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Abstract In this paper we are devoted to the free boundary problem

u, = AA(u) {x,6) € Grr
u(z,0) = p(z) x = Gy
9 ﬁlr =0
dA(u) : 3
] { oz, F.'+¢I::I::”J}1J"_ 0

where A () =0. Under suitable assumptions we obfain the existence and unigueness of
global radial solutions for +=2 and local radial solutions for A==

Key Words High dimensions . degenerate parabolic;free boundaty.

Classification 35K 65,

1. Introduction

This paper is devoted to the following free boundary problem

u, = AA(w) (2,¢) € Grr
u(x,0) = p(z) z € Gy .

L= (1. 1)
AW, L @) | =0

L o
where G is a domain in R", A'(u)=0,I"isa surface in R* X (0,T),Gp ris the domain
' bounded by G,,,and {t=T},and (v;v,) is the normal to I
The problem (1. 1) comes from the analysis of the structure of discontinuous solu-
tions for the equation u,= AA(u) (zee[ 71). We also remark that the free boundary
* problem (1. 1) is ,in its form ,the so-called Stefan problem studied by many authors.
The difference between the problem (1. 1) and Stefan problem is the degenerality in
(1.1).

In the case n= 1 ,we have dealt thoroughly with the problem (1. 1). Under very
general assumptions on A(u),@ and 3, we proved the existence and uniqueness of (1.
1) and discussed the smoothness of free boundary. We obtained the necessary and suffi-
sient condition for the free boundary in C" (see [4]).

We will restrict our attention to the problem (1. 1) for a—=2 in this paper and on-
Iy discuss a special case that can be reduced to a one-dimensional prcﬁblem, The funda-
mental assumptions are ;
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(H) A(u)=u"(m>1 is a constant), Gy = B, (0) is the unit ball in R,
ple)=g(r) ,3(x) =¢(r) ,r= (2l 4 e +2)V2,
If the solution ¥ has the form u(z,t) =u(r,¢) and I is determined by the function
r=A{L)(A(0)=1),then as a function of (r,£),(u,1) satisfies

H::u':_—i—n:]u:" 0<r< A),0<t<T

¢ w(r,0) = p(r), D<_r=<_1 C1.20
w(A(L) &) =0, === - :
LA ) = PCADIAD, 0<t<T

It is worth remarking that when n=1,the problem (1. 2) has only one kind of de-
generality ,but for n2=2 , besides the degenerality of u™,there is an irregular factor 1/r,
which results in the important difference between a=1 and n==2.

To solve (1. 2),we introduce the transform ;

pE=R

yzn_i (H}E}, 5|"=""I.|'1?" {HIE}

Set vly,f)y=ul(r,t), then v(y,t) satisfies

v, = g, (y)v, A (L) < g< oo, 0<t<T

) v, 0 = (), g8, <C ¥ <o oo (1.3)
(A, (1) .8) = 0, et oaT
(A () ) = g (LU, 0<<t<T

where for n_>2,
gl =il 2 EF AN LAOSAEE () = e (((n — 2D =)
1 A"

&1 — *-jl-"{!::] _—ee————

r n— 2 n— 2
ﬁ’n‘:?f} - I:]'.T_ e 2}_“”_””'_3}?}({(1‘1 Lot E}E}]ftz—n})y—E{z—lj,-fuhﬂ},D c_': y {-‘: i,

and for n=2,

7.(y) =¥, @.(3) = ple™),q, = 0

A () =— 1), .G = e "P(e™")
The paper is arranged as follows; In Section 2,we study the existence , unigqueness an
regularity of the solutions of the problem (1. 2). We prove that if p and 3 satisfy suit
able conditions, then for n=2,the problem (1. 2) has a unique soluiton u for any T3>
0,and for n =3 there exists a constant ¢, > 0 such that the problem (1. 2) has
(unique) solution in (0,¢,). In Section 3,we turn the results for the problem (1. 2) 1
(1. 1). The key to this procedure is to prove the following conclusion

1

lim (5’.(%’))”L |47 (y,8) |ds = 0

Jmoo

where a<"n/(2(a— 1)) (rZ22),and u is the solution of the problem (1. 2). The u
niqueness of the problem (1. 1) can be obtained as a consequence of a result due
Brézis and Crandall [1].

Nevertheless we do not obtain the condition for the free boundary in ' for =2
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9. Existence , Uniqueness and Regularity of the Problem (1. 2)

Set f(z) = ((n—2)(z+a N V"* (a>2) and f(z) =" (n=2),

(=2 (8)—a,(n=2). Then (1. 2) becomes

u, = flx 4 A()ul, + A (Lw, D<g=< oo, i< T

) u(z,0) = @lz) D"z oo 2. 1)
w0t =:0 | Em e N

at (0,4) = PLACI A (L) Dt e T

here ulx, t)—u{::-{-;l(t} £). We assume that @, denote general functions in (2.1).
If (u,2) is a classical solution of (2.1),then we get,from (2. 1) ,that

wO)) = L =) NG j £z + A" (z,8)ds

™

J f(y + ACs)du™(y,s)dyds

i Ja
L‘(z Dy 4 A (Y $)dyds

_|.

B B H|t--:-
*L

L3

(2. 2)

J A(s)uly,s)dyds
SO W0

where ¥'(z)= — J fes)w(s)ds,Y z=0. Thus we have the following

Definition 2. 1 A pair of functions (v, i) s sud to e a soldion of the problem (1.
2) if (u,4) defined m (2. 1) ,is a solution of (2. 1) ,that is,the following conditions are Ful-
fﬁ!!&d
1) w2=0,0€ (@ + N[, TN LT (@50 and u(0,8=0
2) A(0) =0, Y= 0,2e W 0,T] ;
33 (u,A) salisfied
I{“m{fl’:’n 4+ uy, — Auy, ddzdi

"

T r
=— | p(z)yp(z,0)dx + sz.;“‘}r:‘ dt
i}

o

where & C1(G, 1) vz, T)=p(0, ) =yp(r, ) =0,0, 7= (0,7) X (0,T) and »=>0 is

(223D

hitrary.

4) (2. 3) ts valid.

Suppose that @ and 3 satisfy the conditions

(H),, D=op=K,, |{"Pm}li£ﬁfi-

(H),. 1 is measurable and — M=y — %

where K,,K,,M; and g, are constants.

