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Abstract This paper concerns the Cauchy problem for semilinear wave equations
with two space variables,of which the initial data have conormal singularities on finite
curves intersecting at one point on the initial plane. It is proved that the solution is of
conormal distribution type,and its singularities are contained in the union of the charac-

teristic surfaces through these curves and the characteristic cone issuing from the intersec-
tion point.
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1. Introduction

Consider the semilinear Cauchy problem _
Py = f(t,x,u), (¢,2) € QC R (1. 1)
#(0,2) = g(z),  Au(0,2) =k(z), z€ &N =0CR (1.2
for a second order strictly hyperbolic partial differential operator P=P(t,z,3,,d,). We
are concerned with the singularities of the solution u knowing the singularities of the
Cauchy data g and k.

There has been a considerable amount of work in this direction,e. g. Bony [1],
Ritter [10],Rauch and Reed [ 9], Metivier [6,7] and other papers cited there. The re-
sults applied to (1. 1) — (1. 2) show that the singularities of u will lie in the character-
istic surfaces through the curve to which conormal singularities of g or & are confined.
In case there are more than one such curves present in &) {t=0} ,the singularities of u
may spread to the characteristic cones issuing from the intersection points of these
curves, as was illustrated in an example given by Rauch and Reed [ 8 |. The relevant
analyses to treat this type of phenomenon were later carried out independently and by
different methods in Bony [ 2] and in Melrose and Ritter [ 4 ], where the singularities of
I the solution « to (1. 1} for £==0 were studied khowing its singularities for {<0.

We study the case where the Cauchy data g and & have conormal singularities a-
long finite € curves which can intersect each other transversally. The result shows
that, locally in ¢, the singularities of the solution u to (1. 1)— (1. 2) are localized in the
characteristic surfaces through these ciirves and in the characteristic cones from the in-
lersection points of these curves. Bony [ 3] has announced a similar result which as-
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Sumes uC H*,5™>3/2, and deals with weak singularities. In our result , besides the dif-
ference of the methods, it is assumed only ¥ & L™ and the Cauchy datum & may have
jump discontinuities (i. e. strong singularities) over curves,

The spaces of conormal distributions uszed to describe the singularities of solutions
are equivalent to the spaces in [2] and [4]. We prove the main theorem by an im-
provement of the approach in (4], where there is loss of derivatives for the result. This
defect is overcome in Our treatment.

2. Notations and Statement of the Result

For the sake of simplicity , we will state and prove our result only for the speci al
wave operator & — of — 3, . The proof in this paper is valid for general second order

strictly hyperbolic operators with O™ coefficiénts,

Let 2 be a bounded region of containing 0, o=a() {t=0},and

P=3—2 — 2 (2.1)
Suppose £ is a domain of determinacy of @ with respect to P. Let € ,i=1,-, N, N>
1,be € curves in w intersecting transversally at one point,say O= ((, 0, 0). We as-
sume that there is no other intersection of any two of these curves. The two characteris-
tic surfaces through C; are denoted by Sia8upii=1,+, N, the characteristic cone from
0 is
o= 1tz ,2,) . 8F — z; — 2 = ()

It is assumed that G j=0,4,2N,are all regular ¢ surfaces inf £\ and have no
triple intersection there ,otherwise we can shrink £,

Following the notations in [47,[5],for any Lie algebra %7 | of vector fields (i.
e. homogeneous first order differential operators) on a manifold M R™, we define
the associated space of conormal distributions

