J. Parlial Differential Equations
Pol. 2, No. 1, {1989), 1 —8

THE DIRICHLET PROBLEM FOR THE DEGENERATE
MONGE-AMPERE EQUATION

Zou Henghui
(Tsinghua University)
(Received December 17, 1986 revised May 27, 1927)

1. Introduction

In this paper, .we discuss the Dirichlet problem for the degenerate Monge-Ampere
equation.
Let &2 R*be a bounded smooth strictly convex domain, and let r (z) € O (E") be a
strictly convex function. We call r (z) the defining function if
2= {z € R*|r{z) <<0)}
The problem is to find a convex function u(z) © *T* 9 (0) which satisfies the
equation:
{dEt (U, + o) =9z, v, Yuy in £ s
|y = ¢ (x)
Where $i(r, t.p) EC'T @ X RXEY, $=0, (0<<a<"1), {e;} is a real symmetry
matrix. o5 (z) € C'77(Q), @(z) € C**°(3Q), (k==2 is an integer), and u,; = 3,3,u, ¥,
=dau, Vu= (u, ..., u) .In the following we use the notations: Vi = (), V'u=
Gy b d =, ;
We say that v () is a sub-solution of (1. 1)if v £ €*(£) and satisfies:
det(v;; +0o;,) =#¢(zx. v. Vo) in 2
{*’ |20 = @ (z) :
When ¢ (z, &, p) Z=C >0, ¢, (2. t. p) =0, and the equation (1. 1) has a sub-solution,
the existence and uniqueness of the solution of (1. 1) has been proved by Caffarelli,
Nirenberg and. Spruck in[17.

Under the above conditions, the equation is uniformly elliptic. The main contribution

(1. 2)

in (1] is to prove the global estimation of ¢*“ norm of the solutions # (z) of (1. 2). The
crucial point in C1) is to estimate the logarithmic modulus of continuity of u,; at every
point x :

z & 382
y & 2

k v
E:' - i = ]



In fact, combining the above inequality with the interior estimations of u,,, we obtain
the global estimation of the Halder norm of U 4

In the works of Pogorelov, Cheng S. Y. and Yau S. T. the existence of generalized
solution of (1. 1) was proved, only the local regularity of the solution, i.e. u &€ ¢*+ ()
[1C°(£2) was given.

The Monge-Ampere equation (1. 1) originates from geometrical problems e. g. the
Minkowski problem. When the Gauss curvature, say ¢ (z, £. p) of the right hand of (1. 1),

is nonnegative but zero in some points, the equation (1. 1) is a degenerate 2nd order elliptic
equation.

The main results of this paper are as follows:
Theorem 1.1 ¥ f(x), @ (x) and u, (x) are such that
1} F@ ey, fei>=0 &G
2) @) €€'(32) (0 <"a<C1)
3)  u,(x) € CU(D) [ CD) is conver and satisfies:

{detfcu.n;,-fcr,.g = (f@x))"+e in £ o
U, |40 = @ (2)
then we have

D Ml 25=<C, for some constant C, depending only on || ¢ Il con. I £l 2o and
CHAFllog,) ™

2) YA . KECCEK C, thereisf, f= S(K') >0, such that
lullzpam<c@k &Y. |u|.0

1
where K= {2€Q|f(x) =0} 4,=d(K. 29 and 2, = {mEﬂlrﬂx. 25} E-«in}.

Theoerm 1. 2 Suppose that the conditions of Theoreml. 1 hold, then th@re 5 4 convex
function u () € C*(Q\K) [ € (&) satisfying:
Jldet (w; F o) = (Fl2))" in Q\K . 5
w |-a-=:- = @ (x)

All symbols used here are the same as that of (4.

2. The Estimation of C? -Norm of the Solutions

It is difficult to estimate the solutions of (1. 1) directly when the equation is
degenerate. We perturb the right hand of (1. 1) by £ (=10 . The equation becomes a 2nd
order non-degenerate uniformly elliptic eguation. We do have the a priori estimation of
the perturbed equation, but it might be dependent with ¢ = 0 . To provie the existence of

solution of the original equation. we hope that the a priori estimation is independent of ¢ .
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We shall prove that:
(1) The estimation of ¢'* -norm of solutions of the perturbed equation is independent

of £ .
(2) The estimation of €**-norm of solutions depends only on the condition near the

degenerate domain.

