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Abstract In this paper we study the existence of solutions to the Dirichlet problem

for a class of integro-differential equations of elliptic type by using the weakly continuous
method.
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0. Introduction

The integro-diffferential equations of elliptic type occur in many practical models
in nuclear physics,theory of quantum field and mechanics.

Ugowski [[1] and Tsai Longyi [ 2] considered the following problem

a, () 4 b (x)Dn = F(z,u, K(u)), =z& 2 G B
4| = @(z) - (0. 2)
where K (u) denotes an integral operator,and 2(_R"™ is a bounded region.

Ugowski discussed the existence of (0. 1), (0. 2) by using a successive approxima-
tion. Tsai Longyi discussed the existence of (0. 1), (0. 2) by combining methods of su-
persolution-subsolution and topological degree. Politjukov [ 3] defined a concept con-
cerning e-supersolution and z-subsolution, and discussed parabolic equations by using
this method. '

What we shall discuss is the following problem

> (= 1)'D,(a, 4z, Auy BC(u)) D)
laf. | 2] =n :
= Z{-" DY Db (e, Au,R(u)) =0, z€ Q _{ﬂ'- 3)

lxl==n
Dulg=10, ¥ |y]=<n—1 (0. 4)

where Au= (D u, |y|=<n—1),R{u) is an integral operator acting on Au,and QCR" is
an arbitrary region.

1. The Existence Theorem of the Weakly
Continuous Operator Equations

Let X be a linear space, X, , X, be the completions of X with respect to the norm

(1) The project supported by National Natural Science Foundation of China.
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| = |l yana || « || 2 Fespectively , X with respect to || - | ; be a separable linear
normed space. X be a reflexive Banach space. r,—zx, denotes weak convergence and
I, >zgdenotes strong convergence,

Definition 1.1 A mapping G X, — X' is called weakly continuous if for any T,ad,
Xy sz,—x,, there is

ljm{ﬂ'xl,y} == {G-xi]ﬁﬂ’}i Y y & IE

Theorem 1.2 [Lef G: X, =X be a weakly continuous mappng. If there erists a bounded
open set Q of X,,0E Q, such that
(Gu,u) =0, VY uc aQ EIEX (1. 1)
then Gu=0 has a solution uy it X yamd uy € cofd,
Proof Take {e;} X ,such that it is dense in X,,and denote ﬂf,=3mn{e]ﬂ"1
=

il

. as

—

€.} » X, has the same norm as that of X,. Define the mapping A4, . X,
(Au, v} = (Gu,pd, Y u,ve X

It is easy to derive the continuity of 4, from the weak continuity of . By (1. 1) we
have

(A4u,u) = (Gu,u) 20, YVucaon X
Using the acute angle principle [ 47 of the topological degree, there exists u, = Eﬁﬂ 17,
such that (du, 0} =(Gu,,0)=0, Yy veX.

Since {u,} is bounded in Xand X, is reflexive,let,say,u,—u, € X ,hence it fol-

lows that

im (Gu,,0) = (Guy,v) = 0, Y oeE X

e
Because |J X, is dense in X, ,we have

(Guyyv) =0, Yoe€ X,
i €. , Oug=10. Therefore the theorem is proved,

2. The Elliptic Dirichlet Problem

We consider the following problem

Z (= el [ﬂ-::,.ﬁ":-r! A, BCu) }D’ﬁu}

lal s T3] =
FRE DD e iR T e B (2.1)
l¥l==n
Dulw=0, vl =n— 1 : (2. 2)
where Au={Du||a|<n—1),R ) is an integral operator acting on Au and QC R" is

any region.
First of all, some comments must be made for the related notations of the
anisotropic Sobolev space. We denote

Wiz = (2 € L") ,p,> 1Dy € L™(0), (el s~ Tor ot
with the norm

lull = > sign z,]Duf,
lal<k
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Note that when Y% |¢z|3}ﬂ;pﬂ.£[l,w”“ () =L (2).

| )=k

When |e|=Fk,and all p,=p,it is denoted by W::;wx—l{Q}' thk(ﬁ'} denotes a
comnletion of €5 (£2) under the norm W’l': (2.

g, C |1 ==k) is called the critical embedding index from th Q{ﬂ'} to L7(L) ,if g,

is the maximum number of index p of Dy L7(&) for any u & WT'LH;N:Q} and it is
continuous as an embedding operator.
. For example ,when £ is bounded and smooth , the space
¥ ={u€ LND,k=1|Da € LEG@) ;1 == i< m)
with the norm |lull =572+ [|lull;* is an anisotropic Sobolev space with the eritical

2m

embedding indexes g, = 2(1="i=m) ,qu-——-maxgiﬂ:,m from ¥ to L7(£2).