LIX(M,” )={v e LI(M) Vi Vio € L20M) |

for any RIS et S e s St | < p < oo}

For any finite collection & of = submanifolds of M ,define the Lie algebra of ¢
vector fields
e e C™(M,TM) .V is tangent to each submanifold in &}
Now let
E, = {CN O, = lywe= N
5= {8N\0,.8\0,0}, 0 S i<l j= 2N
The main theorem which will be proved in Section 6 is
Theorem 2, | Suppose ue L™ is a solution lo the Couchy problem
Pu = f(t,z,u), (£,z) & 0 (2. 2)
ul(0,2) = g(x), du(0,r) = i(z), zE€ w (2:550
where & C™(Q2 'Y, P is given by (2. 1}. If for tnteger 0=kl oo, there exists some P
2 such that
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M
7:3,9:0 € L7 (0) N D LL (0,5 (F,)) (2 4)

o
then

w2 € 2, LLN®,% () (2. 5)
Qi s 2N
There is loss from p=2 in (2. 4) to 2 in (2. 5),while there is loss of the Sobolev
space index in Bony’s result. In view of Proposition 3. 3 in the next section ,the loss can
be made up when k=oo.
Theorem 2.2  Theorem 2. 1 is still true for p=2 if k=oo.
When k=co, the conclusion (2. 5) implies € ¢ (2% U~ 8,). The spaces in
N

: fis
(2. 4) admit functions with jumps over ,,i=1,--, N ,although g is then continuous.

Particularly, (2. 4) with k=oo permits 3,g,4 to be piecewise C°° functions with jump
discontinuities over ,,i=1,++, N, so we have

Corollary 2.3 Suppose € L™ is a solution to (2. 2)— (2. 3) and
gsdgsh € C(o\ U ) (i. e. piecewize C™7

1l N
Then uez C (6N U 8.
i 2N

It is interesting to ask if u in Corollary: 2. 3 is also piecewise ™ ,i. e. u € C™(Q

\'\ml,;lﬂ 5;)yas was indicated in [9] when N = 1. An example will be given in Section
L Ly

7, however, showing that piecewise €™ data may not produce piecewise C™° solutions

when ¥V >=1.
3. Vector Fields and the Associated Algebras

Definition The set M R" is called cone-like set (with respect to ) if
iz, 0 <A l,zEMNUICM
for sume small neighborhood U of O. If M is a cone-like open set of R™,then define for o€
R! :

C=(M,0) = {p € C(M\O) Y 0,8 = 0G* 1), ¢ =[50 )
It is easy to see 8
CTUM) G OO, O O s O o O Yad O e (e LR 3 0] )
If cone-like open sets K,,a€ .o ,form a finite covering of MO, then there exists a
partition of unity 1 = ZI‘,,IF & ™% M,0) ,subordinate to that covering.

aic
For any collection % of finite C™ submanifolds in M\@,define the Lie algebra of
singular vector fields

ty'“(g) T {F = Zﬂial 14 E Gm‘l{M!G}!i = ], ,m,Vis
i=|
tangent in M\O to each submanifold in %}
Clearly %7, (%) and the associated conormal distribution space [,L7(M,% (%)) are
=" (M ,0)-modules. Note that for %’; (respectively &°,;) in the last section, % (%)
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(resp. %7 (57,0} is a €*"-module generated by % (F,) (resp. ¥ (5,,) ) ,therefore,
it is easy to prove by induction on & that
Lo, % (F,)) = L0, (F)), =i N
LLM(R,% (99,)) = LLN(R,% (), 0<i< j< 2N
Setting :

(3:23

F = {O\D:i=1,",N},5 = {S\O.0 < i < 2N}
The following lemma is readily verified.
Lemma 3.1  For any ¥, (resp. X)) €= 1 =lisI N (resp. 0="i< j=" 2N, support-
ed in a cone-like open -S‘E-ﬁ-f'f.'f?‘E!SF- K ;) having the property .
Ki(resp. Ki;) does not intersect with some cone-like

netghborhood of |J (C:NO) (resp. | (S/NO))
1=i =N D 2N
i i Fed

(3. 3)

then one has :
XiF ) 9 ,(F) [résy. by o Oy e ey R
Proposition 3. 2 The spaces of conormal distributions in (2. 4), (2. 5) can be deseribed

s
SLL 0, (F)) = LL (0, (F)) (3.4)
i=1
>, hLNR,97(57,) = LI(2,% (57)) (3.5)
O i g BT

Proof It is easy to see %7, (¥ )20 (%) ,hence ILL"{M,(;ET,{%?J)C!#L’{{H,
¥ (% )),s0 by (3.2),

