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Eecently, the Heisenberg system:
=88, +8xXhk
has aroused the more and more interest. There are many works upon it in various places,
such as soliton solutions, infinit conservation laws. ete. [1-77.-But this system is only the
primary approximation of its original mathematical-physical model.

In ferromagnetic lattics(C1, 27, spin vectors satisfies the relation:
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wﬁare ¢ points to the ¢ th atom. The summing indices k’s point to these atoms which near
to the i th. 4 is the exchange integral. k is the Planck constant. h is a constant vector.
For a-Fe with ferromagnetic property is a simple cubic lattic with iattic constant @ ., 10
which we have expansion:
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]
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where A™ = E a,D¥, (m=1, 2, ....) are elliptic operators. a’s are NN- tuple indices.

|a | =m
8,’s are positive constants depending on & . The unegual relation between a’s and the
I:I:I'

.-) are understood as usual.
I:l"

meaning of (

In this paper, we will discuss the existence of the glebal weak solution of the system
which is much nearer to the original model than before, only neglect the terms whose
orders. are higher than 244 :
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with the boundary-initial conditions:

i
E =0 =0 ] on r = asd o L0, 5T (0. 2)
&y lao
Z{x, 0y =2y (x) on 2 (G. 3)
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where Z(z, ¢), Z2,(z), and Bz, ¢) are all 3-dimensional vector functions. f(z, ) isa 3
» 3 matrix function. y is the out-normal vector. z € RY, N<"2M. 2 is a ¢ bound
domain in N-dimensional space. The Z, also satisfies the condition of compatibility:

d'z,

i'}-’r o
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In our model, & is a finite number (generally it is 3) . But M can be arbitrary great.
s0 the condition N <7 2M can be satisfied easily, and it is quite natural.

The coefficient matrix of the highest order elliptic operator of the system (0. 1) is:

0 -2, Z,
de Ez} = E: ﬂ = IEIl
—F T 0

It is & null definite matrix (3]. So (0. 1) is a high order degenerate quasilinear parabalic
system.

Being based on the work of the second order ferromagnetic chain system by Zhou
Yulin and Guo Boling (3, 4), we first discuss the solution of a system with a small
parameter & (> 0) (a, below will be determined later) :

£ M
Zy=e(— DY A Z+aZ) +Z X D A"Z+ f(z. DZ+ B & (0. 4)

o i |

under the boundary-initial conditions (0. 2), (0. 3). And at last, we study the weak
convergence of it when e tends to zero.

As preparing work, in this section, we will discuss a linear high order parabolic
system:

= (—D* ' @ A+ S ADu+B@ B  in @ (1. D

|| =S 2bf —1
with the first boundary-initial conditions:

Frat) F ] ;
_-' = {] E= {Jr 1_. FrEEp M R 1 11 Sﬁl {1- E}
2y | 1o .
uz, 0) =u (x) in £2 (13
where u, u, and B are all J-dimensional wvector functions. z & R, 4, (. &) =
(Al (z. 0oy la]| =0, 1, ..., 2M. (When|a| = 2M, let (A)) = 4,,,. It is same to a,
i
in the following. ) And iuf =0 =01, ...MM—1.
2y |
Denote by S5 a function space. Say u= (u, ....u,) & G if w & H,i=1 2, ....J.

J i
And fluflea= {>] w2 }0.

I
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Lemma 1 Let the problem (1. 1) — 1. 3) satisfy the following conditions:
(H1) Matriz Awy (x, t) is a positive definite matriz in Qp, that is, there cwists 8o(>> 03,
such that for any 5 & RY, &' Aws 226,82 A (|a| << 20) belong o Lo (Qr) ;
(H2) B(z, &) € Lo(Qr) , a(z) € HY (D). '
Then, i has a unique solution u & G = Fea (L0, TI: H¥ (21) M WE-L(Qe) and there is a prior:
e

:f:";lgr ” w( e, &) Jf M T ” Uy ” Ly (@) ar “ AMy " Log (@)

éj:{ ]F Ty if KMoy = ” b ﬂ ,.;:{qrj:l : (1. 4)

where K = depending on 8, and T.
Proof First. let us proceed to a priori estimates of the solution. Take (1. 1) get the
scalar product by the vector u and AYu respectively, then integrate over O respecting to x

to obtain:
—’-H rydzr= (— ])¥H Ju + oA udz
= o

+ > Jz-r . A,Dudz + Ju - Bix (1. 5)
la|l=2ar—; «%2 a

J. AMu wde= (— 1) ¥+h J AMy ,r.jlﬁﬂ‘u-u.:ix
fa) o

i E f A%y« A, Diudx + J- AMu « Bdx (1. &
lol<iatf —y ~'@ -
Note that by integrating by parts:
’_.H = i M l 'j o
_L.ﬂ u s udr= (— 1) 3 ‘ﬁ| |Z_:3.,-ﬂ | D7 || £, [ ]