We assume that all functions f; QX R"—R satisfy the Caratheodory condition.

We shall introduce several lemmas as follows.

Lemma 2.1 Assume that mes G=_co,GCR"ss measurable. I the sequence (v, (x)
e, 1y, (2) ) comverges to Ev,'{:r},---,vﬁfx)} in measure on 7, then f{x.v,“---,?rm} o=
verges to F(@,0ys0 1 Uy) W measure on G(see [4]).

Lemma 2. 2 Assume that E(C R"ts a measurable sel of finite mensure and e
I}(E) is bounded ,p==1. If f, & LT(E) such that f, converges lo f, @ measure on B, then for
oy 1<Sq<<p,f,—F, is m L'(E).

This lemma is a particular case of Theorem 8. 22 in [5].

Lemma 2.3 Assume that f:2QX R"—R safisfies the Following condilion

N
15 (zazss s | < O 2|7 + 8(2) (2.3)
g ]
where p,.=>1,q=>1,0>>0 are constants,b& L=y, If fu, ) C LA () (1=Zi=CN) are Beittnd—
ol and u, € LF(Q) , for any bounded subregion 82, of Q@ u,(x) converges to u; tn megsure on Lo

then for any v& LT (5,1 g+ 1/g =1, there 15
lim J-JF'::I-':THH voe iy YodT = Jfl{::‘,ﬂ] g o1 Uy Jud (2. 4)
o : 2

Jp=m

Proof Define a mapping ;r':L”L(Q)@n-ﬁBL’"(Q}—*L?{Q} by
(fu,v) = J-f(:r,u”--- B vdz, 0 E LT (2)
L]

By (2.3),f is a bounded mapping. Since €7 (82) is dense in LY () ,it suffices to prove

that (2. 4) is true for any v& Cy (£2).

For any » € 7 (£2) ,there exists a bounded subregion 0,0f @ such that supprC

2,. Therefore what we must do is to verify the following ﬂqua'_l.lit}'

lim J- .f‘:xf’“u w ._.u_.,.#}mi.r — J J"(ﬂ: % T T 11!!,,.)1?:1113 . (2. 5)
o

Jp=ie i _ﬂ-l:l

According to the assumption and (2. 3), {f (Tl vesy Uy, )} is bounded in
L(8,). By Lemma 2. 1, f (@ 2y, ,uy,) converges to f(x,u .- L, ) in measure on
@,. Hence ,by Lemma 2. 2, W ge (l,g),F(zstis= , iy, ) converges to Flagti s s
u,) in L'(&2;). This shows that (2. 5) holds. Therefore the proof of the lemma is com-
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pleted.

For (2.1),(2. 2),we need some assumptions as follows.

(A;) There exists a set of differentiable functions B,(z,n,R),0=_i=_m such that
B(x,0,R)=0 for 1=Ci="m,and

ZE:- (z, Au, R(u) }Du = Lﬂﬂ{z Au B(u)) 4 By(z, Au, R(u))

l¥[=n

(A,) There exists a constant ¢ 1,‘:}[] such that
< >, a,(z.0.R)EE, (2. 6)

lal 1] ==
C, E | D | — fy(2)
|A|2a—1
< D) b(x,Au,R(a))Du + By(x, Au, R(x)) (2.-7)

[Ai=a—1
where p,>1,either p,>>1,0r p,=0 for 0<Z|A|="n—1,and f, € L' ().
(A;) The constructivity condition

| @0 p (s u, R | < €y > D™ + g, () (2.8)
J}'l-nu-ﬂ 1
|5, (s Au, RY | <0y D0 D] + gp(a) (2.9)
Frlsn—1

where T',<7q,,5,<(q,/2. g, is a critical embedding index from W a1 (2D to L7(8).
e = ]
gy o ()L (&) and g“H: B (2)—=L% () are bounded integral opera-

my | Aflme—1 | Al=tn—|

tors, 2<p, <00, 1<p,<Tco,and BCQ is any bounded subregion.
(A,) The integral operator R(u) = J. x4, Auy) ddy satisfies the following
R
condition

G | < D) 1@ 0|5 + £,z (2.10)
[ wl=2—1
where 25<8,<7q,,¢, is the same as in (4,), f,(zy,3) € LY(\Q) , f, (z,,9) € Lin(2),

for any z, € 2,and &, the neighbourhood of z,. £,,r,>¢q, (g, — §,)7". F,(z) =
| £2G0)ay € LL(2) .