N
S LN 0, (F,)) C L0, (F))

im= ]

i
For the reverse inclusion, take u € LM @, (¥F)) ,then u = leu where ¥, &

e

C™"(@,0) ,i=1,+,N,form a partition of unity subordinate to some cone-like open
covering I, of w\O satisfying the property (3.3) for i=1,---,N. According to (3. 1)
and Lemma 3. 1,Xu € I,.L7(w,% _('¢,)) ,therefore

LU(6,% (F)) C > LL(0,F.))
i=l

thus follows (3. 4). (3. 5) can be proved in the same way.

The next proposition is a consequence of an inequality of Gagli_ardu—ﬂirenbﬂrg
type and essentially contained in [4].

Proposition 3. 3  Suppuse % | is a Lie algebra of ¢ (or singular) vector fields on M,
a bounded (or bounded cone-like) open set of R™. If v € L7 (M) (LLT (M%7, ) and ¥V, oor,
V&% | then

ViV e DMy, <<tk

consequently , for fEC™(M,C) ,f( « ,u)E LL7(M,% ).

This proposition means that the space I,L"(M,% , ) is an algebra closed unde
nonlinear composition.
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Lemma 3.4 For ang VE % (&) ,there s V€% (€ ) such that
V=V 4 (a4 3 + 0,3, + a9, (3.6)
where ﬂ;fﬁﬁEGm'L(ﬂ‘ﬂ),iﬂﬂ,l,E, el ﬂ;lg:[;m[]:btc =) for j:}-‘l"'?N'
Proof It is easy to see & (&) %, (%9,;), 0=i<Ij<_2N,so from Lemma

31 ] §
xijl#’.:':?j == xijl:}ra{?u':)
for a partition of unity 1 = E Xk € ¢ (Q,0) ,subordinate to some cone-
i fu 2 N
like open covering K,; of @\O satisfying the property (3. 3) for 0=i<_j=2N. There-
fore
FAE) = Z xiﬁ?’a(gij} (3.7
O=5i< e 2N
and 1 == Z X;V,; for some V€% (5 ,). By an appropriate choice,we can as-

O F 2N

sume that K, {t=0} =& if i=0 or i+ N7 j(i. e. 8,5, (@\O) = &) ,then for
such i, j, XV, has the form (3. 6) with b=0.If i+N=j,i=1,then S,[]8;=C, and
there are only &,,5,, 5 ,C; in suppX;;,so XV, is generated there by TE’,E:‘ (t — g, (8 —

i oig
. i A jv
9,0, (¢4 9,203, +9, ) ,where r= JE+ 4y and S;={t—y, =0}, 8 0= {t+u,=
0},0,= {t=0,y,=0)} after a C* local coordinate change to (f,y,,¥,)- As ¥, (¥) is
generated by rd, ,#,d, in suppX,;, j=i-+N, ¥,V has the form (3. 6) with b= X c for

some ¢ & C*'", thereby € €' and =0 on C.. Since K, ,, y[1C,= & for mz: from
(3. 3) ,b satisfies the requirement of the lemma.

4. Commutator Relations

Lemma 4.1 Suppose (&) is a real nondegenerate quadratic form en R™ and it is nei-
ther positively definife nor negatively definife. [f q(&) is another quodratic form on R™ salisfyimg
{g E R ;p({) = D} = {‘; e R":q(&) = ﬂ'} (4. 1)
then there i5 a constant ¢ such that q(§) =cp(S). :
Proof Without loss of generality . we can assume

il+ “1.1
p(E) = D& — S & 1 m<m (4.2)
; =1 j=m_ +1
g(&) = D a6k;s 6y = ay (4. 3)
=1

