BOUNDARY-VALUE PROBLEMS FOR INTEGRO-DIFFERENTIAL EQUATIONS OF ELLIPTIC TYPE[®]

Ma Tian and Yu Qingyu

(Dept. of Math., Lanzhou University)
(Received January 12,1988; revised May 3,1988)

Abstract In this paper we study the existence of solutions to the Dirichlet problem for a class of integro-differential equations of elliptic type by using the weakly continuous method.

Key Words Integro-differential equations; weakly continuous operator; Choquard equation; weak solutions.

Classifications 45K05;35J60.

0. Introduction

The integro-diffferential equations of elliptic type occur in many practical models in nuclear physics, theory of quantum field and mechanics.

Ugowski [1] and Tsai Longyi [2] considered the following problem

$$a_{ij}(x)D_{ij}u + b_i(x)D_iu = f(x,u,K(u)), x \in \Omega$$
 (0.1)

$$u|_{\partial\Omega} = \varphi(x) \tag{0.2}$$

where K(u) denotes an integral operator, and $\Omega \subset \mathbb{R}^m$ is a bounded region.

Ugowski discussed the existence of (0.1), (0.2) by using a successive approximation. Tsai Longyi discussed the existence of (0.1), (0.2) by combining methods of supersolution-subsolution and topological degree. Politiukov [3] defined a concept concerning ε -supersolution and ε -subsolution, and discussed parabolic equations by using this method.

What we shall discuss is the following problem

$$\sum_{|a|,|\beta|=n} (-1)^{*} D_{a}(a_{a,\beta}(x, \Lambda u, R(u)) D_{\beta} u) + \sum_{|\gamma| \leq n} (-1)^{|\gamma|} D_{\gamma} b_{\gamma}(x, \Lambda u, R(u)) = 0, \quad x \in \Omega$$
 (0.3)

$$D_{y}u|_{\partial\Omega}=0, \quad \forall \ |y|\leqslant n-1 \tag{0.4}$$

where $\Delta u = (D_y u, |\gamma| \leq n-1)$, R(u) is an integral operator acting on Δu , and $\Omega \subset \mathbb{R}^m$ is an arbitrary region.

1. The Existence Theorem of the Weakly Continuous Opérator Equations

Let X be a linear space, X_1 , X_2 be the completions of X with respect to the norm

¹ The project supported by National Natural Science Foundation of China.

 $\|\cdot\|_1$ and $\|\cdot\|_2$ respectively, X with respect to $\|\cdot\|_2$ be a separable linear normed space. X_1 be a reflexive Banach space. $x_* \rightharpoonup x_0$ denotes weak convergence and $x_* \rightharpoonup x_0$ denotes strong convergence.

Definition 1. 1 A mapping $G: X_1 \rightarrow X_2^*$ is called weakly continuous if for any $x_*, x_0 \in X_1, x_* \rightarrow x_0$, there is

$$\lim_{n\to\infty}\langle Gx_n,y\rangle=\langle Gx_0,y\rangle,\quad\forall\ y\in X_2$$

Theorem 1. 2 Let $G: X_1 \rightarrow X_2^*$ be a weakly continuous mapping. If there exists a bounded open set Ω of $X_1, O \in \Omega$, such that

$$\langle Gu, u \rangle \geqslant 0, \quad \forall \ u \in \partial \Omega \cap X$$
 (1.1)

then Gu = 0 has a solution u_0 in X_1 , and $u_0 \in \overline{\cos}$.

Proof Take $\{e_i\} \subset X$, such that it is dense in X_2 , and denote $\widetilde{X}_n = \operatorname{span}\{e_1, \dots, e_n\}$, \widetilde{X}_n has the same norm as that of X_1 . Define the mapping $A_n: \widetilde{X}_n \to \widetilde{X}_n^*$ as

$$\langle A_{\mathbf{x}}u,v\rangle = \langle Gu,v\rangle, \quad \forall \ u,v \in \widetilde{X}_{\mathbf{x}}$$

It is easy to derive the continuity of A_n from the weak continuity of G. By (1.1) we have

$$\langle A_{\mathbf{n}}u,u\rangle = \langle Gu,u\rangle \geqslant 0, \quad \forall \ u \in \partial \Omega \cap \widetilde{X}_{\mathbf{n}}$$

Using the acute angle principle [4] of the topological degree, there exists $u_* \in \overline{\Omega} \cap \widetilde{X}_*$ such that $\langle A_* u_*, v \rangle = \langle G u_*, v \rangle = 0$, $\forall v \in \widetilde{X}_*$.

Since $\{u_{\mathbf{x}}\}$ is bounded in X_1 and X_1 is reflexive, let, say, $u_{\mathbf{x}} \rightarrow u_0 \in X_1$, hence it follows that

$$\lim_{k\to\infty}\langle Gu_k,v\rangle=\langle Gu_0,v\rangle=0,\quad\forall\ v\in\widetilde{X}_s$$

Because $\bigcup \widetilde{X}_*$ is dense in X_2 , we have

$$\langle Gu_0,v\rangle=0, \quad \forall \ v\in X_2$$

i. e., $Gu_0 = 0$. Therefore the theorem is proved.