Let X, = w.'rrqm_j (&), we X,is called the weak solution of the problem (2. 1),
(2. 2),if for any vE-G""”{Qj 3

J a,ﬁimﬁﬂumR(u})Dﬂuﬂaﬂ
2 lal; I.ﬁ'I"n
1 Z‘b}.{.r;ﬂujﬁ{u})ﬂry — fz:}d.r =11 (2.11)
Ll =

Remark 2.4 1If p,=01in (2.7) and ¥ 0<"|Ai|=Zn—1,X, is the completion of
Cy (£2) under the following norm . [Ju|| = ||D7u|| 2+ ||« || 7.
Theorem 2.5 Under the assumptions of (A,)— (A,) if fE L¥0(Q) ,then the problem
(2.1),(2. 2) has a weak solution in X
Proof Take a bounded subregion Q,C &2, 2, 2,.,, UQ, =2, for any k. We
k

shall prove first that there exists u, € W’ ilee—1 (82 which satisfies
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j[ > (s Ay, R YD D0
o

i al. | Bl ==
4 S8, (o, Au, Ru)IDp — fo iz =0 (2.12)
l¥|=zn
¥ vECy (£2) ,and there is
—— -1/2
I:_I- 21 |D"u*]2dmj + z | D |l 222 5 =C (2.13)
2, al =n - (a]=a—2 £

where the constant 4':?;’:::-13 is independent of k.
Denote X, as the completion of Cy (£2,) under the nerm ™ and the left side of (2.
12) as {Fu,»),. By the conditions (A,) and (A.), it is easy to derive that (Fu s 217 de-

2

fines a bounded mapping F,P'If',_'l’;lﬂ__,{&.?t)—rﬁg" .
By (A,) and (A,),for any z& Cy($2,) ,we have

Fuywy, = | [ D] @ s(zsAu,R))IDuDyu

2 el 1Bl =n

+ > b,z du,R@))Du + Bylz, Au, R(w)) — f(2)u Jdz

| =n—1
;Jﬁ[glzlﬂﬂulz+ﬂl Z |E_;I,H.|h
i [al=n fa]=2n—1¥
1 ' £
B e fn— ﬂsru}m (2. 14)
£ lel = |
where ¢=>0) is an arbitrary positive number. Since f, € L' () ,there exists a constant M
~ () independent of -k,such that when u& Cq (5 » || 2ovs —(, there is {Fu,u)=0.
w, |2]Emm—1
By Theorem 1. 2 ,if it can be proved that Ftﬁff_’:;lb;_ﬂ_i(ﬂk}—hxg is weakly continu-

ous, then there exists u, € W2 ., (£,) which satisfies (2. 12). From the inequality
(2.14) and the result of Theorem 1. 2,it follows again that u, satisfies (2. 13).
In what follows we shall prove the weak continuity of F.

Assume that " (z)—u,(z) is in ﬁ’f:[hﬂ,q (Q,) (k is fixed) ,hence it is obvious

that Au"converges to Aw,in measure on &,. First, we shall prove that the integral opera-

tor B(u") converges to H(x,) in measure on £2,. What we have to do is to verify that

for each term of R(u)

lim | GCzg,y,Ad" (y))dy = -[ Gy, s A (y) )y (2. 153
o

N=eoa JO

holds for any r,& £,.

In fact if we make an extension for u €& ﬁ-’f:?;l ., (£3;) that
“{I): o i EE g}i
- = (2.16)
gC2) JL 0 e aNE

then #€ W2 (2). Note that

Al e
IEG(LLA&“(;{}] Sy Gy
L

— J [f}'{_x,y,du”(y}] — G(ﬁ,ﬂyﬁ%(ﬁ"))]d?
o

&




Thus (2. 15) can be derived from Lemma 2. 1—2. 3 and the condition CAL).
Therefore it follows that R (") converges to R(u,) in measure on &2,
We verify next that

.}I_{'Il Z ua_ﬁ.(ﬁr,;iu"",R{u"’l}l}ﬂﬂu”ﬂﬂuim

Zlal 18] =n
.
— 2 l J%—‘ E.g-.,ﬁ'(I r.e"j.ut &R{Hk.}jﬂaﬂ_tﬂﬁﬂfgﬂ; {2' l?j
kAl ==
lim 'F I}.l_,{l"g J'I?jH;R(?jH):}ﬁ'}.#{f = I E?:,'[:Ej d?lj.g R{J‘J!*:])D}.udz [:2_ 18}
o ey gt L

