p,. Given ¢ >0 small e-
nough ,for any dé& (—e,e) , we define

W(d) = (F = Iﬂ'—ﬂ._u-' — H*Ic:nﬁ'}(?ﬂ el b

38



ie u, (p),where p= (1., (1-+d)cosa, (1-4d)sine). For this function,we have
Proposition 2

#(8) ~$,(8) = 2(B % £e= 1y, () — B * L=y ()

Proof By Pmmmtmn 1,we get
p(8) = (B % Lo — B * 2o nz)(p)
=(E* U s + Ex¥opy — Ewldony — Ex ¥, )+
+ E % Ko () — E % %o na (p) -
=13, (d) -+ 9,06 — 3,(d) (2.2)
Noting the positions of p,.%" and S8 ,we know #,(4) and ¢,(d) are smooth with
respect to d at d=0. So,we get
#00) =9, () =B > Kool eiiBoelinn, = E*Xna, —
. — B # %m0, ) (P) (2.3)
By the choice of A,,4;,4,.4; and Lemma 1,we have
| B x %o, (2) ~ — B % = (2
and
E » rﬂ:ﬁd,{:ﬂ b E % ?fcr—n_ﬂ:(;r}
Combining (2. 3) with this we have
$(8) ~97(0) =(B*Xompy — BE» Xomna () +
+ (B % Zopi, — B % Lo ) () (2. 4)
Now ,we come to simplify #5 () _
90 (0) =Ex Yoy () — Ex Yoy (p) -+ B % Kooy () —
— E % X5y (p) + B % X 04 (p) — B % Xemy (2)
=B % X (2) + E# Xpa (@) — E % Zomnr () +
+ E % Xom ' (p) + B # Ko (p) — B % Koy ()
Let p = (1,(1+d)cosa, — (14 d)sina) is the symmetric point of p about {z,=
~0}. Since & ,F and A, are the symmetric regions of &, e and 4, respectively.
P57 (8) = (B % Lo () — E* oo (9)) + (B % Xoonan () —
— Bw ¥ () + (BEx%eng (p) — E# Xena,())  (2.3)
Furthetmore , we have
= NZNeH U NI Nz == U2,
where
& =27 N ZF N EF . e the pyramid O-MBB ,
#E_E*Lﬂz' N X5 ,i. e. O-NBB' ;
o = (¥ n:—fﬂu(z Nz Nz =u2wU
where '
L — o (B B B i e O=M BB
=X N ZF = &F N ZHNET N 2
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= LGB R s ey UNCET T 2 (120D
Combining (2. 5) with this,we have

m{'-ﬂ =FE % “fu r|{.~. ne, N, b (p) — Ex xcfnw;'nz;na‘:h(ﬁ] 2

+ B % xf:fm::l'n.-:;m:":":? D= ;":-:rr"mzl' ne:;n:-:fz":?‘}

Since Xy 25 M2y and I N 25 N 27 are {(¢,2,,2,) |2+, -+ J2i=0,—x
—x,~+ o 21=0,2,<70} and { (£, 2,0 | — 2, +2, - J'I 2i=0,2,—z;-F J2 =0,z <8
0} respectively, the symmetric region of 27 [ &5 () Z¥is Zy [ Zg [ T about
{13:[}}‘

Therefore

P50 (8) = 2(E = xe;ncﬂfnﬁ;nrf}(f) — B * Xe neztnel nz y (p))
Because ZF (25 N ET =0-BB,N= (0-BCB)) ) (0-BCN) = (0-BCB, ) U 4,, and
there are not any common internal points for O-BCE| and A,,we have
5" (8) =208 # Xez nosony (B — B # Xomousesy (1) +
+ Ex I::;ﬂdl ':'Paj ! Ic: |"|.:|1{?’}_:'
As O-BCB| is symmetric about {z,=0},
E % Yo~ onesy (0) = B * o~ conony (1)
Hence .
%,°(0) = $,(8) = 208 * Koo () — B %Xy (2))
Combining this with (2. 4) ,we immediately get the conclusion.
1 ;
Now ,we ¢come to consider the singularities of #. (4) =E§»’J.(tﬂ =F * '{':r_'_""':{ﬂ