For given A€ W"'[0,7], We consider the first value problem
w, = flx 4+ AW, + A (Du, 0<<zx<<oo, 0=<t<T (2. 4)
u(z,0) = p(z) 0 < x< oo (2.5)

a(0,0) =0 0=¢t=T (2.6)
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A function u is said to be a solution of (2. 4)— (2. 8),if (u,A) satisfies the conditions
1)—23) in Definition 2. 1. :
Now consider the regularized problem ;

=+ 4O u), + K(Da, 0<Cz<<k, 0<t<T
&) Julz,0) = @.(z) 0<"z<t#
: ul(l,1) =g sl <
=2k, ) =@ (k) 0 il

where a,,p, , ¥, satisfy
™ U == E,
a,{u) = <smoothly connected g/2 < u<Te
[ W=z e R

8190, € C7[0,00),0,(0) = &,5 < ¢, (z) (2.7)
(P | < 2K5, 0" (0) = o (k) = 0(p = 1,2,-) _
and g, — @ uniformly in every compact subset of [0,c0).
A € C[0,7],4, << 0,400} = 0 and A — Al a0 —0

From (2] or [6] and the well-known maximum principle,one easily gets that

Lemma 2. | The prollem (P), admits a unigue solution w, such that

1) &,<<wysSK | +-¢, and thus U= (x4, (&) Yup, 4 2, (Ou,,

2) 0=sug (0,8)<C2K, and there exists a constant © independent of k such tha

iz, <<€, (2y0) € [0,&] X [0,7]
then there is a constant ' depending only on X and M, such that
lay C2,0) — wf (s} | << O (|2 — y[* 4 1t — s

for (z,8), (y,s)€[0,2]x[0,7]. -

Proof The assertion 1) is obtained immediately from [ 2,6 ]. The second one can
be proved by using the similar method in the proof of Lemma 2.1 in [4].
' Proposition 2. 1  The problem (2. 4) (2. 5) and (2. 6) admits a unigue solulion u €
Croe (@o,r) and w™ is wniformly Lipschitz contimuous in . :

Proof The existence of solution can be obtained from 1) and 2) of Lemma 2. 1.

u€ C,.(@y+) can be proved from 2) and the method in [3] or [5]. Below we only
prove the unigqueness. :

Suppose » is another solution of (2, 4)— (2. 6). Then we have

.ﬂ‘((ﬂm — DY, + (o — 2y, — 3w — )y )dzdt
I:ln'l"

.

= LTf(rf” = ?r‘_’"]}r,_eri _ (2. 8)
where @ . and y are given in 3) in l;efiniti-::rn 2. 1. Set
afayt) = msz{Eu + (1 — &))" g
Then (2. 8) ecan be rewritten as

[| @ = @eo¢m, + 5 — ryd

¢ .




T : Ir
= J- Flu®™ — ™)y | di (:2..9)
(k]

0
For any ke O (Q. ;) Jconsider the problem

{ a (ot Fy) Al = i)y, =4 :

Ver = ¥l = 0 (2.10)

where a, & C™ ya,—=a and a,=1/k, |a,—a|—0 uniformly on every compact subset in

[0,00) % [0,T7],;,€EC™ and || A,—A || yr2—0.

Set w= fy. We deduce that w satisfies :
Jl faan,, + w, — A (Dw, = fh

wlt:!]" =" wi:::l}.r S D

Goailils)

The problem (2. 11) has a unique solution w, ,€ ¢*'' (@, ;) (see [10]). Moreover
u, , has the following properties .
Pro |w,,|<max|fh|=M, in @, and |w|<M,A+0)7° (0>1)

d

: _ 3 o
P.; |_rwr.k|=~{-.Mz: and |Ewr,k{?‘$i}!£ﬂg?‘ _

a
T ore 3 r 3 T "
P.: J; J- [“‘“w,,e &l J- j ﬂ.':{wf.xjfri::mﬂ
] I.a:r o0 P

where M, , M., M, and ¢ are constants independent of k. In fact,the properties P, and F,
gan be proved as done in [8],and the property P, can be obtained by multiplying
{, ,),, on the both sides of the equation in (2. 11) and then integrating the resulting i-
dentity on [0,7]X[0,7].

Now set y, ,=w, ,/f, then 1y, ,€C"'(J, ) is asolution of (2. 10). Substitut-
ing ¥, into (2. 9),we deduce that

|

(u — v)hdadt | < || T-"'Iﬂﬂ'ﬂf_. | Elar o I —all L7ea, .,

l
¢ v

T
—|_ G{M]‘Mg-g-!”a)f'»[ ij.-l. — .-jl.-ll + 'TELlp‘uﬂ e EmlMET_J
[l

= Rl N
Let k—oo first and then r—=oo. The proposition is proved.

The following theorem gives the existence and uniqueness of the solutions of (2.
1).

Theorem 2. 1  Suppose that (H),, (H ), kold. Then ,when n=2 ,the problem (2. 1) ad-
mits a solution m (0, T) for ang T7=0;when #2253, there exists £, == 0, such that the problem
(2. 1)admits a solution in (0,¢t,). For n=2 , the solution of (2. 1) is unique.

Proof The uniqueness of solutions can be proved by using the similar way in the
proof of Proposition 2. 1. Here we only prove the existence.

Define the compact and convex =set in " as follows

V={i.2e wh=[0,t],400) = 0,A{t) nonincreasing,
| | X ()] <= 2K, f(0) /e and — g, =iz}
where 4, =1/(n—2) (»2>2) and a@,=co,t, =0 is determined later.

For any AE V, denote by u the solution of (2. 4) — (2. §) corresponding to A.
Suppose that u, is the solution of (P), which converges to u. Let
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]
F () =— Lﬂll{a}::u:,w,sm
Then F,=_0, | F,| ==K.f(0)(see Lemma 2. 1) ,and

FL(0) mifc: — PG — @y — 1 | FG+ A0 G

+ ; T —::-L L:f'tiy + () (g, ) dyds

+ L [ [7 o+ aeua, o — ., |7 e + an@

= én E(:r: — DF @ + WD) (g, dgir

= i J:‘:}'.ll{:f}u*(gr,.'r)dydf (2.12)

Here and below,n denotes the dimension and k the index of sequence,
Define the operator 7" .V—=C°[ 0,¢,] as follows

¥ @) = thz — ) (u(g,0) — ()dy — %J;f(:.: + A", )
i}

ft

=1 'y 4+ A du™(y, T)dydr

2
Iodg Jo
1 (* (=
5z
1

weF Cx — ) (y = ACe))u"Cy,7)dydr

Alr)uly, v)dydr e b )

m—

x o0 S0
As it was done in the proof of Theorem 2. 2 in [4 ], from limF,(£) =% (T"* 1) (see (2.
o