Let (1. B)times (— 1), then add to (1. 5), we obtain:

J‘ﬂ#ﬂ-:fi"!" St T a, || Diu || § S 1 J-d H*A.W.d udx

Inr-ﬂ

= (— M+ J-u-ﬂwg'"uri:—k- J @t (— D ¥AM) oo > A,Dfu+ B)dz
3 : g el M — 1 1By

By conditions (H1), (H2) and using Hélder inequality, (1. ) can be changed into:
E.-ii!l{![ “Lm}_l_E |ﬂ?¢]|;.m}‘|‘f5“d””:m:}

| e | == a4
‘EE | f’JH“ Il 2 L, (@) +{3w—1{ [l F P L a, || Dou || & e }_1_{;% I3l i:“:"'
[or | == 88
(1. |

Where the constant € depend only on I norms of A, (|a| =< 2M) ., and B. In the process

above, we have used following two inequalities(8, 97

Z ”: D7u || % gt = ek || » ” J?F”n;m o (G R ” u H ia“:']'* (= 2.0

laj=m
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Let (1. 9) integrate respecting to ¢ over[ 0, v, use Gronwall inequality, get:

sup {luCe. & |2+ Dl a Dt & |2+ Il 4%l }

ot T =
S E{ [l up || 3wee, + | BIl 2,00} Al bl
Observe the system {1. 1), and note (1. 11), we have:
I || :.1-:-;;-?3 ﬁ“:ﬁ: Cl o || }rﬂ"r,m + [ B i.tu;-,.]} (1. 12)
From (1. 11), (1. 12), we can get the estimate (1. 4), then u € & evidently.
The existence of the solution of the problem (1. 1) — (1. 3) can be proved by the

method of the continuity in a parameter with the estimate (1. 4) without difficulty. The

unigueness is also from (1. 4).

Now we can consider the first boundary-initial value problem of (0. 4) with a small
parameter diffusion term. Using Leray-Schauder Fixed Point Theorem, we discuss the
existence of the solution Z (x, £} on .

Take the space & = L__(Q;) , on which define a functional mapping with a
parameter A (0= A<= 1)T,: SF — 5F. For any u € &, Z =T, (x) is the solution of the

problem:
BT M
Zy=e(— DY (DA E+aZ) +AuX DAL+ AfZ 4 LB 2. 1)
il -] ]
d'Z
T [t 0 =0 1, ... M—1. Zz, 0) = Z () (2 2)
ag

Because of u © Lo ((Jr) . the main coefficient matrix is positive definite and bounds in
Iio. We suppose that: c
(A1) £z, &) € Lo (00, T3:C* (D)), Bz, &) € L (L0, TJ; H¥ (2)).
(AZ) Zolx) & HM (.
From last section, we know that Z (z, ¢) is uniquely determinated from (2. 1), (2.
2}, and it belongs to the space 7 .
It is not difficult to examine that:

1 T is completely continuous.

2 T.is uniformly continuous respecting to A on any bound set M C 55 .
3 When i =0, T, () is a zero vector.
Now only one thing we need to do is to give the uniform estimation with respect to

A (0==3=_1) of the solution of the guasilinear parabolic system:
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M M
Zy= (— D" e (O A"Z +a,2)+ A2 K D A2+ AfZ 4 AB (2.3

=] np == |

with the boundary-initial condition (2. 2) on the space L.. (Gg) .
Take (2. 3) get the scalar product by (— 1) *a,Z and (— 1) *A4*Z respectively, then
integrate over £ respecting toz, (n=1. ...., M) , and obtain:

M
(— 1) ¥a, _L:—-: ¢ Budz = (— 1) @MFug, Lz « (D VA"Z + a,Z) d=

== |

Al
+ A{— 1) ¥a, J-HE LI P EE"EJ dz 4+ A ({— 1) *a, J Z o (fZ -+ BYdx (2. 4),
o

-]

M
(— 1) ™ Lz-z s Zudz = (—1) N+, _[ A7 (D32 + aZ) dx
&

Mo
+ A (— 1M LH"E- (Z X D d"Zyde + A(— D ¥ LH-E- (fZ+ Brdz (2. 4),
|

M

Sumup (2. 4}, =01, ..., M . Note that (Z X > 4"Z) » Z=0, then:

o= |

a :
F2{ 3 (=Dl | D23+ (— D ¥l Z ] b0 )