2. The Elliptic Dirichlet Problem

We consider the following problem

$$\sum_{|a|,|\beta|=x} (-1)^{*} D_{\sigma}(a_{a,\beta}(x,\Lambda u,R(u))D_{\beta}u)$$

$$+ \sum_{|\gamma|\leqslant n} (-1)^{|\gamma|} D_{\gamma}b_{\gamma}(x,\Lambda u,R(u)) = f(x), \quad x \in \Omega$$
(2.1)

$$|D_{y}u|_{\partial Q} = 0, \quad |y| \leqslant n - 1$$

where $\Delta u = \{D_a u \mid |a| \leq n-1\}$, R(u) is an integral operator acting on Δu and $\Omega \subset R^m$ is any region.

First of all, some comments must be made for the related notations of the anisotropic Sobolev space. We denote

$$W^{\mathbf{r}_a}_{|\alpha|\leqslant k}(\Omega)=\{u\in L^{\mathbf{r}_0}(\Omega), p_0\geqslant 1\,|\, D_au\in L^{\mathbf{r}_a}(\Omega), |\alpha|\leqslant k, p_a\geqslant 1 \text{ or } p_a=0\}$$
 with the norm

$$\parallel u \parallel = \sum_{|a| \leqslant k} \operatorname{sign} p_a \|D_a u\|_{L^{p_a}}$$

Note that when $\forall |\alpha| > 0$, $p_a = 0$, $W_{|\alpha| \leqslant k}^{p_a}(\Omega) = L^{p_0}(\Omega)$.

When $|\alpha| = k$, and all $p_a = p$, it is denoted by $W_{k,|\alpha| \leq k-1}^{p,p}(\Omega)$. $W_{|\alpha| \leq k}^{p,p}(\Omega)$ denotes a completion of $C_0^{\infty}(\Omega)$ under the norm $W_{|\alpha| \leq k}^{\mathfrak{p}_{\alpha}}(\Omega)$.

 $q_{\theta}(|\theta| \leqslant k)$ is called the critical embedding index from $W^{\mathbf{r}_{\theta}}_{|a| \leqslant k}(\Omega)$ to $L^{\mathbf{r}}(\Omega)$, if q_{θ} is the maximum number of index p of $D_{\theta}u \in L^{p}(\Omega)$ for any $u \in W^{p_{\sigma}}_{|\alpha| \leqslant k}(\Omega)$ and it is continuous as an embedding operator.

· For example, when Ω is bounded and smooth, the space

$$Y = \{u \in L^{k}(\Omega), k \geqslant 1 \mid D_{i}u \in L^{2}(\Omega), 1 \leqslant i \leqslant m\}$$

with the norm $||u|| = ||\nabla u||_{L^2} + ||u||_{L^4}$ is an anisotropic Sobolev space with the critical embedding indexes $q_i = 2(1 \le i \le m)$, $q_0 = \max \left\{ k, \frac{2m}{m-2} \right\}$ from Y to $L^p(\Omega)$.

We assume that all functions $f: \Omega \times \mathbb{R}^N \to \mathbb{R}$ satisfy the Caratheodory condition. We shall introduce several lemmas as follows.

Assume that mes $G < \infty$, $G \subset \mathbb{R}^m$ is measurable. If the sequence $(v_{1k}(x)$, Lemma 2.1 $\cdots, v_{Nk}(x)$) converges to $(v_1(x), \cdots, v_N(x))$ in measure on G, then $f(x, v_{1k}, \cdots, v_{Nk})$ converges to $f(x, v_1, \dots, v_N)$ in measure on G(see [4]).

Assume that $E \subseteq \mathbb{R}^m$ is a measurable set of finite measure and $\{f_k\} \subseteq$ Lemma 2.2 $L^p(E)$ is bounded, p>1. If $f_0\in L^p(E)$ such that f_n converges to f_0 in measure on E, then for any $1 \leq q \leq p, f_n \rightarrow f_0$ is in $L^q(E)$.

This lemma is a particular case of Theorem 8. 22 in [5].