B # o=, (p) at 6=0.
Since C, [ 4, and C [ 4, are all empty as 0<"d<"¢, we immediately have

Proposition 3  #.(d) =0 as 0<"d="e.
When —e="d=_(0,we have the following conclusion
Proposition 4 There is a constant €= such that 35(6)==—C (—&)** as —e<ld

Proof Denote by p=(1,(1+d)cosa, (1 +d)sina) where D{m{%;thﬂn
Ps () = (& * fn;‘nas}{f’) oo fc;m )ip)

m (2m) " dtdz, dz,
[(1 — )% — (1 + d)cosa — z;)* — ((1 - S)sina — Ig} AT

€ 4,

m (2m) " \dtdz, dz,
[(1 — 0% — ((1 + d)cose — ;) — ((1 + &)sina — z,)*]"

¢ N4

Cﬂnﬂiderir;g, tlhe. transformations
E= ﬂ':(’zﬂ—zf)m-l-i
{I’L =z, — (1 + dcosa and -z = (2(zy" + 7y 22
2, = 2z, — {1 + &)sina 2, = tg (2, x,) — 7/2
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d(E, 2, 42
127;) — L
e rIpifz}
Let py= (0, (1+ d)cosa, (14 6)sina) and p,,,= (146, (14 6)cosa, (1-448)
sine} are two points in the space O-tz,z,,then by noting the positions of 4, and A,, we
gel

we have

Co N4, 7 &, NA,# S asP € pp

and '
Cr N =@,Cr Nd=DasPE popy,

where the notation “ = ” represents the line without two end points.

By the above transformations , we get

(2x) =11 1 1 dz.dT, 1 dedr
Ps(d) = .[ ﬂ' ] IIE_J ﬂ'ﬁl-ﬁiz
5 > [ Hd-:ﬂ = IH:ia:’ = } (2.6)

af.'_nd 35' l'!-“—'
where (in the space (¢,z,,2,)) p.= (", (14 d)cosa, (1+6}sm ) ac, = {(yzyn2,) |
(f—ﬂz'—({l-{—ﬁjcma—:,} + ((148)sina—z,)*}) and = —{c1—a)9—({1+a:}
cose—z,)* — ((14-8)sina—z,) )2,
Considering the following transformation

t=r (2.7)
“lll'll_
l &= (2.8)
o
Al oo (2.9)
; 5‘{{,1‘;,1-‘}
We have | ———— 22 | — 9 /" rooe
e 2/ sand r; =1 =1{.
4 {z3=7)
f£j+1;|=—'-..|" 2T =j+1‘1='—"—'-,_."r-2—-'r A, H{z§=-f}
e P
’ X
4 ™
4 5
Q
e X e
-‘RH\\ A H - al J,.h‘-.ﬂ 25
i Vg (7, (14 d)coza, (14 d)sina) v
.0t (1 F 8 eosa, (1 +d)sina)
- "x
i
Figure 3 Figure 4

Combining this with (2. 6),we get
#5(6) —r:zﬂ.-)—*f i r' L J- 25,
144 :

e *
H.‘-‘J‘_ rd4,n {=r!= ¥}
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- {'E:'t:l_'r dt” rr at _[ d, (2.10
o J—ca
o, 04,0 {z,=x}

where # =({1—1)°*— ( —)*)2

From (2. 8) it follows that the meaning of dx] in J dry is the length
- |'"|.d$|"|;§=; 1}

element of arcdC;, [ ;[ {z;=7} and dz] of j dz; is also the length element.
r N4 Nixg=r} ]

Without loss of genemlny,we assume the langth is zero when dC, ﬂ.rhﬂ z,=1} (o1
BG,,I"];:‘: [ {z;=7}) is empty in (2. 10).
We consider 3, (14, {#;=7} and 8C,. 4, {z:=1} (The above figures are

sections on {z,=rt}. ) and know that the shortest distance from r.=(v (7, (1-4d)cosa,
(1 - d)sina) (m (tyay,2,)) to A N {12—1'} is the length of p.R,as 0<l7=l