12)) and the independence to z of F, we know that 7" is well defined.
If a=2,for any {,=1T,it is evident that 7V V. If »==3,from (2. 13) and
Proposition 2. 1 one has

fEﬂETﬁ + 2ETF (x)t + FU(x)aKTt + K AL

0
PO8 1 arr () + o637 G :~+HT )1,

where z >0 is arbitrary. Therefore there are constants , — U, depending only on K,
and n,such that
(F(T D@ | = (C, + Cotdx + Cz™ 1t 4 Ctfz + Ct
where y=2(n—1)/(n— 2). Choose z such that the right side of the above inequality
becomes minimum. Then there exists a continuous function fa(t) ,depending only on K,
and n,such that f,(0) =0, f,' exists and is continuous,and
|ECT AN () | = Ffo (&) + Gt -
Thus f-::-r a,>0,choose t,=¢, small enough such that
| (T" A ()| < &, te (0,t.),A €V

This shows that for n;=3,there is a ¢, =0 such that T"VCV.

Now we can use the same method as in the proof of Theorem 2. 2 in [ 4] to prove

W (T A) (1) | <2K,x +

<2K,x +
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that when n=2,the operator T" is continuous. And therefore T”-has a fixed point A.
This A and the solution u of (2. 4)=—(2. 6) corresponding to this A give a solution of
the problem (2. 1). :

Similar to Corollary 2. 1 in [4],we have

Proposition 2. 2 Suppose that (p, 9, Jand (p,,p,)satisfy (H), and (H),. Let (u,,
A} and (uyy Ay )be the solutions of the problem (2. 1)corresponding to (oo, 1) and (gg 9,0 4
respeclively. If @, =, and §, =9, ,then A=A, and v, =v, ,where v,(z,0) =u,(z— 4,(1) ,1),
i=1,2. :

In the following two propositions we give some properties of the solutions of
(2. 1).

Proposition 2. 3 Suppose that (u,)) is the solution of (2. 1), Then for any reclangle A
= (a,b) X (e,d) @y ;,there exists a constant C=C(b—a,d—c,c,K,) such that

' [usmili == on A

Thus u € Ci®(Qg.p) with a=min(1,1/(m—1)).

Proposition 2. 4 Suppose that (u, A) s the solution of (2. 1). Then T exists every-
where and ufEE’I”r{'@u_T)i Moreaver ul (xy,4,) =0 if ulzy,t,)=0.

The proofs of the two propositions above are similar to those in Proposition 3. 1
and Proposition 3. 2 in [ 4 |. Here we omit them.

Proposition 2. 5 Suppose that (u,A) is the solution of (2. 1). Then there erists a con-
stant C y depending only on K | , such tha

Flo A tius =0 ) (2. 149
w the sense of destribution. Thus the limi mu® (z,8)=u"(0,t) erists everywhere and
: ==
uT(0,8) = $(AIA (D) g.'eiin . [0,T] (2. 15)

Proof = We use the notation in the proof of Theorem 2. 1. Let u, be the solution of

(P), which converges to u. Then
Uy = Flz + A0 )up, + A(fdu,, 0<Taz<Tk
Put P,=f(z+2,(t) Jul, » Then P, satisfies
Py =Ff(z 4+ 4L )Imw'P,,, + (Cmaw® w.flz + L) 4 3, (D)P,
+ mala — Duw 2wiP, + mauw® 'PE
where w=uy ,a= (m—1)/m. From this and Proposition 3. 3 in [4] it follows that
P.(z,¢) =— C/t, t >0

for some C=( (K ). Therefore (2. 14) holds.

The relation (2. 15) is only a consequence of (2. 14) and Proposition 2. 4. In
fact, (2. 14) shows that

=cprliifsEs iy (2. 16)
T J; FG + A .
is increasing in z in the usual sense. Hence limu® (z,¢) exists everywhere. And (2. 15)
—=}

now follows from (2. 2).
Proposition 2.6 Suppose that (u,A) is the solubion of (2. 1). Then for any s€ (0,

) ywhen a<<n/2(z—1) (n=2) ,we have
4
lim'(‘f(:}j“j

Fm= 0

ur (x,7) [dr = 0 (2. 17)
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for O<s<{<"T. Further , e also have that Sor eack £ (0,7
limel(z,t) = 0 (2.18)

gl v ]

Proof As we have done in the proof of Proposition 2. 5,we assume that u, is the
solution of (P),,u,—u in C* (& ). Since

' ty = flz 4 4 e(8) Jup, + A, L), (2. ]9}‘
we get that for x,y< (0,4)

J {?"!:I—{If-r} = ?ﬁh{y*fl’}tﬂf e e 4“-'1 {T)[

HE(I-’T} 'E-I!-J_{j! P} J
flx + 4,(1)) e FREDD

= [ i, (z,8) ?JFE
G j [.f'{f—r A Ef:}} Flz) i
Letting k—co, we obtain that for z,3C (0,00)
ff*fr (2,7) — 7 (y, 7))
= J ) [ ) uly,7)

feF ity ~ fly + ,ﬂ»(f}]
ﬂ(z:ﬂ' {E} 5
e I(ffﬂ + ACt))  f(z) gz (2. 20)

From this and the defmllmn of f it follows that

hm | J-u (z,7)dr — ju"‘(y T )T |

1
= “mlﬁ[fﬂﬂr+ifth el TR ey
+ 2K, lim dz| = ()

This shows that {u" {x,s}ds} Sﬂtlﬂflﬁ'ﬂ Cauch}fs rule in x;the function is also bounded
from Lemma 2. 1. Thus

f

lim | w'(z,8)ds = ()

Femo I

exists everywhere in () L
If there is ¢, € (0,7 such that t{¢y) =0,then there exists X=>0,such that for T

X,
jﬁuf{r,ﬂ):fs B %J(tu)
(]
Thus
'!..'] I!{' . .] -—
EL w (r,s)ds > —fei(ﬁ.:.} ; z=zX
and

Kty = Juﬂ“{:ﬂ,s}is = if{tu}(r — X)) + qu“{l'.' s)ds
i
which is a contradiction. In the SAIME Way we can prove that there does not exist t£ ((),
T) such that [{t)<"0. Thus f{tj—'ﬂ for all t€ (0,7),i.e.
lim r;f{.-c,,s}ds =] e (0,T) (2, 21)