Proposition 2. 1  Suppose that the comditions of Theorem 1. 1 hold, any u, () € C* (&) N
(% (82) is conver and satisfles (1. 4), then

| =, || Lo==C for some const. C depending only on || @ ||  s00nd 71 as

Proof Take w(x) = ¢ (z) + Ar (x) , here ¢ {z) is an extension of (z) in 2, A=0
(constant to be determined), = (x) is the defining functions of Q.

It is easy to prove that:

1w |ao=1u,) |20=¢

2)  det (w;; + o) >det ((x,) ; + oyy) { A is large enough)

In fact, 1) is obvious.

To prove 2), we notice that

lim det(w;+ o) =+ ((r; is positive)
A== o

We take 4 large enough and 2) follows.
According to the maximum principle, we hawve

u, (2) = w () ing? el )

Because w, {x) is convex, so we have
mﬁaxlu, (x) | =C (I

for some € depending only on || ¢l qssand || £l oo

u, (z) is convex, it admits the maximum of | {x, (x) ) ;| on the boundary. According
to 13, 2), (2. 1), it is easy to prove that | (x, (x)),| is dominated by |w; () | on the
boundary. Then we complete the proof of Proposition 2. 1.

Proposition 2. 2 If u, fx) € &*(@2) (| O (83 is convex and satisfies (1. 4) and the
conditions of Theorem 1. 1 hold, then we have |

lw, || so=<=C for C is the same as C, of Theorem 1. 1 (2. 3)

Proof We first estimate | (u,);;| near the boundary.

Consider any boundary point; without loss of generality we may take it to be the
origin and the #,-axis to be interior normal. According to (1], we can obtain the following
inequalities: (the subscript £ is omitted)

I. u (0| =e¢, for a F<Tn

II. lu,, (0} | e, for a<"na

Because (0 & £(342) . we know that f{z) has a uniformly positive upper and lower

bound near the boundary which is independent of ¢ . From [1] we have (for a,p C, depend
3




only on || & || _,oand 2

'.'E:t.[-_.:l.z

|50 = E 82,2, C ( E s+ |29

Lo i 1< B n
E @834 O, E =5
1-::15;- L= 2=n
Denote 2, = {1 2\ d (zx, 3 =_ &} . We take § = 0 small enough such
=¢c; = 01in 2.

Let G, = {z € Rz, <s) C g,

Now choose & (z) as a barrier function

B = —az,+ral+ > age,+B S o2
= 1<z
First, with the aid of Proposition 2. 1, we take B so large that

B S e s e ke @pand B30,
A o

Then, we take r 50 that (

2r — EIE E a.ﬂ-)}ﬂ is 50 small that
1= 4=y

det () <ef<< (N*+e in @,
Now, by taking ¢ << min (r. d) small enough, and from ¢ %), (

that
“ranﬁnapi E @52, 4 O, E 5,&'
1§y L= =
E'—ﬂz‘ + rx] + E 800 + B E f‘*’“ﬂ "'-kjanr‘.ﬂ"
B ™ Les f=n
and
'Fl.l 305 {x, =4} = — &a + BS* 4 E L -
1< f=<w
Eu:i“2
T E ap,x Euraud_ﬂ{.— -]
g
Thus, by the maximum principle,
¥=<_h in 52
Consequently,

%, (0) <k, (0) = —
(a depends only on || ¢ I waa. CIl £l no, )

We hEL'-"E
2

-r;?i,:u (£, plz')) =0, at the origin

;= E::-_pu =10, at 0

(%)

that f

#* '), we can ensure

*and £). By the above construction,



Thus
Uy (0) =, (0) = —u, (0) p, (0) Z=ap, (0
So we get (without loss of generality)

Zutliﬂ}gu':péﬂu}ﬂ for 2& R

o, A e
By combining this with the eguation and I, II, we have

[, (0 | =€, (¢ depends only on| ¢l a0 ¢l £l ag;)o .and. L&)
a

So we have already estimated | (. (z) ) ;| on the boundary.
The next step is to get a local estimation of | (u,) i;| - We take for convenience that

ﬂ";j - I] .
Lemma 2. 3 If (a,) is a n X n positive real matriz; (b)) is a n X n symmetry real
matriz, then
E & tabadp = %(E“Hbu)t h 3 & I=1 2 ... = 2. 4
R i §

