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Abstract

This is a continuation of paper (1], The difference between this paper and paper
[17 is that the initial functions considered here are step functions and those considered
in (1] are Lipschitz continuous . Since there are centered rarefaction waves here, mare
delicate techniques are needed. It may be a necessary step in solving p-System with
general initial functions by Glimm’'s scheme, Notice that this paper can not be deduced

from [17].

Consider the initial wvalue problem for Isentropic gas dynamics in Lagrangian
coordinates, so call p-System,

w—u, =0 y4tpi»).=0, (0, oo) ¥ (= o0, o) (P)

(2(0, 2), u(0, 2)) = (palx), ualx)), (—oo, e0) . ()

where the pressure p = p (¢) =0 is a C* function of the snecific volume » >0 and ¥ is

the velocity of the gas. We assume that p' (v} =<0, " () =0 and Jl = () dv

<~ oo, The Riemann invariants are taken as
riy, ») =u-+ ®(»), ) slu, v) =u—9 ), @ (p) = J-l mﬁs

Theorem If u,(z) and v, (z) are bounded step functions, 0 =<V . = vo (@) =¥V*<ecec,
satisfing conditions
|® (volzd) ) — @ (wolz)) | Cwolzad —uslzl). 7y < s (M)

f. 2.
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Te(Zy) =rolra), So(zy) = 7o (xd) , Ty < T3 (M)
> :

Polz +0) — si(z — ) < 2 (co) — co < r <7 oo, (¥F)
where 1, () =7 (Ua(Z), ve(x)), 85(x) =& (¥ (2}, vol(x) ). Suppose that the randon sequence
@ == {an} is uniformly equidistributed on the interval (—1, 1). For given T>0. if the mesh
lengths 120, >0 are suffictently small, the ratio d=I"'>A., where iL.=

VP Fu) . Az a constant, * then the Glimm's approzumations (us (¢, ), va(t. 2)) of
() {!Jmmaﬁmiymuﬂhresmmhmmemfﬂ T )X {—oo, o).
Condition (V) assures that there is no vacuum at the initial instant,
. We refine the definition of uniformly equidistributed sequence given in [17.
Definition A sequtence a == {a,) is uniformly equidistributed on the interval (— 1.

1), if there is a constant e, () < ¢ f::-%* . and a constant D= D{e) >0, such that

|B(j, n, I} — 2= 'nu(D) | << Dn* (D)
m=1, 2, ...holds for any integer j =1 and any subinterval I in the interval =3,51).
where B(j, n, ) denotes the number of m, i< m=j+n—1, with a. & I, and
# (I} is the length of I. The constant I () = 0 is independent of j and 7 .

Uniformly egquidistributed éequ&nce can easily be constructed.
Before proving the theorem, we give the following lemmas. Set f1 = fi (nh, kI) . here

Ff=u v r s, etc., %+ & =even.
Lemma 1 For given tntegers n =0, g > 0 and constant b , if

0= ripy—rl )
Pin—TIb, Sy — D
kold for every k, then
0="rifi—ritl D="sit!— gttt
rIEL _ — iy gy —sti<h

The lemma in paper [13] is a special case of above Lemma 1 as ¢ = 1. The proofs
of the twe lemmas are similar.

ihe Iollowing lemma is trivial .

Lemma 2 For given D{Eff?{m , there are coustants 0~<Zc. << c¢" <Z oo, such that

o (Plrd —DPlp)) <<d (o) — &' (p) <c" (@ (ve) — @ ()

hold for all v, v, O <" Ve o= V<o

According to condition (M) , the Glimm’s approximations under consideration consist
of rarefaction waves. Hereafter rarefaction waves are simply called waves. If wave y is

issued from point {,;:i.i-i:l, kl}, n + k =odd, the (nh kI} is the starting point of ¥, denoted by
F(y) = (n k) . The maximum {minimum) wvalue of wave 3 is defined by
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y =max®(») . (y=min® (»)) . The strength of y is defined by ||y | =% — 3.
vy :

Following T. P. Liu (2], we partition the waves into subwaves so that the locality,
upper bounded and strength of these subwawves can be traced.
Consider a Z-subwave f*, P(f") = (n, k— 1), n+ &k =even, f*= {(r. 8 |r=

rin), s <Ta=<"sy). E*z%mm —a_), §‘=-%-{T{ni —y . A =%i3+
— 3_) . Hereafter, for simplicity, denote f*= {r=r ), s_<s<3s5.}.
Case 1 If the random choice g,4, =@ (p% )5, here v% satisfies @ (v) =