(14 d)sin —'—-:EI ,and thdt from g to 4, ﬂ {z;=7} is that of p,§,where R=(7,0,—

pm———

J 2 odand §=(1,0, / 2 -rj By simple cumputatmn,we get
the length of p 8<t — r<"the length of p.R, as a<_t<_h (2.119
where

a =%[— £ — /21 + &sina

4 (f 4 L2Q + Osina)t + 46 — (1 + HDHV]

b=o[— 7+ /21 + d)sina-

. = 5 :
+ (& — /2 F Osina)® + 4 — (1 4 H]
£ €1+ 45,1]
Since the arc length of [{=3C, [\ 4,[] {z;=7} is greater or equal to that of li=

ac, (14;( {z:==} for any v€ R ,from (2. 10),(2. 11) follows

1 b =
e (6 = — {E’R-'}_Jj ri!'J 47 J. dz, (2. 12)
14 ]

*
N4, Niz=")
In order to estimate . (), we first give two lemmas. :
] ﬁ.
Lemma 2 There is a constant €, =0 such that b—a=C,(—d) as t € [1—]—5;1]

By using Mid-value Theorem,we can immediately get this Lemma.
Lemma 3 There is a constant €', 7> () such that

j dz; = C,(— &)

20 14, lz,= <1
9 !
as tE [ITE’1:| and TE (.-:,b—E(EJ—-:I}]-
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Proof On {z,=1v},3C, [14,(] {z;=7} is shown in Figure 5. We easily know
that the length of 8§, is equal to the distance from S to ac,. N4, {zz=7}, where §,

is on the stretched line of p,8§.
Since
(the length of §8,) = ({ — v) — (the length of 2.8)

=( — 7) — ((1 + 6Ycosta + ((1 + )sina— /2 )
S0, — ) — (1 + 6)Pees’a — ((1 + 8)sing — [ 202
e —é{r —J 2 + o)sina

+ (¢ — 2+ Osina)? + 4@ — A + O]
}-—G;(h — i)

by using Lemma 2 we have
the length of S8, =Cs(—4)

as 1€ (a ,b—%(h—ﬂ)] ,where O, ,C, (. are all positive constants.

Therefore there is a constant ¢,~>0 such that
[ @izaca

0, N4, Niz=r)

Figure 5 Figure 6

Using the expression of % ,Lemma 2 and Lemma 3,we immediately get this Propo-
sition from (2. 12).

According to Proposition 3 and Proposition 4 we have the third derivative of
p(d)=F % I{,’—m‘{p}—ﬁ: * I,;: fa, (p) does not exist at d=0. And ,using Proposition 2

we conclude

Theorem 2 The tolal dif ferential of u, () does not exist on GD.
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3. The Singularities of u, on DE

First, let’s introduce some notations (see Figure 2) .

W =%, [ Z [ Doz eiO-BEM :
=2 N Z5; W=\, =2 1% 2, ie O0-BBEM
ViP=3f N ZF; W =ViNW =2z N3 N2 Le O-BBM

W, — St e e - BB N
Vit =2 N 255 W,=V{P\N¥,=Zf | Z7 N Z{,ie O0-BBN
VP =2 N Zr W =VONW, = 25 (1 ZF N 2 ie O-BBN

@, =Er (1 Ef N ZF,i.e. 0-N,B,B,

B, =X, [ Bf N 27 i-e. 0-M BB,

Obviously , we hm'ﬂe :
=W, | W, , F=22F 1 B, (a1
and there are not any internal points of W, [ |W, and &, [ S5,.