Lemma 2.3 Assume that $f: \Omega \times \mathbb{R}^N \to \mathbb{R}$ satisfies the following condition

$$|f(x,z_1,\cdots,z_N)| \leqslant C \sum_{i=1}^N |z_i|^{p_i/q} + b(x)$$
 (2.3)

where $p_i > 1$, q > 1, C > 0 are constants, $b \in L^q(\Omega)$. If $\{u_{ik}\} \subset L^{p_i}(\Omega)$ ($1 \le i \le N$) are bounded and $u_i \in L^{p_i}(\Omega)$, for any bounded subregion Ω_0 of Ω , $u_{ik}(x)$ converges to u_i in measure on Ω_0 , then for any $v \in L^{q'}(\Omega)$, 1/q+1/q'=1, there is

$$\lim_{k \to \infty} \int_{\Omega} f(x, u_{1k}, \dots, u_{Nk}) v dx = \int_{\Omega} f(x, u_1, \dots, u_N) v dx$$
 (2.4)

Define a mapping $f: L^{p_1}(\Omega) \bigoplus \cdots \bigoplus L^{p_N}(\Omega) \longrightarrow L^q(\Omega)$ by

$$\langle fu,v \rangle = \int_{\varOmega} f(x,u_1,\cdots,u_N)vdx, \ v \in L^q(\varOmega)$$

By (2.3), f is a bounded mapping. Since $C_0^{\infty}(\Omega)$ is dense in $L^{q}(\Omega)$, it suffices to prove that (2.4) is true for any $v \in C_0^{\infty}(\Omega)$.

For any $v\in C_0^\infty(\Omega)$, there exists a bounded subregion Ω_0 of Ω such that $\mathrm{supp} v\subset$ Ω_0 . Therefore what we must do is to verify the following equality

$$\lim_{k \to \infty} \int_{\Omega_0} f(x, u_{1k}, \dots, u_{Nk}) v dx = \int_{\Omega_0} f(x, u_1, \dots, u_N) v dx$$
 (2.5)

According to the assumption and (2.3), $\{f(x, u_{1k}, \dots, u_{Nk})\}$ is bounded in $L^q(\Omega_0)$. By Lemma 2.1, $f(x,u_{1k},\cdots,u_{Nk})$ converges to $f(x,u_1,\cdots,u_N)$ in measure on Ω_0 . Hence, by Lemma 2.2, $\forall \ \tilde{q} \in (1,q), f(x,u_{1k},\cdots,u_{Nk})$ converges to $f(x,u_1,\cdots,u_{Nk})$ u_N) in $L^{\mathfrak{d}}(\Omega_0)$. This shows that (2.5) holds. Therefore the proof of the lemma is completed.

For (2.1), (2.2), we need some assumptions as follows.

(A₁) There exists a set of differentiable functions $B_i(x, \eta, R)$, $0 \le i \le m$ such that $B_i(x, 0, R) = 0$ for $1 \le i \le m$, and

$$\sum_{|y|=n} b_{y}(x, \Lambda u, R(u)) D_{y}u = \sum_{i=1}^{m} D_{i}B_{i}(x, \Lambda u, R(u)) + B_{0}(x, \Lambda u, R(u))$$

(A₂) There exists a constant $C_1 > 0$ such that

$$C_1 |\xi|^2 \leqslant \sum_{|a|,|\beta|=s} a_{a,\beta}(x,\eta,R) \xi_a \xi_{\beta}$$
 (2.6)

$$C_1 \sum_{|\lambda| \leqslant s-1} |D_{\lambda} u|^{s_{\lambda}} - f_1(x)$$

$$\leq \sum_{|\lambda| \leq n-1} b_{\lambda}(x, \Lambda u, R(u)) D_{\lambda} u + B_{0}(x, \Lambda u, R(u))$$
 (2.7)

where $p_0 > 1$, either $p_{\lambda} > 1$, or $p_{\lambda} = 0$ for $0 < |\lambda| \le n-1$, and $f_1 \in L^1(\Omega)$.

(A₃) The constructivity condition

$$|a_{a,\beta}(x, \Lambda u, R(u))| \le C_3 \sum_{|\gamma| \le n-1} |D_{\gamma} u|^{s_{\gamma}} + g_1(u)$$
 (2.8)

$$|b_{\lambda}(x, \Lambda u, R)| \le C_2 \sum_{|\gamma| \le n-1} |D_{\gamma} u|^{T_{\gamma}} + g_2(u)$$
 (2.9)

where $T_{\gamma} < q_{\gamma}$, $S_{\gamma} < q_{\gamma}/2$. q_{γ} is a critical embedding index from $\dot{W}_{s, |\lambda| \leqslant s-1}^{2, r_{\lambda}}(\Omega)$ to $L^{p}(\Omega)$. $g_{1}: \dot{W}_{s, |\lambda| \leqslant s-1}^{2, r_{\lambda}}(\widetilde{\Omega}) \to L^{\tilde{p}_{1}}(\widetilde{\Omega})$ and $g_{2}: \dot{W}_{s, |\lambda| \leqslant s-1}^{2, r_{\lambda}}(\widetilde{\Omega}) \to L^{\tilde{p}_{2}}(\widetilde{\Omega})$ are bounded integral operators, $2 < \widetilde{p}_{1} < \infty$, $1 < \widetilde{p}_{2} < \infty$, and $\widetilde{\Omega} \subset \Omega$ is any bounded subregion.