We obtain (2. 18) from Lemmas 2. 1—2. 3 and (2. 9). For (2. 17) ,we note that
I Z [{?’n,ﬁ(-fr.-’iﬂ”ﬁ R(u") }ﬂuzxﬁﬂﬁu — a i v Aty R(u, ) ) D u, Do |dx

2 Jalolf)=a -

™ “ . |
= L r l% Eﬁu.,ﬂ(Igflu""-, R(u™)) — -rIm#{x,Au“R(u*})]ﬂﬂuf:ﬂﬁng
b |F] =n

+ J D Gy Auy, R(u))D,0(Da® — Do, iz
B lal. ] g] =

Since u¥—uy is in Wi

w1i=n—y &) s then for any |a|=n,Du”—D uis in L*($,). For

any »€ 7 (&) and v Fi’f;f;l_!;nh](&}h), by the condition (2, 8), Dyva, (x, Au, R(u))
€ L*(£,). Therefore we have
jﬁ‘l;ta Z _ﬂalﬁ{r,ﬂu“R{!&}}ﬂﬁﬂfﬂﬂu” — ﬂﬂﬂ#_)efz ==If]

2 lol, [fl=x
On the other hand,

L z (a, ;(xy Au” , B(u")Y — g (T s Aty s BCu, ) ) D " D odz

] |£'!!Ir.|ﬂ‘i‘=-

1

i‘-\. C z [J;_l 'Eu,,ﬁ'(I:ﬂﬁl‘r!R{Hw:}] T ﬂaiﬁ[r!ﬂuk pR{H*:}:} [Eiiﬂ}
lal v [#] == £

. [L u:-_,u**f'fwx]m

By (2. 8),for any uE e (&) ,a, (2, Auy, RO Y& LF(82.) , =2 is a constant,

e, JA|=a—1

Again by Lemma 2. 1 and 2. 2 we have
limn J; |, s (%, 8™ ,R(&™)) — @ 5(Ty Auy s R(w)) |2z = 0

N=—=oa
This implies that
£im_ Z f [a, (z, Au™, RC™)) — aq_f{_:c‘meﬂﬁ{u*):]]ﬂ{,n”ﬂﬁvd:c =1
‘_-WI“|||.3|="= & .
Therefore (2. 17) holds.
Let {u,(z)} be a sequence ‘satisfying (2. 12)and (2. 13). For {u,} we make an

extension of (2. 16) which we still denote by {u,(x)}.then {u,(z) }CWf:ij,ﬂ,,_l(ﬂ') is

bounded. We may assume that w, (x)—u,(z) is in Hf'f”‘* (£2) ,then Aujconverges to

S ES - T

Augin measure on any bounded subregion of £2. From the condition CA,) it follows that
g, (2y Ay, R(0,)) € L. (82) is bounded, T2 is a real number. b (x, Au, ,R(u)) E
a6




Lioe (2) is bounded »82>1 is a real number. Again since for any » € Co () ,there exists
4 natural number & such that Suppy &, , what we shall do is o prove that for any
bounded subregion & of R (u) converges 1o R{uy,) in measure on §,

For any £>0 ang any r, & £,there exjsts &2, 52 which is bounded , z; € Q. , such
that

J..Ft._
[f J.f,,{z.:.;ﬁr}i’?:fy] < ¢ (2. 19)
S
f% |52 Ca0>9) |dy < ¢ (2. 20)

on St 1 e ,
Because Er}qyl.fqr—-—aﬂ'v}_],ﬁgafr N, [T+~;—=1Jm}r the interpolation inequali-
] ¥
Iy and the embedding theorem, it iz obtained that
j Lf, GZo, ) Dyu(y) [Py < e [fae [ .r, (2. 21)
.':ﬂ'-,:]'r :

iy Al ga—§

where =0 i5s a Soboley embedding constant,
On the other hand,rv}gr{q,,—@p}_’,rﬁy{:g?. By Young's inequality , from (2,
10) we have :

180Gy <0, 35 1915 4 F (2. 22)
) |#]=5n—1
where §° =T‘§}_,}(:ﬂ W¥)ELN(R). By the property of Caratheodory operator, (2. 22)

implies that there exists Ny™>0 such that when >Ny,
] Lfﬂfxn:y,dnt{y)} — Glaysy, Au, fiy}}]ﬂfy‘ < &
Combining (2, 19}—-r{2. 21),it gives I
IL[G(%,y,ﬂﬂ;(y}J = Gimﬂ:?:ﬂﬂn{?)}}i?'