T+ )

o4




On the other hand,from the definition of f it follows that
= ay
o Fly 1 ACL))
Therefore we see, from (2. 16) and E] in Lemma 2. 1,that the function
3 I'fy
t

is non-decreasing in r in (0,co) for each (. HEHLE limul (z,£) exists for every t& (0,

[ =]

e Al t e (0,T)

Ty ,and the limit value is just zero by (2. 21). Thus (2. 18) is valid.
Below we prove (2. 17). From (2. 19) we have

; x |1I” ﬂ-(f-}iﬂl {iﬁ!ﬁ:}j
m Tz 2 }

Since f(z-4 4, ()’ (z,t) = —C/t,see the proof of Proposition 2. 5,where C=
C(K,)>0,(2. 19) shows that when =y and {=s,

g
I |uf Cxyv) —up(y,v) |de

J-rJ-: utr{?:fj ey l;{T]Hls[E*T:Jd NP JI J-t dzdT
5

FGF A FGF A
f f{zuf;im ?c{::f == ) A ff;uffgmi
s J-'J';{‘ﬂ fly Hiy;?f)id 5 %Jﬁr : flz fi(fﬁ
‘““I [fr:zﬂf;?;m ?c‘ﬁ]‘i .,u:’“‘r*“:’ f{uflhni

‘ dzdt .
e i LLHEJer}}
since A= 0.

Letting k—coo , we get
ulz,t) wlz)
jh! (zgr) —ul(y.7) |dr = _[[_f{ -]—J»U}}mf(z:_' dz

iy ulz,7) L‘EEJJ' . dddr
.[]1 () Flr=f R{T}}{H 7 s A ) flz-+ alx))
Then letting z—=o<, and noting ¢, f =0, from (2. 18} (in fact, the inequality said

[
above implies the fact lim J |ul(z,s) |ds=0) one gets that

==

i = uy(z,l) 2ol dezdT
[ #ipae) ¢ ‘"{*L fz + T i I F(z - A0}

e ] i
f(z+ A(t))

When n=2, f(z) =¢e"", and by L’I—Immtai rule, it follows that for any «<T1,

T - : SRS
0 <im (1 [ Jar ooy lar < [ 6, -+ 2 time o

g e Do e

- e‘”"”[fn + -'iﬂ]l lim gie‘ﬂ““'?" =0

pmwo LelE



When n=23, f(2) = (z4-a )2~ V0-3 & follows that for any a<Zn/(2(n—1)),

0 <iim (£ )" | am(y, o) 1

O 5
f EC a2 gz
g .= —i i Er:nfna-]},."l:ﬂ—E}J- . .
l i ‘I_ o }Iir:l(ff —l_ ﬂ'"} : I:Ef —I— ,:]ll:g} —i_ uﬂ)?{ﬂ—]};’tn—fj
2l n— 9 (g + a )iet=DiGe—2+1
=| K, 4+ = . - 24 | &
( (i & ELTJ Za(n — 1) Cy + A(L) + EB]EE---EJI{A—E; 0

Therefore when a<Zn/(2(n—1)) »i==2 we have

lim (£ (50" |

=

which shows-that (2. 17) holds.
In the preceding discussions we assume that ¢, 3 satisfy (H), and (H),. The fol-
lowing theorems show that these conditions are not necessary and can be weakened.
Theorem 2. 2 Jf 4 sotisfies (I )y and @ satisfies
(H)): =0 is measurable and o K| ,then
1) for a=2,the problem (2. 1) admits a unique solution (u,A) m (0,T7) for any 7>

u (y,7) |dr = 0

2) for n =3, there erists =0 such that the problem (2. 1) has a solution in (0,6 and
the solwtion is unique,

In addition, Propositions 2. — 2. 7 are still true except (2. 18). In Theorem 2. 2,
Cu,A) is'a solution if and only if (u,2A) satisfies Definition 2. 1.

Proof of Theorem 2. 2 The unigueness may refer to Theorem 2. 3 in [4]. The
last part of the theorem can be derived out from the following proof of the existence
and Section 2 in [4].

Now we prove the existence. Choose a sequence ¢, which satisfies (H), and is de-
creasing and

| m,— ol Loy U
ot

Suppose that (u,,4,) is the solution of (2. 1) corresponding to (g +3). whose existence-
interval is (0,¢, ,),where n=2,f,=T,when 22=3, from the proof of Theorem 2. ]

one has
¥ (2,0 =< (C, + .0z + Cox' ™'t 4 Cytfz + Ot

where 2> () is arbitrary, €y -— Cg are constants depending only on =, K, and y=

2(n—1)/(rn—2). Since >0 is arbitrary ,choosing = (C,t/(C, 4 C,1))"* we have

2 i e C
ij..* l:f::l I % F—{I:.L':fll -+ Gzt}f'iiju-- _|_ E?(Crd#-'gjJ{P—J:'."'r.’i'-'.f—]h'z L E_5'E = .fn('!')
1] o 0

Clearly f,(1) is continuous and FoC0)=0. Therefore there is a constant £, 0 such that
folt)<<a,,tc [0,4]. Thus ¢, ,=¢,>0.

From Propositions 2. 2 and 2. 5 we see that for i, (x, ) =u, (x— A, (L), ) there
hold

ﬁi;ﬁt:ﬁrz}f‘“;ﬁt;* =0
= A A s = 0

and
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e (048) = PCADIAC)  a. e in [0,¢,] (2.22)
Without loss of generality , we may assume that lim¢, ,={,,then £, ==¢,™>0. Thus

T =]

ACL) =lim A, () in [0 (2. 257
E—=oo
ulz,t) =limu,(z,t), (z,8) € g, : (2.24)
koo =

exist everywhere and the convergences are uniform in any compact subset in '@M ML=,
{,],by Propositions 2, 3,2. 4 and 2. 3. Moreover from (2. 22) we have
C (A

O S HRWOIKO =u0,0 a1, + LE2 () 5,9

<C, + i‘:"‘gu T AWM =0, te 6]
Thus |2,(e) |<IC/e, for tE [4¢,] a. e. . From this and A=<0, (2. 23) one can prove A
exists and A € L'[0,4,], &—2' in L'[0,¢,]. This shows that the convergence in (2. 23)
is uniform.

Alter the discussions above »We easily prove that (u,A) is a solution,as done in the
proofs in Remark 3. 2 and Theorem 2. 1 in [4].