From (4. 2),p vanishes at gi; 1,6,==1,&=0 for {7, j, |<<is—m < j=m,s0
(4. 1) results in a4 2a;,4-a,,=0,hence

a; = 0ya, =— a,, for ls i< me < j=m (4. 4
As p also vanishes at §,=1,¢, =¢, =1/ J2,6=0 for (1,5, dreme<iFis
m, (4. 1) together with (4. 4) result in
| =0 for m,<j #j<m (4.5)
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Similarly we have
t; == ) (T [ b T iy = ., . (4.6)
(4. 3)— (4. 6> mean Just g(&)=ua, p(&). -
Now consider .s’?,F,Ht,ﬂéi&;?ﬁ’,.?ij,ﬂii{jﬁﬂh’,as in Section 2,let
Fy=18,8), 0<<i< j<2N
We know from [4] that all the vector fields % (o ) »#(57,) are finitely generated
£ ~modules. Denote by ¥™ the space of m-th order pseudo-differential operators, by
2" the space of m-th order differential operaters with € coefficients.
Lemma 4. 2 Tae Tollvaring comnedetor relptions hold in £,
[(F (0, Pl=0" e p oy . oo () +¥, 1I<i<IN 4.7
(¥ (&£),P] = ¢= « P + Dt - ¥ (&) + Diff!
D= i< j=C 2N (4.8)
In aidition , the coef ficient operator of Poin (4. 7) can be written in the farm

3
b -+ ZA.- * ;5 Where 4, € ¥%,q,,b € CT(R2),a,(0) = 0 (4. 9)

=]

Proof The assertions except (4. 9) have been prove in [ 4],s0 what are left for
us to do is to show that 4, has the form (4. 9) in the following relation coming from
(4. 7) ;

[VsP]=a,P+ > BV, + B
FE &

whete 4, € ¥°,B,, BE V',V €% () and {V,, € )} Is a finite basis of (G,
Let I?fhr;r».*f}.p{iﬂ,r;‘raf;jﬂ"}(hﬁ; +4) be the principal symbols of [V,P],P,A, re-
spectively. By the fact that the prinmi'pal symbol of any operator of P(5,) vanishes at
(Lax) =0, we get

Q{G;Tﬁf} — ﬂrfﬂ;f,ﬁ}p(ﬁ';n@)
Since g is.a quadratic form of (r, &) and p is a real nondegenerate quadratic form satis—
fying the condition of Lemma 4. 1,it implies ¥(O; 7,4 ) =constant. It follows immedi—
ately that

Pi739,8) =9(037:8) + (6237, Oy + 4,853 7, £),

i Py {511$T1‘5)‘!

which results in

3
..-"1.1_] — E-l' —|_ Zﬁ* & ai —f"' A_I
i=1

b is a constant and A_, €% Thus ends the proof,for AP can be absorbed in the last
term on the right side of (4. 7).

We denote by Diff'” the space of first order differential operators with & coef-
ficients. Note that the singular vector fields %, () in the last section is in Diff'"' and
is a finitely generated 0™ " module.

Lemma 4.3 Suppose KCQ is a set which does not mlersect with I'.= { (t,2), (14+e)

. eEEEEf-I‘r‘E} for some e=>(), Then
LY, (&), P] = @7"° - P Dift"~! « %7 ¢52) - Diglr—! (4.10)
holds i K.
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Proof From [47],there is a finite generating set Vo Wrid o Jo e =)y of
% (57;) such that {V;, 1V :d €& ,6€ ")} generates ¥, (&7,;), where 7=

jiﬁ—rf—i—z%EC’“‘" ,therefore we obtain from (4. 8) and (3.1)
[ 6 L Bili= ot s oL DI = (o) Dittiee, ,
1=Si<_g=2N (4.11)

2N
It we take > %y = 1 on I, and %,;=0 on K in (3.7),we get

=]

F(F)= D, LF () K
I i 8N
The relation (4. 103 then follows from (4. 11).