(A₄) The integral operator $R(u) = \int_{\Omega} G(x,y,\Lambda u(y)) dy$ satisfies the following condition

$$|G(x,y,\eta)| \le \sum_{|y| \le s-1} |f_{y}(x,y)| |\eta_{y}|^{\bar{s}_{y}} + f_{2}(x,y)$$
 (2.10)

where $2\leqslant \overline{S}_{\gamma} < q_{\gamma}, q_{\gamma}$ is the same as in (A_{3}) , $f_{\gamma}(x_{0},y) \in L^{t_{\gamma}}(\Omega \backslash \Omega_{0})$, $f_{\gamma}(x_{0},y) \in L^{r_{\gamma}}_{loc}(\Omega)$, for any $x_{0} \in \Omega$, and Ω_{0} the neighbourhood of x_{0} . t_{γ} , $r_{\gamma} > q_{\gamma} (q_{\gamma} - \overline{S}_{\gamma})^{-1}$. $F_{2}(x) = \int_{\Omega} f_{2}(x,y) dy \in L^{1}_{loc}(\Omega)$.

Let $X_1 = \dot{W}_{n,|\hat{\lambda}| \leq n-1}^{2,p}(\Omega)$. $u \in X_1$ is called the weak solution of the problem (2,1), (2,2), if for any $v \in C_0^{\infty}(\Omega)$,

$$\int_{\Omega} \left[\sum_{|a|, |\beta| = n} a_{a,\beta}(x, \Lambda u, R(u)) D_{\beta} u D_{a} v + \sum_{|y| \leq n} b_{y}(x, \Lambda u, R(u)) D_{y} v - f v \right] dx = 0$$
(2.11)

Remark 2. 4 If $p_{\lambda} = 0$ in (2.7) and $\forall 0 < |\lambda| \le n-1$, X_1 is the completion of $C_0^{\infty}(\Omega)$ under the following norm : $||u|| = ||D^n u||_{L^2} + ||u||_{L^{r_0}}$.

Theorem 2.5 Under the assumptions of $(A_1)-(A_4)$, if $f \in L^{\gamma_0}(\Omega)$, then the problem (2.1), (2.2) has a weak solution in X_1 .

Proof Take a bounded subregion $\Omega_k \subset \Omega$, $\Omega_k \subset \Omega_{k+1}$, $\bigcup_k \Omega_k = \Omega$, for any k. We shall prove first that there exists $u_k \in \mathring{W}^{2,p_k}_{n,|\lambda| \leqslant n-1}(\Omega_k)$ which satisfies

$$\int_{\mathcal{Q}_{i}} \left[\sum_{|\alpha|,|\beta|=s} a_{\alpha,\beta}(x,\Lambda u_{k},R(u_{k})) D_{\beta} u_{k} D_{\alpha} v + \sum_{|\gamma| \leqslant n} b_{\gamma}(x,\Lambda u_{k},R(u_{k})) D_{\gamma} v - f v \right] dx = 0$$
(2.12)

 $\forall v \in C_0^\infty(\Omega)$, and there is

$$\left[\int_{\Omega_{k}|a|=\pi} |D_{a}u_{k}|^{2} dx \right]^{1/2} + \sum_{|\lambda| \leqslant \pi-2} ||D_{\lambda}u_{k}||_{L^{\prime_{\lambda}(\Omega_{k})}} \leqslant C$$
 (2.13)

where the constant C>0 is independent of k.

Denote X_2 as the completion of $C_0^{\infty}(\Omega_k)$ under the norm C^n and the left side of (2. 12) as $\langle Fu,v\rangle_k$. By the conditions (A₃) and (A₄), it is easy to derive that $\langle Fu,v\rangle_k$ defines a bounded mapping $F: \hat{W}_{*,|\lambda| \leq n-1}^{2,p_{\lambda}}(\Omega_k) \to X_2^*$.

By (A_1) and (A_2) , for any $u \in C_0^{\infty}(\Omega_k)$, we have

$$\langle Fu, u \rangle_{k} = \int_{\Omega_{k}} \left[\sum_{|a|, |\beta| = n} a_{a,\beta}(x, Au, R(u)) D_{a}u D_{\beta}u \right]_{s}$$

$$+ \sum_{|\gamma| \leq n-1} b_{\gamma}(x, Au, R(u)) D_{\gamma}u + B_{0}(x, Au, R(u)) - f(x)u \right] dx$$

$$\geqslant \int_{\Omega_{k}} \left[C_{1} \sum_{|a| = n} |D_{a}u|^{2} + C_{1} \sum_{|\lambda| \leq n-1} |D_{\lambda}u|^{r_{\lambda}} \right]_{s}$$

$$- f_{1}(x) - \frac{1}{p_{0}'\epsilon} |f|^{p_{0}'} - \frac{\epsilon}{p_{0}} |u|^{p_{0}} dx$$
(2.14)

where $\varepsilon > 0$ is an arbitrary positive number. Since $f_1 \in L^1(\Omega)$, there exists a constant M > 0 independent of k, such that when $u \in C_0^{\infty}(\Omega_k)$, $||u||_{\dot{W}^{2,r_k}} = C$, there is $\langle Fu, u \rangle \geqslant 0$.