-%* (r(n) —s4) , then the corresponding 2-subwaves f*t' = {r=ru+ 1), s-=s=

s+, pOA*Y = (a1, k— 2) (move backward!), rin—+ 1) =r(n) ,i. e f+i=pg.
Case 2 If the random choice a,4,<<@' (#2)d~"., here »* satisfies O (") =

*;-fr (n) —a_) ., then the corresponding 2-subwaves frti= {r=r+ 1), s_=<s=

$+)., P(p*tY) = (41, k . (move forward!) rn+1) =r) + 2 | a2 || . where
ol is the 1-wawve, which interacts with ol gt — pr=
Al ¥ :

S+ —rm) = |la| . || g+ = | 4| =%{.-,~+—5_:. :

Case 3 If @ (pL)d '<Ta,,., << (p)Jd~', then the corresponding Z2-subwave
At consists of two parts S, A (partition!y P(ETH = (k+ 1, E—2),
(backward!), P(fi"™) = (1. % , (forward!) AT'= {r=ra+ 1 . s—-=s=

8}, Pitl'= {r=rita+1), si=<s="s.)}. where s, satisfies %{nfn) — 5 =

Wiv) . o) satisfies @' (p)) = a, 67", andrtn4- 1) =rm) ., rofan-+1) = rin) +

2l a) |l . a}is the 1-wave interacted with £ (see below! ). Correspondingly, we partition

F* into two subwaves £1, B3, Fi= {r=r).s_<s=s)., fi= {lr=r@,.si<s
" N w1 Aa n . = .].

Ss4}. Hence gi7'= g1, BV —Bi= |lalll, 1 &7l =141 = 5 G+—s .

Case 4 Suppose that 8", A" are 2-subwaves issued from two adjacent points. If the

left one ] moves forward and the right one §* moves backward, then their corresponding

waves 17, A'*! jssued from the same point, (combine!), AT — fi= || a* || . where

al is the 1-wave interacted with g1, gr¥' =g, [ gt = Il & | -

Obviously, similar arguments are available for 1-waves.

For a given random sequence, initial waves and #f =0, we partition the initial
waves, such that there is no more partition until ¢ = Mk, i. e., Case 3 no longer arises for
partitioned subwaves.

Consider an initial 2-partitioned subwave £° and its corresponding partitioned
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subwave g, ... .
fr={r=r@),s_<s<s,), n=0, .., N, Py = m K,—1), an+K,=
even. Correspondingly sequence of 1-waves is denoted by a}, k=1, 2, ... if p(al) ==
(n, K, 4+ 2k — 1) . Above arguments imply
 Lemma 3 (A) The strength of f* is invariant || g || = || p° | n=1 .., M.

(B) (1) a4 =< 6.41<< 168" moves bockward and o mm:eaﬁmmrd#ﬁi:"#ﬂ',

a}""‘nu:, twhere a4 == @' 4_&:;] , Eyl ﬁ{::’.,.] =l(r{n]_-—a+} :

2

(2 p and & move forwerd e FH'— pre= | & || = — 1 <<6u1.<as.

where a® wfnmwemcmﬂnm,ﬁ“, is a subuave of a} and the complement o’ =
a1\a} does not interact with f*. It is possible, || &' || =0 or [ 7] =0.

(C) Letal be the corresponding wave of @}, w=1, ..., M . &' lies on t =ih, 0 <i
<w, G1=0]. Then & ....&} arrange from left to right, and & U oo U &
tncludes oll 1-partitioned subwaves between at and a' .

Congider » union of orderad 2-partitioned subwaves on { = nh , ﬁ'=|:.lﬁ?r Bi={r
=Te &3 5+,) are partitioned subwaves, p(FD) = (n, M), M < ...<<my. The
number of starting points of f* is d(f") =my—m;+ 1. Set ap =& (pr)d—', where
vt v satisfy @ {vy) = g, ®(p_) = F,. Then we get

Lemma 4 (1) a_ <<a,4,<<a,&d (f1Y) =d () + 1,
(2) @1 =N8-, 0r g, =ard () = d (f*) . where a,4, is the
rardom choice,
Preof of Theorem Let

(ra(— %), Ua{—mn)), as z<<—=

(va (), wuy (2)) = < (welz), uelz)), as  |x|<<n (1)

(velm), uoln)),. as = >n
Since the initial functions in (/) are bounded, 0<y. < wola) <wv*<oo, it is
sufficlent to prove tha theorem for initial value preblem (P) ,  (I)) . We omit the
subscrigt “a” for simplicity . Mow the number of discontinuities in initial functions is
finite, —oo= oS e L H <L Zip =20, Denote b= lﬂx?fijl_l{z_f.,.l—zj} =>0.