5. L*-estimates

Let P be as before,GC {t==0} be any bounded region which is a domain of deter-
minacy of @[] {t=0}. Introducing the notation G(8) =G {{=4},we know the fol-
lowing classical estimate with parameter 7 for »& H BTG

T
L | 72 (T @) |Pe” iz + ﬁj .L | V.| o™ dxdt
e i (e

T
= GJ. |T,_1?J([],r)]2d~x T Gj. L | B - Py e "dzdt, n = 1
a

a0 LL}
where 7, depends only on P. Here and below in this section,C will always mean a suffi-

ciently large constant independent of v and 5. Combining the above ineguality with the
following obvious estimate

T
[ o (@) e e+ n [ [ (ol eat
(T ! {52

T
= SJ {wC0,z) | *dz + {l"*.r;"]L L”[H,_ﬂge_’#dﬂ::ih n =0

{0y
we obtain

Lemma 5.1 Supgose vE& H'(G) is a solubion lo
Pv + (4,9, + a,3, -+ ;3. )0 irn =F, anLbe 0Ty i= 0,1,2

Then v satisfies the estimate
(n— m)_ﬂ- | 7 ...t | 2e™ "dxdt + (7t — ﬂf)ﬂ- |v | 2o~ dzdt
& o

QGL | %0l %8z E’?}EL |w|*dz + Uﬂ_’ﬂ | £ | 2e™ " dxdt, n = 1
() (0 o

2
where 7, = E’(Z | a |l oy + 4 181 ety + M) and C s also independent of G varymy W
g i
a fired bounded sel.
Now let K be a cone-like open set in @[ {£=0}. We assume that K is a domain
of determinacy of K (0)=K[) {t=0} and has no intersection with = {(t,z): (1+
)=zl Lot} for some £=0.

Proposition 5. 2  Suppose w G (K) is a solufion to




Puw 4+ (a,d, + a;3, + a;,.:’;‘,:)w + b = f

where a, € C™ 71 (K),i=0,1,2, bEC™ X K). If for cER ,p— JExi 422,
:r_'_“w{D,r),?'_”a_,w{[},z} € LAK(0)), »2fC LAK)
then
r ¥ 2=V w € LK)
Proof Decompose .
K =_L}__J[ i K= ((2) 25D mp et A
=i :
There are K;,i=i;, domains of determinacy ,so that
K= R (i) eCT l2a bl g Tl 027
thanks to the support properties of the solution operator to P (i. e. property of finite
propagation speed). It results from usual regularity theorem that we H' (K)). Applying
Lemma 5. 1 to K| with n=_2',, where 7, is to be decided » We obtain
(n, — C) Eiﬂ AV | e P dads (n; — Cﬂ)f"ﬂ Jw|2e=F 0t gz
&

] [

(57, |2 4 mﬁgzﬂj

K (0}

%-‘:’f

x:w:u

\w|*dz + ¢y to— N FIPe ™ aza (5. 1)

2 —_—
by the fact that 2 a1 ey + /B 'y = C2' . Now fix 5, >C,there is another

J=0
C such that C™'<Ce %<1 on K, s0 with still another C', (5. 1) gives

Eiﬂ AV | Hdadt + 23“'.”‘ | *dzde
K K|

%GJ., | V0] fds + _r:fzf"j |w %z 4 €27 || | £ | dude
K (0} K () 4
I'-I‘rn':I

<0 ) ” | V0| Pdx + Eﬂij lw|*dz 4 2-’H if|f’-.-£x{faJ (5.2)
jmi—m L AN S0 T :

1'+m|I=|
where in the last inequality, we have used the fact that KiC |J K, for a fixed m,.

je=i—m

a

Multiplying (5. 2), by 2% ang summing them up,we find

Z [Ezﬂfi’-f-cr:lfﬂ ’ ?r,:wizdmig + Ea?{ﬂ-fﬂ'l‘--?}i'[]. |wi3d‘xi‘£}
K, K

i}i' 3
i2gn) 23&1"— ‘dr
“‘h{ag% [ HI{D.‘.I! ?szl +
+ 2ﬂf]+ﬁ“J~ iwlﬂ‘fj: _I_ Ezf—l'fznl-u}iﬂ- Lf |2IE\I{H1 . {'5_ Ej
K b} K, p,

- Since r~27"on K, (5. 3) implies
[ 29wt 4 1oty
&

iﬂj

{00

Ur=eV,a0? + |r | 5)dz + ﬂﬂ |12 f | 2ddt
i
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The proposition follows.