= J‘L EG(inrﬁ"rﬂﬂk{F}} - G(%rfrﬂ“ntﬁf}):rdy{

+ r Lﬂaﬂ(xn v ¥ A, (g) }dﬂr’ -+
<ot lullyen 4+ offuf o

[ g a— LT !"-I{l =1

f Gtmwyuiuﬂ':yﬂefy[
g

It follows that Bu) converges to B(u,) in measure on any bounded subregion. There-
fore the theorem is true,

The following theorem is obvious,

Theorem 2.6  Under the assumptions of (A,) and (4,), FELY(Q). If there erists a
constant B> () such tha (Fu,uy =0,y ﬂE{?E“(Q)',||nrfx1=R,ﬂam the problem (2. 1), (2.
2) has a weak solutig gt X and ||u, [|xliﬁ,wfzem (Fu,v) denotes the left side of 2.

11).
As an application » We consider the following Choguard equation

ﬁau+:mhufa [f’f;]@=ﬂz3, z € R (2. 23)

where 1> is a constant, f & L2(R®).
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3
Remark 2. 7 The results of Theorem 2. 8 still holds, if instead of j';?f_;’f+

{1k

20!

il-"

] -
||f||i2+~2%||fﬂ;=.we take J.}]~}=-%-—|—[|f||i:—|— 11511 2 <ol

Theorem 2. 8 If x;%+i|f||iz+%]u||;,ﬂm the problem (2. 23) has a weak

. N : o
solution ug in WHCRY) and |lugll =< |1 2 s where O=7% 1 the volume of the unit ball in R

and C is the optimal Sobolev embedding ‘constant from W1(R®) to L'(R*).

Proof Denote f,(x,y)=|z—y]| ",then G(z,q,u) = fo(z,y)u’. A calculation
yields §,=2,gq,=6 and g,(g,—5,) ' =1. 5. Obviously ,when {,~>3>r,>>1. 5. ¥ e
R, fo(zgs*) € LW (R, folzy, » ) € L (Q@\B(2)), B(x,) = {y€E R | |lg —=o[|<<1}.
Thus the condition (A,) is satisfied. Let
bolz,tt,k(u)) = 2u — -u' \ 1;: Eﬂr'

We shall verify the condition (A,)

2
|by (s, k(ud) | =< o + —%*.?.? -1 % J-EJ!IE{E-"} s y]_l’iﬂ"}

.E *
Denote gﬂ(ujz—é},*—s—%g Jauz{iy} [z =y _]dy:| Tt is easy to verify that g,: W3(R*)—>
K

L (R*). _ :
Finally we verify the acute angle condition. Let & Oy (R") ,then

(Fu,u) — J [Iul? 4+ Alul? — flouldr — Lzﬁ(m} Luf{y} |z — y| ™ 'dydz
K B R
On the other hand.we have

| 2@ | 2@ 1a — y) ey
& K

= Jﬁuziﬂ [J- wi(y) e — gyl 'y + |, vf{y}-:!y}dm
R Bis) RO\B(s)

= [Lsu?(z}dz]z = [L:“E{r)dm][ L*H‘ (r)ﬁ]mmuz

Hence we have

1
Fuwy = [ [1Val? + 221as — g lully — IS
R

£ 4 1 i
— Lol — (1 + Ll (2. 20)
E z : ".':ﬂ L 5 B hﬂd-
Denote ||f|l ;=M. Take |u| ,=M, T where ¢ 0 is the optimal Sobolev em
ding constant of ||z.;||H.;;[? llull .+ Hence it follows from (2. 24) that

{Fu,ul ;j’{ | % u|® + o )dr
R

lull: — M i —wllﬂl

g
+[;"_E_[‘+z [l

HE




e A 2 1 o 4
Sl — = T g e
= A — = 2C, J |~2I||L1 t 21 EMHHHt

By the condition in the theorem ,A}i+M+E—;ME »and the fact: from [[uf|,: =M it

follows that M* =c" Ifu]!iq, there is

(Pu,u) =20, YueE *-'TE*{R?'):”H”w; = Il

Using Theorem 2. 5, this theotem follows.
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