Remark 2. 1 If ¢ satisfies (H), and p is locally integrable in (—oco, 0] and
Plxr)=_—ep=<70, then

(1) when a=2 for any T>>0,the problem (2. 1) admits a unigue solution in (0,
T)y :

(2) when n2=3, there exists .20 such that the problem (2. 1) has a solution in
(04¢,) and the solution js unigue. In addition , Propositions 2. 2— 2. 7 are still valid.

Theorem 2. 3 Suppose that p sotisfies (H)| and 3 satisfies

(H)5:9 is locally integrable in (—©2,0] and there exist C>0 and a=>— 1 such that

P(x) Q_GIII#, 11'-"::[]
Then the problem (2. 1) admits a nnique slution in (0, T) for any T =0 when n= 2 yand whea
n==3 there exists t, =0 such that the problem (2. 1) has a solution in (0 w1, ) and the sidution is
unique. In addition , Propositions 2. 2— 2. 7 are still valid.

Proof (1) The proof for n=2,

By Remark 2. 1,if we assume that ¥o(z) =y (x) —¢, where {s,} is a decreasing se-
quence tending to zero, then for any T°>0 the problem (2. 1) has a unique solution
(a9 4 ) »corresponding to (e, 4,) ,which satisfies

0 <, (2 — A () 8) = u,(x — As (L) L)

Sl — 40,0 << - < e, (2. 253
AP ases e s B (2. 26)
R (0,0 =g (A UDAW)  a. e in [0,7] (2.27)

From (2. 27) »Propositions 2. 4,2. 5 we see that there is a constant C=C(K, ,z)
>0 such that :

P4 < (A H(D = 470,0)
<0 +S$<c aein [o7] (2. 28)

Therefore




|a @yt e K e i [, T ] (2.29)
which shows (by (2. 26)) that A({)==lim 4,(t) exists everywhere in [0, 7 ]. Hence

(2. 25) gives that limits -
limu,(z,t) = u(x,t) in  or (2.30]
]
lima,(t) = A{t) e 0T (2. 31}
P

all exist.
Again, from the assumption (H)},for { ,6, € [E,'T:l ihere holds
1, | [ 2 .
Ulij | Ay | A (mddr| = l_[ PG (Ddef SOl — 4] (€= CCEy,e))
£ f

Thus .
| 2,80 |*F — [ AU 1| <O Y — &
|24:,C8) — A(t) | =< C |'E: tiaty € [E!T] (2. 32)
where f=min{1,1/(14a)}. This shows that the convergence in_(2.31) is uniform
in [£,T] for any £=0. In the same way we may prove that u is continuous in @ ¢
(e, T]. Thus the convergence in (2. 30) is also uniform in any compact subset il
Qn.rﬂ [,7] for any £>=>1 . : . '

On the other handsince & and A are non-increasing functions and A4,(0)=A(0)
=), there exist ¢ and ¢, & [ 0,7 such that A, I[n.r_']: 0,4<"0 for t€ (& ,T] an

“[u‘:n]=ﬂr"~“:ﬂ for L€ (4, T]. Note that ¢ is decreasing as 2, is. We conclude tha

lime" =t,.
k=

Choose £* € (t,,T] (if L,="T,Then A,=A= 0 which is trivial). Then A(¢")<C0.
Since lim A, (L* )=A(2" ) ,there exists K such Ihat_ AT )*‘i%ﬂu(r} for ki}f{- And
m::rnm:::;usncsﬁ of A, shows that

AD KKK FAEH <0, >0
Therefore, from{(H), and (2. 28) we obtain that

c[%m(z*ﬂ}ﬂt-mr}[gﬁ ~ a.e. for A

|| << C. acesin [t ,T] (2. 34
We conclude that there is a function f, € L'[¢" ,T],f.==( such that
A B ritie TRl
Thus '
e
a2 = J:_Al{s){ia'
implies
£
A — Au) = [ 15
for € [t*,T]. This shows that Xexists a.e. in [¢ ,T}and A =Ff,. It is easily
HE



that €2. 32)" is valid for 4. Note the arbitrariness of £" (Z={;) we sce that A exists a. e.

in [4,, 7]
Secondly , by the formula

AR) — A(LT) = J A (s)ds =— J A (s) |ds
and the mnliﬁuity of A (see (2, 32)),it follows that
2 J |3(s) lds = A0 — Aty) = ACD)

that is X € L'[t,,T]. But A() =0 in [0,£, |, we assert that A exists a. e. in [0,7] and
A€ L'[0,T] and

Ay = in: o LAE0, T (2.33)

In fact,since limt' =t,,for any ¢ =0 there is K* such that for =R

-ﬂt,_li{ﬂ: {ﬂu_i_é
From the definition of ¢ ,for any g& L=[0,7],we have that when k> K 3

o :
[La=mal <[ 15— #1ol + 1 | G =20
< ol Claa ) = =5
At ) =y — ) )k 'J’:.‘..,':‘“ — ]
B oo, ;

fim | m—mm < o2l gl o A0+ & — Ay — )] >0 (B> 0)

Bt o

Thus

Jim Z.ﬂ:*(t}y{tjda = J:I{E:‘lg(t:}dd Y ¢ € L”[0,T]
i.e. (2. 33)holds. Similar to the proof of Theorem 2. 1,by (2. 30),(2. 31) and (2.
33) we can easily prove that (u,A) is a solution of the problem (2. 1). The uniqueness
is just a consequence of Theorem 2. 2 in [4].

( I ) The proof of n=3.

As n=2,suppose that y,—y—¢&,. Let (u”l ) be the solution of (2. 1) correspond-
ing to (@,1,) whose maximal existence-interval is [0,f, ,]. From Theorem 2. 2 and the
discussion in ( I ), we see that it remains to prove that {{ ,} has a positive lower
bound.

From (2. 2) we have

00 () =L z

it e —j £z 4+ AUl (2,7)dT

1 ;f’ £y + B i




— 2 J( TG Ce vy D agds
— '--J-J A (v )u (o v dydy (Y 7= )

where ¥, (z) = —J f(s)9(sdds (2<C0). Thus there are positive constants C,—C| de-

pending only on K, (see the proof of Theorem 2. 1) such that

|7 (A0 | < (O, 4 Ct)z + Cy™ 't + Ot/ + Cit, Vx>0
where v==2(n—1)/(n—2). Therefore by (H); it follows that

|4, 48) |° = (@, + Ct)x + C2” "t +Cfz + Ct, Y z2>0

Choase that z== (Z,t/(C,~+C;t))"/%, Then

| A:66) | = 20, + O 00 + 05(0, ff:: Rmtitan e T i A
This implies that there exists a constant T', such that for ¢ [0,7, ]

1

|}‘~1(£)|~E§ﬂ,=m

which shows that ¢, , =T, ,i.e. {f, ,} has a positive lower bound.
Remark 2. 2 When »2=3,the condition ${z)=_—eg,|z|" can be replaced by
(1), HO<—eG@+a) 2] —a,<a<<0,  fra>—1

3. Existence and Uniqueness of (1. 1)

In this section we study the existence and uniqueness of the problem (1. 1J. We be-
gan with .