By Theorem 1.2, if it can be proved that $F: \dot{W}_{n,|\lambda| \leq n-1}^{2,p_{\lambda}}(\Omega_{k}) \to X_{2}^{*}$ is weakly continuous, then there exists $u_{k} \in \dot{W}_{n,|\lambda| \leq n-1}^{2,p_{\lambda}}(\Omega_{k})$ which satisfies (2.12). From the inequality (2.14) and the result of Theorem 1.2, it follows again that u_{k} satisfies (2.13).

In what follows we shall prove the weak continuity of F.

Assume that $u^N(x) \rightharpoonup u_k(x)$ is in $\dot{W}_{u,|\lambda| \leqslant n-1}^{2,p_{\lambda}}(\Omega_k)$ (k is fixed), hence it is obvious that Λu^N converges to Λu_k in measure on Ω_k . First, we shall prove that the integral operator $R(u^N)$ converges to $R(u_k)$ in measure on Ω_k . What we have to do is to verify that for each term of R(u)

$$\lim_{N\to\infty} \int_{\Omega_k} G(x_0, y, \Lambda u^N(y)) dy = \int_{\Omega_k} G(x_0, y, \Lambda u_k(y)) dy$$
 (2.15)

holds for any $x_0 \in \Omega_k$.

In fact if we make an extension for $u \in \dot{W}_{n,|\lambda| \leq n-1}^{2,p_{\lambda}}(\Omega_{k})$ that

$$\tilde{u}(x) = \begin{cases} u(x), & x \in \Omega_k \\ 0, & x \in \Omega \backslash \Omega_k \end{cases}$$
 (2.16)

then $\tilde{u} \in \dot{W}_{n,|\lambda| \leq n-1}^{2,p_{\lambda}}(\Omega)$. Note that

$$\int_{\Omega} \left[G(x, y, \Lambda \tilde{u}^{N}(y)) - G(x, y, \Lambda \tilde{u}_{k}(y)) \right] dy$$

$$= \int_{\Omega} \left[G(x, y, \Lambda u^{N}(y)) - G(x, y, \Lambda u_{k}(y)) \right] dy$$

Thus (2.15) can be derived from Lemma 2.1-2.3 and the condition (A_4) . Therefore it follows that $R(u^N)$ converges to $R(u_k)$ in measure on Ω_k . We verify next that

$$\lim_{N \to \infty} \int_{\Omega_{k|\alpha|, |\beta| = n}} a_{\alpha,\beta}(x, \Lambda u^N, R(u^N)) D_{\alpha} u^N D_{\beta} v dx$$

$$= \int_{\Omega_{k|\alpha|, |\beta| = n}} a_{\alpha,\beta}(x, \Lambda u_k, R(u_k)) D_{\alpha} u_k D_{\beta} v dx$$
(2.17)

$$\lim_{N\to\infty} \int_{\Omega_k} b_{\nu}(x, \Lambda u^N, R(u^N)) D_{\nu} v dx = \int_{\Omega_k} b_{\nu}(x, \Lambda u_k, R(u_k)) D_{\nu} v dx \qquad (2.18)$$

We obtain (2.18) from Lemmas 2.1-2.3 and (2.9). For (2.17), we note that

$$\begin{split} &\int_{\Omega_{k}} \sum_{|\sigma|,|\beta|=n} \left[a_{\sigma,\beta}(x,\Lambda u^{N},R(u^{N})) D_{\alpha}u^{N} D_{\beta}v - a_{\sigma,\beta}(x,\Lambda u_{k},R(u_{k})) D_{\sigma}u_{k} D_{\beta}v \right] dx \\ &= \int_{\Omega_{k}} \sum_{|\sigma|,|\beta|=n} \left[a_{\sigma,\beta}(x,\Lambda u^{N},R(u^{N})) - a_{\sigma,\beta}(x,\Lambda u_{k},R(u_{k})) \right] D_{\alpha}u^{N} D_{\beta}v dx \\ &+ \int_{\Omega_{k}} \sum_{|\sigma|,|\beta|=n} a_{\sigma,\beta}(x,\Lambda u_{k},R(u_{k})) D_{\beta}v (D_{\alpha}u^{N} - D_{\alpha}u_{k}) dx \end{split}$$