d 3! a "
For any point g,=(1,cosf,sinff), where f& [—},f] . shown in Figure Z,we

come to study the singularities of u,(g) at g=g,. For any 6€ (—e,¢) where 20 small
enough , we define
pld) = (E * e por — B % ?':fg;'ng}{q} (3.2)
i. e. uy3{g) ,where g= (1, (1+4+d)coef, (1+4)sinB). Then,we have
Proposition 5 @(d) ~ @, (8) @, (6)
wihere 5
gy (d) = (F = omnw, — B * :-:.:,.‘—W,}(q)
@ (6) = (E # Icl ARG E % xcé [‘1:@3) (q)
Proof It follows from (3. 1) that
p(d) =F = }:q:: r,wl'liﬂ:' + B % Iﬁ;ﬂﬁ'i{q)_
— E = Iﬂ.—nmlﬁq} = Eati-‘."c.'- nﬁlﬂq) (3. 3)
By using Lemma 1,we get
Fi ;‘d,_-_; A, (g2 r:n — K= "m"ﬂ;nw'l (q)
and
£ Ic*'"ﬂw'l (g) .;;::. == 0 :":-:'_i' r‘rw;('i’}
So
E % Ko, (q) ;ﬂE * Ao~ ! (q) (3. 4)
In the same way we have
E % ?.fﬂ.:nw:(gf} I;:DE * Ko nw:fg) (3. 5)
Combining (3. 4) and (3. 5) with (3. 3),we get
P(8) ~ (B % Lo — B * Zo-na ) (@) + (B * Xy, — B% Xom ) (9)

= @, (d) + ¢,(d)




MNow ,we consider the singularities of ¢, (d) af d= 0. Firsl,we have
Proposition 6 @, (6~ — (@ (8) i (6))
d=1}

@' (6)= B * Xo-qw () @1 (8) = B % KXo qw (@)
W= 2 N 2N 2, ie.0O-MNE
E . Wi =B (7 REE R TR n C e TR M
Proof Denote by
W=t NNz, ieO-MN.E,
W, =X (22t e 0=l 5
Vo= X7 N ZH:W, = V,\W, = Z; 1 Z¢ 0 25 i e. 0-M,N, B,
Vi= S5 0 ZHiW, =W W, = 25 A B N 2T i e 0-M, N, B,
hen ,it follows
&, WL W\#, =W, U W,
nd W,[ | W, does not exist any internal points. So

"F'[{ﬁ} = FE :".'r,:_-_-’_nw! ('E') -+ B xc: nw, ("?j (3. E":'
By using Lemma 1,we have
E % Xo—qw Ca) N[:u — E = x‘ﬁ_r‘tuf (q) =— @il (8)
5 | & £
ind
B # Xo=qu () ~ — B # Xempw (0) = — 91 (@
] 4 S= F

Combining (3. 6) with this we immediately get this conclusion.
Before considering @t (6) and @{*' (d),we give a lemma.

Lemma 4  Suppose that W is a pyramid with vertex O, po= (", 21" L) & W ois an
irary point in R®,

= o
: IE e Iéﬂ} == R(Il T i:gl:u:]
g line through py,p, = (£, 25,25 and py= ¢V, 217, 2.7) are two poinds whick are
lo p, and located @ the both side of pyon I, and satisfy
4 fempty g € pimy
cCOW= {

- R : ? e q - Pa
contgining internal points ¢ € PPy

[ s0e Figure 6). Then
1) There ave comstants € ,C, =0 such that
C\ 6B % Xy (90,077 a5 g€ popy s g7 o and =dist(pg,9)
2) E % %o o () & C**7(py) for any n=>0.

The proof of this lemma can be found in [4]

By the above lemma,we immediately get
Proposition 7

1) @i ()=t (8) =0 as 0<"d<s.
2) There are comstants €' ,C', == 0 such thai

O (— O < piP (6) < O,(= O
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and

{';TI (_ 5)51"2 é wig} [:{E) f_:;; {-:-E(_ {F'}E,‘E

as — < o= ().

We have the same conclusion as g, (4).
Using Propositions 5,6,7 we get

Theorem 3 There are singularities of u,(p) on DE ,and u,(p) does not belong to C*/*17

for any n=0.

Summing up Theorems 2,3 we immediately get the main theorem—Theorem 1

given in Section 1.
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