Proof Take A= (a;), B= by,
E

then E ﬂ;_j'ﬂubi#bﬁ — E ﬂjibilaﬂbij

b ok E i 5o ki 2

- ;} (E'ﬂjibu )(Z by :]'

i I

= .{Eg ( E @ 5 _‘:'3

= E {ci.j:l *
i 3
= E (e
i
[ ]
e (EC.-; )!
i
<n(2] )

We are going to prove Proposition 2. 2 with the aid of lemma 2. 3.
Differentiate the equation (1. 4) twice with respect to z,. we get

F Dl = (F + &) u™u/™ (D) s (D) 4 + DI — (F 48 (D, ()2 (2. 5)

d (det {u‘}ll
iy

Because (u;;) is positive, so (u') , which is the inverse matrix of (), is also

where FY == and the subscript & is omitted.

positive.
We know that

&



Fi= (F4ou? (G, j=1, ... n), therefore (FY) is positive.
On the other hand, we have
DICF) — (48 D)
=uf " futas—DP = (F+ o
Zaf" futan— 1) N 40 T — 2 i Y e e o
A Py i S Tk
=nf"u— (4 0) "D, () (2. 6)
According to (2. 4), it follows that
GF =l el (D). (D),
= (f + &) T'FF (D), (D) o
= (a(f" + &) ~"(F D i)

= (e(f" ) "D () (2. )
Combining (2. 5, (2. 6), (2. 7)., we have
F (D) = af " (2. 8)

Take w (z) as the following:

wiz) = Qiulz) +C E:r?
1 o |
{ € is constant to be fixed)

Let Al dn oond A, be the cigenvalues of {z;;}. then (according to (2. 8))
F¥ () ;= F (Dju+C 3 b

= FY (D) -+ 2C > F®

=F7 (D) ;+2C (f + &) D a7

St

=af" 'fut 220(F 42 =
= rEIEIC—= fia |
=0
(f  is large enough) .
By the maximum principle, observing that (F') is positive and « is convex (. e. Diu
=0}, we have
mgxlﬂfu] gn:rgx | Diu| 4+~ € | e, (2. O

. It is easy to derive (2. 3) from (2. 97,
Proposition 2. 2 is proved.
Corollary 2. 3 Suppose that the conditions of Theorem 1. 1 hold, but we take ¢ (x)
== c to replace of o € f(35) , the result of proposition 2. 2 follows.
Proof The proof is same as that of proposition 2. 2.




Corollary 2, 4 Suppose that the conditions of Theorem 1. 1 held, but we change the

right hand of (1. 4) into:
glz) » bz & P (2. 10

where g{z) = (f{z))™ (f(z) is as above), and
: kiz, t. pp =Zec >0, m=n

Then the result of Proposition 2. 2. follows.
Proof Omitted.

3. The Existence Of The Solution

Now, for obtaining the existence of the solution u, of the equation (1, 4) , we need a
priori estimation of the €™ -norm of u, i. e. the following proposition. .

Proposition 3. 1 If f(z) € C*(), f(x) =0, ¢(x) € C' (I, andw, () € e
M €*¢i¥ is convex and satisfies (1, 4) , then for & CC L, there is o 0-Ta-<T1.

depending only on £, such that
< (3. 1)

Il ul aﬂlﬂr

for some constant C depending only on || u, ||, . &'ande.
This proposition is referred to [47]. i
With the aid of (1. 3) and ¢3. 1), we can obtain the following inegualities:
Fadl =€ (3. 2)

and
lwll, .07 =C®@ (3..:8)
where K CC K (&, a=d (@K', K).a and a(a) depend only on || = | - 5.2 and

|, || ;5 arespectively, and so do € and C (a) .
According to (1], by the use of the continuity method, with the aid of (3. 2). the

solution u, of (1. 4),is obtained fore > 0.

We take &, = i, n=1, 2, ..., then we have a sequence {u, }|" . With the aid of (3.
7

3y, we get {u, 17, a subsequence of {u, }7, which is convergent to w(z) in CPENKD .

According to (2. 33 'and (3. 3), u(z) € CMNEK) [ (LD and is convex and it
follows easily that u (z) satisfies (1. 5). Hence the proof of Theorem 1. 2 is complete.
The author wishes to thank his teacher K. C. Chang for his kind instruction.
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