0o o | S M

& M
= L{Ez-z a2 S)AZ + a2 Ma

=] o ]

M M
e L(EE"E—l—aﬁ)(ﬂ}{ > A"z M

g -

M
+ (— 1)y L{EH-E + 2, ZVFE + B) da

=ac o) Izt sk iz

| =

£y O (2 95)

in which € is depending only on the bounds of f and B in their space. For:

(= D¥tlg || DEZ -, © ||} o
0 | o | o

=(>+ > M—DHtlelg | D2ZCe, D || i

lel=H8 o= |a|=3f

a2y o 1 ;
= 2 FNDZC . D | —CWL N oaw 12¢. 9 L @2 8

o | = ¢

let us chocse a,, such that (— 1)¥g,>C (M, N, a,) =0, then integrate (2. 5) with
respect to t over [0, =7, and get:

D2iIDZe w2059 | 5
|ar| = Af
QG]'“ Zy || oy + J ( Ej fzc-, o L+ H2C-. 0 | E,fm:"ﬂr‘ﬁ] H<
o lel=u
)

||
L

Use Gronwall inequality, then:
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supll 2.0, D e K (2. 8)
oE T

By Imbedding Theorem HM (50 _, Lo (&), (N <"2M), (9], we have:
| Z || coior << K (2. 9

where K is independent of A, &: and depending only on M, N, T. and the bounds of the
coefficients. Namely, Z, (0=A4="1) are uniformly bounded in L. (Qr). By Leray-
Schauder Fixed Point Theorem, we know that the problemn (0. 4), (0, 2), (0.3) has at
least one solution Z (x, £) & . |

In the following, we will show the unigueness of Z (x. £) in the space & .

Let Z (x. £), z tz, ¢) are two ‘-IDlLI:tIDrLt- of the problem. Set W = % — % then

W,= (— 1) ”*’E(Z,ﬁ"‘w -|-aHr)4 A Lﬂ”ﬁ’-{—w e E,—_“?{"‘?—j—fﬁ (2. 10)

== m == | o i ]

~i=i), 1, ..... M =1 Wi ) =10 (. 11)

-i’;u*
Take (2. 10) get the scalar product by W, and integrate over £ to obtain

M
J-W *Wda = (— 1) ¥+ > _[ W+ AW +W o+ a W) ds
& &

m s |

-|-E JI‘P‘- (Z X A"W)dz - J‘w. (W X E.& Z) dx

== ] i e |

+ [ 7w (2. 12)
o L

where

(—lh”“ Jr:w AN A SR wmz]
ﬂl—l

E—g( Z{ ” ﬂﬂw ”f {m"‘ E":'_ -U ﬂa_ﬂ':M N ﬂ,u}:r H'F'F u {.‘:m)

IFI*—H

< —= E = || pew

aTmp 2 £y @
™ F ﬂ.n'l ﬁ
f‘*‘ *BX AW C, W || 2, +al‘§ﬁ | 2w || 2, o
S
L || 2 (2. 13)
;}:: I ” Eeg 080 (L) 'q:“:*-'? ” i £ o) (£) &
Integrate (2. 13) respecting to ¢ over [0, 7], then
1w e, o lzse [ Iwe. o 15w 2. 14)
4

By Gronwall Inequality, (2. 14)imply || W (., s || <0, ¥ r € [O.T] . Namely, W =
0 a. e. Now we have _
Theorem 1  The problem (0. 43, (0. 2, (0. 3) has a unigue solution in the space G, if
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(A1), (A2)are satisfied.
3

Now we can discuss the existence of the problem (0. 1), (0. 2), (0. 3).
Definition A function veclor Z (x, t) © Ly ([0, T]: HY (£2)) s colled a weak soluiion
of the problem(0. 1), (0. 2), (0. 3), if for any @ (z. &) € C¥ () holds the integral relation:

[lez+ > v*ianz o= (%) wtox 072> )

Py o | | =M G A 2sa
T

-+~1;Jff5+ﬂf:]1iq:cii+ Jgﬂ{i, 0) Zg () dz =0 (3. 1)
o

We manage to let the unigue solution Z, (z. &) of the problem (0. 4), (0. 2), (0. 3)
approximate the solution Z (z, t) of the problem (0. 1), (0. 2), (0. 3). At first, from last
section, we have i