Since $u^N \rightharpoonup u_k$ is in $\dot{W}_{n,|\lambda| \leqslant n-1}^{2,p_{\lambda}}(\Omega_k)$, then for any $|\alpha| = n$, $D_a u^N \rightharpoonup D_a u_0$ is in $L^2(\Omega_k)$. For any $v \in C_0^{\infty}(\Omega)$ and $u \in \dot{W}_{\mathfrak{n}, |\lambda| \leqslant \mathfrak{n}-1}^{2, \mathfrak{p}_{\lambda}}(\Omega_k)$, by the condition $(2.8), D_{\beta}va_{\sigma,\beta}(x, \Lambda u, R(u))$ $\in L^2(\Omega_k)$. Therefore we have

$$\lim_{N\to\infty}\int_{\Omega_k}\sum_{|a|,|\beta|=\kappa}a_{a,\beta}(x,\Lambda u_k,R(u_k))D_{\beta}v(D_au^N-D_au_k)dx=0$$

$$\begin{split} &\left|\int_{\Omega_{k}} \sum_{|\alpha|, |\beta| = n} (a_{\alpha,\beta}(x, \Lambda u^N, R(u^N)) - a_{\alpha,\beta}(x, \Lambda u_k, R(u_k))) D_{\alpha} u^N D_{\beta} v dx\right| \\ \leqslant &C \sum_{|\alpha|, |\beta| = n} \left[\int_{\Omega_{k}} |a_{\alpha,\beta}(x, \Lambda u^N, R(u^N)) - a_{\alpha,\beta}(x, \Lambda u_k, R(u_k))|^2 dx\right]^{1/2} \\ &\cdot \left[\int_{\Omega_{k}} |D_{\alpha} u^N|^2 dx\right]^{1/2} \end{split}$$

By (2.8), for any $u \in \dot{W}_{s,|\lambda| \leqslant s-1}^{2,p_{\lambda}}(\Omega_{k})$, $a_{a,\beta}(x,\Lambda u,R(u)) \in L^{p}(\Omega_{k})$, p>2 is a constant. Again by Lemma 2. 1 and 2. 2, we have

$$\lim_{N\to\infty}\int_{\Omega_k}|a_{\alpha,\beta}(x,\Lambda u^N,R(u^N))-a_{\alpha,\beta}(x,\Lambda u_k,R(u_k))|^2dx=0$$

This implies that

$$\lim_{N\to\infty} \sum_{|a|,|\beta|=\pi} \int_{\Omega_i} \left[a_{a,\beta}(x, \Delta u^N, R(u^N)) - a_{a,\beta}(x, \Delta u_k, R(u_k)) \right] D_a u^N D_{\beta} v dx = 0$$

Therefore (2.17) holds.

Let $\{u_k(x)\}$ be a sequence satisfying (2.12) and (2.13). For $\{u_k\}$ we make an extension of (2.16) which we still denote by $\{u_k(x)\}$, then $\{u_k(x)\}\subset W^{2,p_k}_{n,|\lambda|\leqslant n-1}(\Omega)$ is bounded. We may assume that $u_k(x) \rightharpoonup u_0(x)$ is in $W^{2,p_k}_{s,|\lambda| \leqslant s-1}(\Omega)$, then Λu_k converges to Λu_0 in measure on any bounded subregion of Ω . From the condition (A_3) it follows that $a_{a,\beta}(x, \Lambda u_k, R(u_k)) \in L^T_{loc}(\Omega)$ is bounded, T > 2 is a real number. $b_y(x, \Lambda u_k, R(u_k)) \in$

 $L^s_{\mathrm{loc}}(\mathcal{Q})$ is bounded, s>1 is a real number. Again since for any $v\in C^\infty_0(\mathcal{Q})$, there exists a natural number k such that $\mathrm{supp} v \subset \mathcal{Q}_k$, what we shall do is to prove that for any bounded subregion $\widetilde{\Omega}$ of Ω , $R(u_k)$ converges to $R(u_0)$ in measure on $\widetilde{\Omega}$.

For any $\varepsilon>0$ and any $x_0\in\Omega$, there exists $\Omega_\epsilon\subset\Omega$ which is bounded, $x_0\in\Omega_\epsilon$, such that

$$\left[\int_{\omega\setminus\omega_{\epsilon}}|f_{\gamma}(x_{0},y)|^{\ell_{\gamma}}dy\right]^{1/\ell_{\gamma}}<\varepsilon\tag{2.19}$$

$$\int_{\Omega\setminus\Omega_{\epsilon}} |f_2(x_0,y)| dy < \varepsilon \tag{2.20}$$

Because $t_{\gamma} > q_{\gamma} (q_{\gamma} - \overline{S}_{\gamma})^{-1}$, $2 \leqslant t_{\gamma} \ \overline{S}_{\gamma} < q_{\gamma}$, $\left[\frac{1}{t_{\gamma}} + \frac{1}{t_{\gamma}} = 1\right]$, by the interpolation inequality and the embedding theorem, it is obtained that

$$\int_{\mathcal{Q}\setminus\mathcal{Q}_{\epsilon}} |f_{\gamma}(x_0, y) D_{\gamma} u(y)|^{\frac{3}{8}} dy \leqslant \varepsilon C \|u\|_{W^{\frac{2}{8}, \gamma_{\lambda}}_{\bullet, |\lambda| \leqslant n-1}}$$
(2. 21)

where C>0 is a Sobolev embedding constant.