Remark 1 If P ig replaced by a second order sytem = with diagonal principal
part P, Proposition 5, 2 still holds.
Remark 2 The result is valid in t=_(.

6. Proof of Theorem 2. 1

Lemma 6.1 7The comdilion (2. 4) tmplies that there is a constant ¢ such that
Py — o) € L™(0) ) LI (0,9 (¥)) (6. 1)
where 1= ,,.-';:_.:f—f——zg,

Proof After a coordinate change with C™' coefficients we can assume all iy 1=
=<V ,are straight lines, hence there exists a finite basis (Vo:a€ &} of % (F),hav-
ing the property that the coefficients are all homogeneous of degree one with respect to
(z,,2z,). Such singular coordinate change does not affect (2. 4),s0 we still have g &
W™ (0) CC"(w). We will prove that e=g(0) suffices to give (6. 1).

Without loss of generality , we assume @ to be star shaped with respect to (7, since
We are only concerned with some neighborhood of (. Define the operator 7,0 (w)—
C7 (@) by Te(z) = jlwiﬂﬁ}di. It is readily seen that T extends to L' w)=—=L'(w) for

o
2<g=.co. Obviously we have

2
(=) —g(0) = >z, + T(3,9) (6. 2)
=]

Because the coefficients of ¥, are homogeneous of degree one,we have
FFTZTF“ on f{v & L'{w) .,V € LiCw)}, 2<C g~ oc
30 (2. 4) implies T [Hf‘gf} - LM (o, % (F)),i= 1,2. (6.1) then follows from
(6. 2).
Since the Cauchy problem (2. 2)— (2. 3) with ¢,h€ €™ will develop ¢ solution
¥, We can assume without loss of generality that
T g & L7 (w) N L (0,%,.(&)), Pz (6. 3)
in addition to (2. 4), i A
The proof of Theorem 2. 1 divides intp two steps, the first of which is to do the
analyvsis outside i
I.={2) (4P =22 4 22, e>0 small
while the second is to do near I',. The first step consists of
Proposition 6. 2 Lol K be a cone-like domain of determimacy of w\O. Suppese K[| I
=& for some £=>0,the conditions of Theorem 2. 1 and (6. 3) are safisfied. Then there erists

some ﬂ'E_?(D,é:l so that

et P
T

uy VR w € LIANK,%.(59)) (6. 4)
Proof Let {V,;i=1,+,!} be a finite basiss%f'*?",(?}.and put U/, = {P'.-,"*i";-_ﬂ:
m<j}. We first prove inductively on 0=C j=_k the assertions
e (o S P (F@BU ) € LYHEI (N,
i




for O0<isk— (6.5),
Uy a.U; € EL(K) (6. 6);
For j=10,(6. 5),, (6. 6), follow from (2. 4}, (6. 3) ,Proposition 3. 3 and a usu-
al regularity theorem.
Proof of (6.5),,,(6.5),,(6.6),=(6.5),,,:From Lemma 4. 3,U, satisfies
.@jﬂj + Diff" =l = F, in K (6. 7),
where 5 is a second order hyperbolic system with diagonal principal part P, f; has the

form

F.o= =0, z fF i (taz, ), -eU, I e
Using the eguation (6. ?}j and Lemma 3. 4, we see that the traces U | ,m0+3:, .U 540 Vet
exist and

U.i+i |t-[!l = {y’h;{:%?:' ':U;'h:-n;' = (P {alﬂj |:=l]}
Feliilemp = F AT, |me) + 0« (3] 1=0) + (BF;|.=o)
where b=h(t,z) is as in Lemma 3. 4,hence 5(0,x)a €% (% ). Therefore, (6. 5) .,
results from (6. 5),,-+-,(6. 5);and u],_, € L.
Proposition 3. 3 and (6. 6); imply F;, & Li.(K),s0 by a usual regularity theo-
rem for (6.7),,,,(6.5),,, implies (6. 6),,,,thus ends the inductive proof of (6.5),
(6. 6); for 0= j=Ck.
HUW that (6. 5); has been verified for 0= j={k and p=>2,then there exists some ¢