Definition 3. 1 A function u and a surface I' are smd fo be a solution of (1. 1) if

1) uz0,u€C(Gr N THNL7(Grp), Y e€(0,T);

2) I'isa W"' surface,that is,there exists a W' function g(z,t) which defermines I’
by glx,8)=0;

3) For iy T € (0,T)

[J @i+ s = o000 J]sﬂ(x:-mfds
J'f D
where (¥, ;%,) 18 the normal to I', f & O 1((3“,. ), Fiz, ‘T")—Dm&i(}”r 18 bounded by I', {t=
0} and {t=T},Iy=0I1)¢0,T).
The basic assumptions in this section are
ACu) =u",m>>1 is a constant,@,=B,(0) —— the unit ball and
(H),: wlz)=gp(|z|)=¢p(r) is bounded and measurable in [ 0,7 ], 0="e(r)=
Ky,
(H),: #(z)=9(|z|)=¢(r) is locally integrable in [1,o=) and there is a con-
stant C >0 such that :
if n=2, #GrIs=—CUnr)’, l<r<oo,p>—1;
if ﬂ;b'_..-a, Plr)=——C(r— 1), I<r<loo,f=>—1,a<—m.
Now suppose that @,y satisfy (H)) and (H),. Define @,,#, as follows
if 1=2,p. (=9 "),y=>0, @) =e TPl "), ,y<0;
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if 2223,0,(1) =p(((—2g+1D V), =0,
P () =((n—2)y+ 1) 72 WE=D , w(((r— 2+ 134"),
—1/(n—2)<7y<20 ' (3.1)
Then (e, ,4,) satisfies (H)] and (H),(or (H);). In fact,for a=2, o, satisfies (H)}.
Secondly ,for n=2,by (H), and (3. 1),
$(y) = e Pple™™) <<— Ce™* |y|" <<— Cly|’ (since y<T0)
and f>—1. Thus 3, satisfies (H)5.

2
ﬁ,{y} =({R vt 2:‘9’ . ljzcm—nhz—njﬁfj(((ﬁ = E}y _|_ 1)1.-"-:2—:}}
L— 01— ((n— Dy + 1)V . ((r — 2y + 1)t DNE

= o . 1 = (a4 2{n=—=130/n=2)
=—C |yl [?I aF m)
1

R_E(a+2£n—1])::»—:12{—u+zn—2}=—1. Also p>—=1,
thus #, satisfies (H):.
By Theorem 2. 3 and Remark 2. 2,the problem (2. 1) has a unique solution (v, ,
2,) corresponding to (g, ,¥,),whose maximal existence-interval is (0,7T,) and A, (£)
>—a, where a,=co,and a,==1/(n—2) for n=3. Define
A)y =749, p(z, ) =v(—In|z| — F),D, =2
A = ((n — D) 4 1)V

2 __
H.(#:E} = E-*'.( |:I.'i L T i:{f,_') uﬁ]

For a2=3 and y& (—ﬂ*—:l—-,ﬂ) 3

Since a<_ —n, —

o (3.2)

n— 2
I, is the surface |z| = A (), n=3

Then we have

Theorem 3.1 Suppose that A(u) =u"(m>=>1),G,=EB,(0) and @, salisfy (H),
md (H),. Then (u,,I,) defined in (3. 2) is a solution of the problem (1. 1) corresponding to
':‘F!?bj-

Proof We prove the theorem only for n==3. For =2 the proof is the same. For
onvenience , we omit the foot mark » and appoint k to denote the foot mark of sequence
- and # the dimension of Euclidean space.

First,we,in addition ,assume that () =g@(r) satisfies
(A): @(r)EC'0,1] and there is a constant K, =0 such that
a' [(Wm}f(le E‘;Ezwl_lr < {;ﬂrlj
Itis easily checked that ¢, (y) (see(3. 1)) satisfies (H),.
From Proposition 2. 1, Theorems 2. 1, 2. 2 and Remark 2. 1 we see that »] €
@y, ) L= (Go,p) , AEW[0,T].
- Assume that {5.1} in (P), is non-increasing ,
” il =t “ w0, ” @ — 28 I L Flyayi e 0 and &, — 0

From Section Z,we know that v, converges to v=u,. Set

u,(x 1) =‘Fx(“|I.}E__-; l '“‘ 2 (8) 15)
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A () =((n — 2)5@) + DYV

pi(2) =g (((r — 2) |z| + 1DYV™™)

P,(1) =((n — 2)(k + 2,00 4+ 1))V

Gi— , 8) ;s PuCh) < J2l <t @) . 0 < e T}

Then u, satisfies
g =—"4u o ined,
u(z,0) = gzx), PB(0) < |z] <1
uy(z,1) | lel=a ey = Fis 0<i=<_T
u iyt | el=pp = @k}, 01T

(3. 3)

Let O<Ze<C1 and G, ,={ (z,¢) je<Z |z | <2, () ,0<"t<T}. Since EmP,(ﬁ) =0 uni-

formly ,we may suppose that G, ,CG,,k=1,2,. Put

= {0 lz] < (v — DA + DVE, 0<e<<T}
Then G,C G, because 2, is decreasing. Therefore, for any € €' (Gp), f (2, T) =0,
where "< (0,T),it follows,from (3. 3),that

ﬂ-ﬂu;ﬁizdi = H.ﬂur fdzdt (3. 4)
[/}

ki

By means of Green's formula

r
u, fdzedt = — || u,fdedt + || ufrds
itsion Cn|
-— -[‘ut_f‘d::-'cii 2 P (23 f (2, 0)dz
0,4 B (" B (0}
_ﬂ‘ﬁu:‘fdﬂﬁ =ﬂ " Afdzdt + —rr # (f % — uf %)dmﬂ

|51 =4,¢0

Lt

u_r J (f—-—- g)dma (3.5)

Obviously,
lim ||, fdrdi =— ﬂﬂf,if{iﬂ — J @(z)f(z,0)dz (3. 6)
Hm&;’., B (07\B (0)
lim || u7 Afdzdt = ﬂ u™ Afdrdt ; (3.7)

ﬂ
where (e, =Gy ”\{B (GJ * (0, I"}} and u==1u, is defined by (3. 2).
MNow we prove

Lemama 3. 1
sufr [ au f J" i | :
lim ! Sl e S — 2 A A (B ) A () dsdt
lfﬂjﬂ | IéJ-:1L Eﬂ\\f & x ,:‘-]y)dbdg % | I:-Jamf( hﬂ(

where A is defined by (3. 2).
Proof By (3. 3),we have
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T 3 T af
3= L J Uy ;;dadt - E,;L J ﬁdsﬂ
x| =200 |2 =4 ()
Then I ~=0(k—=oo) since g0 and f€ 1 {s bounded.