Chocse sufficiently large natural number N. Let mesh length [ = -En (N*2)7', A=

[47%, T\=N%-<{27'6~'. There ark not more than i pairs of initial waves, they
cannot interact with each other befc-rc t= N*%h=17T,. Consider an initial 2-wave § . Let

pr= U Aa be 51 subwave of £, and f* = LJ f% be the corresponding waves of f° f2 are

L] L

12



partitioned waves o= = {r=r, F e e PR T e A i e e v 4 Satisfy

& (w_) =Ff=%{n— ga) .  @Dlpy) =,ﬁ';‘=—§-{ru—si} respectively. Condition (F)

implies @ (»_) << @ (o) . We now prove that if

18l =3 s —s0 > w2y 0<e<t 3)
then
(¥ > Gy Nut! (4)
where Gy =C .81 — O (N-9) . O (W= =0. ¢. is defined in Lemma 2. .
Consider interval [ = (@' (p_} 671, @ (vy)d~Y . From Lemma 4, Lemma 2 and
(o, 3
E(BUTDN) — (VY >BGN, N. D = NE~HD' (p4) — B (p_)) — DN*
SN AD (0-) — B py)) — DN*>C.67!N* — DN" (5)
t=0, ..... N — 1, then we obtain
_ d(AY) > CL.6TIN*+! — pNe+
(4) has been proven. Obviously, above argument is available for 1-wave.
From (3), (4), we get

0=r¥l, —r<<on=—L 0<s ., — sV <CoN=—:
hold for all integers k, N* 4 k =even, where natural number ¢ <, GyN'**, From Lemma

1@

0 ri s —ri<2Nu—1 08, — sl 2NB—! { %)
hold for all integers n = N2 k, n 4 k. =even. Consequentlv,
D=1l — riS 2iN=—1 0 << 8}y — 87 <5 2iN>—1 (6)

s 0 <p<iGyN=t! where § = |
In order to prove the theorem . it is sufficient to prove
U=Dw) —Pvd LT —=T) M= (g (14O (N—9) (7)
where L =7,
T = SHDUm (x. £+ ()

tegion Du= {(t. 2) |[0=<t<< (N'+mM)}), N= (NJ+1, N=N*t", g
L2 M, M=IMI+1, M= (T—T)T-'N'=%, Lot + = Nk . then T — T, <
Mr< (T'— Ty 4+ 2v. Condition () implies @ (py) << P (co) . The remainder of the
proof is the same as that in paper [17.

We regard the level ¢t = T, — N2} as a new initial level ¢ =0, i.e. let ! =¢—1T,,

@ In 137, we have O=mi:—ri" =201, 05, — s <27, but they are no longer
.true here. We only get [ * ). This is the critical point of this paper.
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For simplicity, we omit the superscript™ * . So D, = { (¢, x) |0 <"t <<mNh}.
Consider an  initial 2-partitioned wave £° and its corresponding  waves

Aoa=1, ... N. In order to estimate the upper bound of @ (»,) , without loss of

generality, we may assume that ,Ei'ﬁ =@ (vg) . Consequently, there exists na 1 <= = V.
such that

B BT D (v < B BN < D (n)

Then
E; = '::‘[JI:I_:] i E; = lE-“—l 'I___ I:I?; o En.::l _F" {-Enu e :Elg— 1-} {E}

According to Lemma 3 :

el o N—1 o N—1 ;

AU =B D&l <> lapl (9)

b=y i=ng
N1
Let p be the number of starting points of |J a;®. According to Lemma 3 and (D) ,
Sy

0<"p="2B(ne N—n, D — (N — ny)
where interval I = (— 1, @ (034" . In view of (6) and (D) ,
0<p== N =0 @ (v ' +D(Fn) ' < N& (vyd—'+ DN*
P N

GHNn-l-Lig o 'E?-?u} ":l "f" 0 (-N_']l h)
0=rlys —ri=S2C7'N* ' (u) 1+ OWN")
SE2LT —THM7'd (v) (1 +0NTH) (10)
Substituting (10) into (9), from (8), we can get
B =@ o) < L@ —TIM ' () (1 +-0WN") (11)

(11) is available for any Z-partitioned wave. Then (7) has been proven.
Let (w(tx),uft. z)) be the sclution of the initial walue problem under
consideration. Following paper (17, we ean prove
Ve as DOD=<"i< T,
ot @==TN/CTy  ag Ti=1
More delicate calculation shows that ¢, = min n{—m D¥ () ) D! () and O, = (y

T S VELL

Ve Sl x) -:;{

-+ 1) »; " for polytropic gas plo) =k%~", T, =2""B"".
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