On the other hand, $r_{\gamma} > q_{\gamma} (q_{\gamma} - \overline{S}_{\gamma})^{-1}$, $r'_{\gamma} \overline{S}_{\gamma} < q_{\gamma}$. By Young's inequality, from (2. 10) we have

$$|G(x_0, y, \eta)| \leq C_1 \sum_{|y| \leq s-1} |\eta_y|^{s_y^*} + \widetilde{f}(x_0, y)$$

$$S_y^* = r'\overline{S}_y, \widetilde{f}(x_0, y) \in L^1(\Omega) \quad \text{By the part}$$

$$(2.22)$$

where $S_y^* = r'\overline{S}_y$, $\tilde{f}(x_0, y) \in L^1(\Omega_t)$. By the property of Caratheodory operator, (2.22) implies that there exists $N_0 > 0$ such that when $k > N_0$,

$$\left|\int_{\Omega_{\epsilon}} \left[G(x_0, y, \Lambda u_k(y)) - G(x_0, y, \Lambda u_0(y)) \right] dy \right| < \varepsilon$$

Combining (2.19) - (2.21), it gives

$$\begin{split} &\left|\int_{\mathcal{Q}} \left[G(x_0, y, \Lambda u_k(y)) - G(x_0, y, \Lambda u_0(y))\right] dy\right| \\ \leqslant &\left|\int_{\mathcal{Q}_*} \left[G(x_0, y, \Lambda u_k(y)) - G(x_0, y, \Lambda u_0(y))\right] dy\right| \\ &+ \left|\int_{\mathcal{Q} \setminus \mathcal{Q}_*} G(x_0, y, \Lambda u_k(y)) dy\right| + \left|\int_{\mathcal{Q} \setminus \mathcal{Q}_*} G(x_0, y, \Lambda u_0(y)) dy\right| \\ \leqslant \varepsilon + \varepsilon C \|u_k\|_{W^{2, j_2}_{s, |\lambda| \leqslant s-1}} + \varepsilon C \|u_0\|_{W^{2, j_2}_{s, |\lambda| \leqslant s-1}} \\ \text{at } R(y) \text{ converges } \varepsilon \end{split}$$

It follows that $R(u_k)$ converges to $R(u_0)$ in measure on any bounded subregion. Therefore the theorem is true.

The following theorem is obvious.

Theorem 2. 6 Under the assumptions of (A_3) and (A_4) , $f \in L^{r_0}(\Omega)$. If there exists a constant R>0 such that $\langle Fu,u\rangle\geqslant 0$, $\forall u\in C_0^\infty(\Omega)$, $\|u\|_{X_1}=R$, then the problem (2.1), (2.1)2) has a weak solution u_0 in X_1 and $||u_0||_{X_1} \leqslant R$, where $\langle Fu, v \rangle$ denotes the left side of (2.

As an application, we consider the following Choquard equation

$$-\Delta u + \lambda u - u \int_{\mathbb{R}^3} \frac{u^2(y)}{|x - y|} dy = f(x), \quad x \in \mathbb{R}^3$$

$$\text{constant, } f \in L^2(\mathbb{R}^3)$$

where $\lambda > 0$ is a constant, $f \in L^2(\mathbb{R}^3)$.

Remark 2. 7 The results of Theorem 2. 8 still holds, if instead of $\lambda \geqslant \frac{3}{2} + \|f\|_{L^2}^2 + \frac{\omega}{2C^4} \|f\|_{L^2}^4$, we take $\lambda \geqslant 1 + \frac{\varepsilon}{2} + \|f\|_{L^2}^2 + \frac{\omega}{2C^4} \cdot \frac{2\varepsilon - 1}{\varepsilon} \|f\|_{L^2}^4$, $\frac{1}{2} < \varepsilon < 1$.

Theorem 2. 8 If $\lambda \geqslant \frac{3}{2} + \|f\|_{L^2}^2 + \frac{\omega}{2C^4} \|f\|_{L^2}^4$, then the problem (2. 23) has a weak solution u_0 in $\dot{W}_2^1(\mathbf{R}^3)$ and $\|u_0\|_{\dot{W}_2^1} \leqslant \|f\|_{L^2}$, where $\omega = \frac{4}{3}\pi$ is the volume of the unit ball in \mathbf{R}^3 and C is the optimal Sobolev embedding constant from $\dot{W}_2^1(\mathbf{R}^3)$ to $L^4(\mathbf{R}^3)$.