From the dcfiniti::-n of u, and (P} ; one has

R 2l 8 -

2l = :«,m bl =40

‘T

= — j f(x,;}v’l‘;(ﬂ,_.ﬂ][ﬂl_'dsﬂ
Sl | :

i

o7’ ' . :
—— [(w©0a | @)1
Jo =120

T |
= [0 [ (o) v+ 1

] =3, (0 _
EIE}‘}"Iﬁ (33]
Set
F(1) = J (D) F (2,05
=] =4 (&)
then

e L o (0,0 F (Dt

Note 7€ W'"'[0,7"]. Similar to the proof of Theorem 2. 2 in [4] we get

lim I gy =— J: v (0,0 F(dt =— J-:;::_{L{z))i’,(aﬁ(:}:n

]

(see also Proposition 2. 5) where , is given by (3. 1). Thus from (3. 1) ,we have

| s

e
lim I 5, #L HCA, () (A 1A (O F(E)dl

.
=[ @) ARG J GOV (£ dsit

i |=| =4 (6

=-T J A YA () f (x,t)dsdt (3.9

I | =4 ()
Since @ satisfies (A), there exists a constant € mdependant of k such that

|5 (0,8 | =<C. Thus

| T, QE:L i J AN " f(z t)ds — J‘ (A (Y " (z,t)ds | dE

b2l =2 (&3 |2 | =4 8
Also T' <—T and A, converges to A, uniformly. We have , therefare ,that lim [ 5= 0. This
e

and (3+8),(3. 9) yield
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tim L, =" [y 2 0fa,vas

R =] =2 ()
But I,—0,the proof is then complete.
Lemma 3. 2

tmf, [ (15w ZJeu=

Proof Obviously, it is nnly to prove

lim _[f isit = J—’J-f—-:iads

|:-4- h:i-ll

[ oSl Sl x| scn
[2] =&

F—n
- 1!;(5—_—'—1 == A ) ,!)grl (e,t)dt

where g, (e,¢) =¢'~* ‘[ f(z,s)ds. Define g(0,¢) = £(0,¢). Then n€C°[0, 7]
|z2]| =
C'(0,T]. Hence as it was done in the proof of (2. 40),o0ne gets

Iuﬂ (——— — 2 (ﬂﬁi)fh(e t)di

= v}'(fn—:—_-z—l = «Tﬁ(#}',ﬂ)ﬂlihﬂﬂ

[2] =2

which shows the lemma is valid.

We continue the proof of our theorem. From (3. 4)— (3. 7) and Lemmas 3. 1—
3. 2,for any ec (0,1) we have

ﬂ{uf;+u"d_f}d::dt=—- L 0(@)f (z,0)d
(@

= j f(x.a)ysfa,(ﬂmcs)m'-ﬂ 1[ 2 f(a,t)astt (3. 10)
fzf= -l{.} |£] ==
MNotice

| ™ S Tr,, Ez_"-—l 2
J: .[ e L ”r(_ﬂ?-é—"- J-.EE},#)J_ Fx,t)dsdt

fz|=¢
:5c.—13;{-—2}r1,:(ﬂ =il 1{;},3)92{6,5)&:
0o

ﬂl—'g

where d=¢""",g.(6,¢) = J f(x,8)ds € L™, Thus Proposition 2. 6 or Remark 2. |
2] =t .

yields that for any o (0 S
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i) 7

l'Lma[""E :,-;("’2;'__7—2-1 = lfﬂ}aﬂ)ﬁ{ﬁ:i){ﬂ

- iimﬁ"“”““ﬂr v}'( =l W ,:)gzm,sm = 0 (3.11)

a0 E_E

On the other hand,
g ’ﬂ;'.(_f;;zz_l i 1{:),5) J fla,t)dsdt
) A

i
o J EI—-:_I -
</ ”-(T——z"’*'iﬂ**)

SCGIfl=lofllm-o<20 | fll Nl -o—~0 (00

Therefore letting &0 in (3. 10) and using (3. 11) and the inequality above,we
obtain

&= 1 £l 4= { is)dt
|| =g

ﬂ -fﬂft-i*u"Af)dr;z_:— J’ #(2)f (z,0)dz + E | J £, DP(A) Adsit

fEALdE S |z =4 co)
(3.12)
Note that I" is just the surface |z |— A (#) = 0. Thus ¥, =— A (). This shows that
(u,,I") is a solution of (1. 1). In other words,we have proved the theorem when (g,
¢) satisfy (A) and (H)_.

Now suppose that @, 4 satisfy (H)| and (H),. Choose i, such that they saiisfy

(H)} and (A), {®4} is decreasing and @, in L' (B, (0) ). Then by the known result,
there is (u,,A,) satisfying (3. 11). Set

giatl
A0 = (=D O+ DY uGn = (21 )

Then (v,,4," ) is a solution of (2. 1) mrfespcrndirfg' to
pr (@) = @,(((r — 2)z + 1))
¥ (2) = ((n — 2)z 4 1) TR e=Dul (g — 2z 4 1)MED)

Notice that {g,"} is decreasing. From Proposition 2. 2 it is seen that {v,},and
h},is decreasing, {4 } increasing,i. e., {4} is decreasing. As it was done in the
proofs of Theorems 2. 2,2. 3,we may prove that {T,} has positive bound and therefore
Ty=limT,>>0. Meanwhile, there exist 2* € W"'[0,T] with (A" 2'=20,4* (0)=0,and

, FEGﬂ(@n,wnﬂ [e, To D NL™ (Qo,r,) such that :
P Y = A s o >0, o= vll e npmp—=0 k=>oo0)