Lemma 2 For all =0, the solutions {Z, (z. ) | of the problem (0. 4), ¢0.2). (0.3)
have & umiform bound respecting to & (= 0) in the space L. ([0, T]: Hy (£)) . That ss:

Sup. hZ.¢«. & i ¥ = K (3. 2)

where K is depending only on M, N, T, the bounds of the coefficients and the boundar y-inttial
functions.
Take ¢ () & Hy" (£) , and caloulate that:

J i (x) B, (x, 0) dx
=}

5 : M
= Ji— Dep (> A2, + a2, Mz + Laﬁ(z.}-': > ATE Ma + Lqﬁ(fﬂﬁ-ﬂldr

o= | ==l

<eC Pl ey 12 Ml ey +€ >3 WD D oo (IE D2z, | & 000 )

| fl =N a| =M
+ “_z; | Ly €D | ¥ I Ly 1)

<K 9l v
in which we have used that H™ () Co. CH (@), (N <207, and in which K is independent
of e (=>0).

If we call T ( (30) e _Lf#':fi as.a linear functional on ¥ € &2, (3.3) implies that the norm

(3. 3

of Ty, . which is a linear functional on HY (82 , is bound. So Z, () € H2(E@, V€

F0, T] . Ther we have

Lemma 3 For anwy t € [0, T}, Zy, (z. €) is uniformly bounded in space H ™ (&) . That

sup | Zute, O | ymssgg =K %8 (3. 4
=5t =T :
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At last, let us consider the limit process when e tends to 0. Since for any
@ € Cy' (Qr) , the sclution Z, (r, £) of the approximating problem (0. 4, (0. 2), (0. 3)

satisfies that:

ﬂ[ﬁ*ﬂ!ﬂ( ) (= DXty peg L prgy

it |a[= M
+ > (—D'la,pz, ( = (“)ﬂgcp X D*FZ A o (fZ, -+ B) ):I:frrﬂ
Lol B o 0= f=2a F
-+ J ez, OZ (x)dz=10 (3. 5)
o

By lemma 2, 3, we know that the set {Z, (x, £) |¢ = 0} is uniformly bounded respecting to
e (>0 in space & =L ([0. 70; H" (s0) N WL ([0, T7]): H~* (). From Imbedding
Theorems(97], it holds that:

B i e L@y =5 Haig)

and the imbedding mapping & C_, L, (@), (1 <Ip<"+ o) is compact. So {Z, (z, t) }
has a subsequence {Esr (x. £) } . such that E“ {xz, £} converge to a vector function Z (x, ) &
L, (@7} with g going to zero. And D:Z, weakly converge to DIZ in L ([0, T]: L,(8)) .

where |a| <M. When |p| <<M, because of T _,C_, L ([0, T]; H*7'(Q)) , we
can find a subsequence of E:E,r t::-. converge to DIZ by norm in the space
e (Co, T): L,(52)) . We still denote by DIEII this subsequence. When ¢, —0, a term of the

difference between (3. 5)and (3. 1) is that:

> (=D i, 17g, ( e (;)ng: e Df_"z,__)cimia

Jj:_ oo | =M b A

]

— > (=1 llg Dz . ( > (;)ﬂfm K Di_"z]dmﬂ

37 ootz odiza
= Do t=—ajlsly N (H)[ﬂ‘:{ztr — Z) » (Dfp X D2*Z)
ﬂ,-;_ 0l || = vspza VP :
+DiZ, « (Dip X DI™*(Z, — 2)Jdzdt (3. 8

On the right, the first part goes to zero because of D%, — D°Z (weakly), and the second

part, since f =0, |[a — ]| =< M — 1, can be estimated like that:

l] 2y (—1jlelg S (g)iﬂfzﬂ « (Dfp X DITA(Z, — Z)) ddxdt
o | | = 0 B

=clz,| L([arlin® )y " I |l o™ (goh Iz, —2z| L ([aT]:HY Lem YT
So (3. 6) tends to zero with £ . The other terms of the difference between (3. 5Yand (3. 1) go

to zero, too, because of the weak convergence of Z, (x, t) . Thus, when i—»=co (e;— ),

38




there exists Z (z, &) € L, (@y) to be the limit of the Z, (z, ¢) . and it satisfies the integral

relation (3. 1). Since p (1 < p<Too) is arbitrary in our discussion, the solution Z (z, £)
belongs to L ([0, T]; H¥ ($)) . Now we have

Theorem 2 If the conditions (A1), (A2) are satisfied, then there exists af least a solution
of the problem (0. 1), (0. 2), (0. 3) belonging to the space L. ([0, T]: B (5.
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