= {D,%] so that

. P T s 270U me € BP0NO), OGS
We are in the position to use Proposition 5. 2 together with its remarks to get
rf L2538 TICR) S st s k

i? b
which is eguivalent to (6. 4).
The next step,as in [4],is to show that there is X& ™", ¥=1 on I, for some >

0,such that

N
Xuyd, () € DILEI(8,% (Fy)) & LS, 7 (7)) (6. 8)
Consider it in {-=0 for instance,take ¥ with suppX {{=0} ,then #= Xu satisfies
Pi= f(t,z, ) + f in 2 (5. 978
g & L2, suppz < {t>= 0} (6. 100

where
F=[P,%Ju+ XfC,z,u) — F(L,x,Xu) ;
If suppX is contained in I, for sufficiently small e=>0sothat I',[1C U (&5 REDY.

I=5i=l jEn BN
= {0} ,we obtain from Proposition 6. 2. :

P
it € LIRS 5)) (6. 11)
=1

We fix this ¢ and ¥ from now on.
The assertion (6. &) iz proved from (6. 9) — (6. 11) by an argument in Section 7
of [ 4] with slight modifications ,which we sketch below.
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First note the following wellknown -

Lemma 6.3 Let 52 be a second order pseudo-dif ferential system with diagonal principal
part P, The solution U € &7 (R*) o

Pl =Fe L, (R,LL(RY)), suppU C {t =0}

is tn HL_(RY).

Without loss of generality , we assume f(f,z,0)=10. Consider

P, = X;f (tyz 8) + f., supp, =0}y i=1,+,2N (6.12)

where

2
MASF LI, (57)), D fi—f
‘ 5 il (6.13)
II. Cw'ntﬂiﬂjs qu =1

oo 1

and suppX, does not intersect with some cone-like neighborhood of

24
E;!éwfiﬁuﬂﬂ;'}‘gﬂ}- Then & = E :E,- . Because »~"* 7L (R CLL (R, LL.(R*})
L4 i x

i i

for o2=0,it is easy to see #,€ H'(2) by means of Lemma 6. 3. To prove

8,9, € LL (2,97 (5.)) (6.14)
from (6. 12} and (6. 13) ,an iterative commutator argument as in the proof of Propo-
sition 6. 2 is needed. The corresponding commutator relation is (4. 7). Since the act on
f, of any operator in the form (4. 9) preserves (6. 13) ,the iteration works by making

use of Lemma 4. 2 and 6. 3. Thus we prove (6. 14) for i=1,++,2N,and (6. 8) fol-
lows.

Now take K,= Q\I",,then supp(1— X)) K,. Proposition 6. 2 for this K, means
that -

(1 — %), 3.0 — X)) € LLXQ,% (%))
which , together with (6. &) ,proves Theorem 2. 1.

7. Example with Piecewise ¢ Data

Consider the Cauchy problem ,
(F — & —&)u=10 (7.1)
w(0,2,9) = 0, 3u(0,z,3) = ulz,z) (7.2)
where

1, 2> 0,y >0

0, otherwise
is a piecewise 7 function. The solution is given by

1 s pip i :
ullyz,5) = E_HL —.L ulr + peosf,y + psind)dd
-.'.'-IEE R p.::! v

(7.3}

wlzyy) =

Direct calculation gives

)

3 ¥
e i -+

TATCSIN ————— | garcsin —
JE— 2 ki ¥

Sl
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Etayz e 24ty 2 ”
e e SR [ — ATCsIN
7 ; & — (2 + ) & — ) ‘|"!I’
in the region,z<Z0,y<<0, >4+ 5" ;and
S Ty

Fult,z,y) =
( ¥ 2% &2 — 2%) -f':ﬂz gt — g
Clearly &u is not bounded when ¢*—z* —y*—=0 in the above mentioned region,so the
solution u to (7. 1)— (7. 3) is not piecewise O,
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