(3.13)
Hence Eni,(!)-: ((r—2)4" (D 1)Y*=4(t) uniformly in [0,T,] and

o — L@, st 0

3 : 2—:._
‘where Gir =1(x,); |2 |<TA(t), 0<t<<T,} and u(z,?) =v(IIL—_2—L—Am,s). Us-

g (3.13) once again ,one gets that 4,4 in L'[0,77],¥ T'€ (0,T,).
Without loss of generality, we assume T"<_ T, for all & Since (x,, A, ) satisfies
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LY

(3.12),we have,for any I"<_T,,that
ﬂ (s -+ uf A dxdt

ﬂ"r"l
= f @, (x)F (z,0)dz +_J: j FQzy )92, (1) ) X () dsdt
B[{{?} i=| -J.. K] Y
where f&€C*'and £(z,T") =0.
Clearly ,
EnJalmmxmx,um; < L:m}w(m);f(:r,ﬂ}d:: (3. 14)
Jim ﬂ (usf, -+ wrAf Ydzdt — ﬂm)ﬂx,um (3. 15)
Ex...-r' . LT
But
Uf f Flz, 294 (D dsdt — J-T f{:,:};s(m})m)mz}
: ] =2 1) ﬂ'J=|=1-:=:n
' dl ,
= UD ﬁh(ﬂ))litfﬂ}[ J- flz,t)ds — - j f(m,t)ﬂfs]cfi]

- el=a e |z | =A{e3
s J f(:r,s}E.#if:l;(tJ}A;{ﬂ — P (&) Jdsdt

|z | =26y

= "-'r| —I_ J..I";._l-
Since A, converges to A uniformly ,one gets

(3. 186)

lim sup’ J- flz,t)ds — J- Flx,t)ds

t—m i
[o,7] gl =4, ce) [=] =100

= ()
Thus limJ, =4,
oo

To prove limJ, =0, we first notice that .

=
[ B R W@ | = |97 G (D) ((r — 2Dar (1) + L) TP cany ()]
S I @)WY O] = [9,00,0| <00, aein [o,17]
see Propositions 2. 4, 2_. 2. And (A, (E)A (L) is also non-positive we obtain that

PO (DI > p(AEIA @ in LMo, T]
Therefore for any o€ (0,7,

lim|J,] =1Tim
k—eoo k==

j_ B OIXE) — DX D) ( f £z 0)ds)dt

|z | =4Led
+ iim Efwn:mﬁ;m — POADIAW))( j f(s:sﬂtis}tﬂJ
: | x| =ACE)

<hm || 7 1] g=o, [ 4(T7) l( Jf:;ﬂ(.a*(:})ms}m_ + | f }um X (;}d;])

: Ay
s:.zm.nfufmrnj] [$¢) [ds =0 (o — 0)
(1141 :




where , is the measure of unit sphere in R*. Thus limJ,=(. It then follows, from (3.
b—=za
16) , that

hmjﬂ j F DO ) A (Ddsdt = | j £z OB A (D dsilt

lel=4 46 31y |z]=ALe
This and (3. 14),(3. 15) yield that

‘U-(u‘f‘ + w"Af ) dzdt = — J a;:r{:r}_f(:: 0)dx + J‘ J Fla, DA A (E)dsdi
|=] =ads

where FECH(G, ), f(z, T =0. Obviously ,u and I'; || —A(£) =0 also satisfy the
other conditions in Definition 3. 1. Thus (x,I") is a solution of the problem (1. 1).

The uniqueness of solutions of the problem (1. 1) is based on the follwing proposi-
ion

Proposition 3.1 (Brézis and Crandall [1])Suppose that A(u) satisfies

(H)pe: A:R'—>R'is non-decreasing and contiruons , A(0) =0.
Let u and i satisfy u—a & L™ (Q) L), ACu) — AGi) € LT(Q) , where @=R* X {0,
). If for any FECy (R [0, T) ) there holds

[ =25+ caw — a@)apaie =0

then u=1 a.e..
This proposition is a summary survey of Theorem 1, Proposition 1 and Remark
W22 in (1]
Theorem 3. 2 Under the hypotheses in Theorem 3. 1,the solution of (1. 1) is unique.
Proof Suppose that (u, /") is the solution obtained in Theorem 3. 1. Then there
exists a W' function A(t) such that I is determined by |z|— A(¢) =0. What we want
to prove is that if (v, 1" )is another solution of (1. 1) then u=v,I'=1I",
In fact,since (v, ™) satisfies

H (of, + v"Afddzdt = — J

w(x)f(x,0)dr + Hf (x,t)w{x)rdsdl

B (0}
Pr-

(3.17)
fhere I =N [0,7],f€ " (G), f (2, T )=0.

On the other hand,dencte by B,(T Jthe set {{z,); |z |<IRE, D{t{?"} Choose R
such thai B, (T") DGy y. For any f € C* (B (1)), f | jsj=z=1F le=r =0, (3. 17)
holds. Moreover ,

ﬂ P(@) fdrdt =— j qﬁ{x}f{x,ﬂ)rﬁz-k_[[f(z,am(x:wﬁs

B AT :I‘-.,G'J_;er BH{G}'&H:{'!'?}

(3.18)

‘Thus if we set

vlz,t) in o
F e J .h‘
{I'E'ﬁ} {#:ll:i':l iﬂ ﬁﬂ-':,‘.l.! _,.Il "'-,":;I-r,TI
i T
o
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then for FEOT (R ({],T')J ,_f(m,’f’}=ﬂ,f{;¢,gj ={),for ir,:] large enough , we have

J*J o T+ A A dadt = — L,*ﬂm)f(z,ﬂ}ﬁ

where ¢(z) =@ (x) ,2€ B,(0) ,¢(z) =(z) ,z & B, (0).
Similarly ,setting

ulx,t) in @

Pz) otherwise

Uz,t) = {
we also have

,
o o @t 4 s apria = | #@1G, 00
Thus for any fECT(R* % (0,7)) one has

L[ @—5, £ Ca = 4> apimsi = 0

Clearly , A=u" satisfies (H),,in Proposition 3. 1. Netice for T'<T,Gy and @, are
all bounded domains. Therefore for || large enough ,I/—¥ =0. Thus U—Ve&L' L~
In the same way,we have AU — A(V) € L. Henee by Proposition 3. 1,we conclude
that U=V This and the definitions of I/ and V and $<_0 yield u=w,thus "' =T,
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