Proof Denote $f_0(x,y) = |x-y|^{-1}$, then $G(x,y,u) = f_0(x,y)u^2$. A calculation yields $\overline{S}_0 = 2$, $q_0 = 6$ and $q_0(q_0 - \overline{S}_0)^{-1} = 1$. 5. Obviously, when $t_0 > 3 > r_0 > 1$. 5. $\forall x_0 \in \mathbb{R}^3$, $f_0(x_0, \cdot) \in L^{r_0}_{loc}(\mathbb{R}^3)$, $f_0(x_0, \cdot) \in L^{r_0}_{loc}(\Omega \setminus B(x_0))$, $B(x_0) = \{y \in \mathbb{R}^3 \mid \|y - x_0\| < 1\}$. Thus the condition (A_4) is satisfied. Let

$$b_0(x,u,k(u)) = \lambda u - u \int_{\mathbb{R}^3} \frac{u^2(y)}{|x-y|} dy$$

We shall verify the condition (A3)

$$|b_0(x,u,k(u))| \le u^2 + \frac{1}{2}\lambda^2 + \frac{1}{2} \Big[\int_{\mathbb{R}^3} u^2(y) |x-y|^{-1} dy \Big]^2$$

Denote $g_0(u) = \frac{1}{2}\lambda^2 + \frac{1}{2} \left[\int_{\mathbb{R}^3} u^2(y) |x-y|^{-1} dy \right]^2$. It is easy to verify that $g_0: \dot{W}_2^1(\mathbb{R}^3) \to L^{\infty}_{loc}(\mathbb{R}^3)$.

Finally we verify the acute angle condition. Let $u\!\in\! C_0^\infty(R^3)$, then

$$\langle Fu, u \rangle = \int_{\mathbb{R}^3} [|\nabla u|^2 + \lambda |u|^2 - f(x)u] dx - \int_{\mathbb{R}^3} u^2(x) \int_{\mathbb{R}^3} u^2(y) |x - y|^{-1} dy dx$$

On the other hand, we have

$$\begin{split} & \int_{R^{3}} u^{2}(x) \int_{R^{3}} u^{2}(y) \left| x - y \right|^{-1} dy dx \\ & \leqslant \int_{R^{3}} u^{2}(x) \left[\int_{B(x)} u^{2}(y) \left| x - y \right|^{-1} dy + \int_{R^{3} \backslash B(x)} u^{2}(y) dy \right] dx \\ & \leqslant \left[\int_{R^{3}} u^{2}(x) dx \right]^{2} + \left[\int_{R^{3}} u^{2}(x) dx \right] \left[\int_{R^{3}} u^{4}(x) dx \right]^{1/2} \omega^{1/2} \end{split}$$

Hence we have

$$\langle Fu, u \rangle \geqslant \int_{\mathbb{R}^{3}} \left[\| \nabla u \|^{2} + \lambda u^{2} \right] dx - \frac{1}{2} \| u \|_{L^{2}}^{2} - \frac{1}{2} \| f \|_{L^{2}}^{2} - \frac{\varepsilon}{2} \omega \| u \|_{L^{4}}^{4} - (1 + \frac{1}{2\varepsilon}) \| u \|_{L^{2}}^{4}$$

$$(2.24)$$

Denote $||f||_{L^2}^2 = M$. Take $||u||_{W_2^1}^2 = M$, $\varepsilon = \frac{C^4}{M\omega}$, where C > 0 is the optimal Sobolev embedding constant of $||u||_{W_2^1} \gg C||u||_{L^4}$. Hence it follows from (2.24) that

$$\begin{split} \langle Fu,u \rangle \geqslant & \int_{\mathbb{R}^{3}} (\|\nabla u\|^{2} + u^{2}) dx \\ & + \left(\lambda - \frac{3}{2} - \left(1 + \frac{1}{2\varepsilon}\right) \|u\|_{L^{2}}^{2}\right) \|u\|_{L^{2}}^{2} - \frac{1}{2}M - \frac{\varepsilon}{2}\omega \|u\|_{L^{4}}^{4} \end{split}$$

$${\geqslant} \left(\lambda - \frac{3}{2} - M - \frac{\omega}{2C_4} M^2\right) \|u\|_{L^2}^2 + \frac{1}{2} M - \frac{C^4}{2M} \|u\|_{L^4}^4$$

By the condition in the theorem, $\lambda \geqslant \frac{3}{2} + M + \frac{\omega}{2C^4} M^2$, and the fact; from $||u||_{W_2^1} = M^{1/2}$ it

follows that $M^2 \ge C^4 \|u\|_{L^4}^4$, there is

$$\langle Fu, u \rangle \geqslant 0$$
, $\forall u \in C_0^{\infty}(\mathbb{R}^3), ||u||_{W_0^1} = ||f||_{L^2}$

Using Theorem 2.5, this theorem follows.

References

- [1] Ugowski, On integro-differential equations of parabolic and elliptic type, Ann. Polon. Math., 22 (1970), 255-275.
- [2] Tsai Longyi, On the solvability of nonlinear integro-differential operators, Chinese J. Math., 11:1(1983),75-84.
- [3] Politjukov V. P., On the theory of upper and lower solutions and the solvability of quasilinear integro-differential equations, Mat. USSR. Shornik, 35(1979), 499-507.
- [4] Chen Wenyuan, Nonlinear Functional Analysis, Gansu People's Publishing House (1982).
- [5] Adams R. A., Sobolev Spaces, Acad. Press. New York (1975).