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1. Introduction
In this paper we deal with the global existence and unigueness of classical
solutions tothe followinginitial value problem for nonlinear heat egquations

{H’r — Auw = F(u, Du, D) 6, ) ER, X R (1 + 1)
it=0t u=gp(x) z & R (1 =23
where

Dau= (. .. ) : D = {u;‘,I; Bo d o=, s 1) {1 = 3)

and

At gt
= | — o 1- 4}
Au (M++ +333)u (

Let

CYETN o rher T DA (= RIS I L T R B 1) (1~ 5

Suppose that in a neighborhood of 2 =10, say, for |A| =01, the nonlinear term F =
F (i) in (1. 1) is svitably smooth and =
F@G)y =04 tl= 6
where o is an integer 1.
Based on the Nash-Moser-Hormander iteration scheme, S. Klainerman (C17y first
proved the following result in 1982: If

1 1 e L

?(1 -+ ?j o “‘2" (1 i)
then problem ¢1. 13 - ¢1. 2) admits a unigue global classical selution on ¢ = 0, provided
that the initial data are small. One year later, 5. Klainerman and G. Ponce ([2])
reproved the same result, just using the continuation method of local solutions instead of
the Nash-Moser-Hormander iteration.

Observing that for the solution to the heat equation, not only its L™ -norm but also

its L7 -norm decay as { — -} oo, Zheng and Chen ([3]) and G. Ponce ([4]) improved
almost at the same time the preceding result by replacing hypothesis (1. 7V with

ik n :
Lo (1+8)

To get this improvement, the former still adopted the Nash-Moser-Hormander scheme
while the latter used the continuation method of local solutions.
It must be pointed out that in general hypothesis (1. 8) is necessary. As a matter of
fact, for the following initial value problem
{;:, — Au=u'"", (¢, x) ER, X R (19
=0 u=¢p@, tc R (1« 10}
H. Fujita ([5]) and F. B. Weissler ([6]) have proved that if
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then the classical solution may blow up in a finite time even for sufficiently small
initial data.

Moreover, in the case that the nonlinear term F in (1. 1) does not explicitly depend
onut F=F(Du Dl , without any limitation on the dimension n > 1 , Zheng ([ 7]
has used once again the Nash-Moser-Hormander scheme to get the global existence of
classical solutions for small initial data

In this paper, we give a simple proof to the preceding results, which avoids the use
of either the Nash-Moser-Hormander technique or the existence of local solutions. Only
based on the decay estimates of solutions to the linear homogeneous heat equation and
the energy estimates of solutions to linear inhomogeneous heat equations, we can
directly obtain the global® existence of classical solutions and some more precise
asymptotic behaviors of solutions as £ — -+ oo, For this purpose, all we have to do is to
introduce a function space reflecting simultaneously both the properties of decayv and
the energy estimates of solutions to corresponding linear problems, and to use the
ordinary contraction mapping principle in this space to prove for small initial data the
global convergence of the sequence of approximate solutions given by an usual iteration.
The method mentioned above can be also systematically used to other nonlinear
evalution eguations.

2. Preliminaries
Consider the initial value problem for inhomogeneous heat equations
wy—Adu=F(t z), ({,, ) ER X R" (2reil)
=[}t u=t;ift{z':l,z'ER. ":E'E:'
by means of Galerkin' s method we can get
Lemma 2. 1. For any given T =0, if
& H'M'(RY, FE L0, T: H (RY), (2 - 3)
where i3 an infeger ==0, then problem (2. 1) - (2. 2) odmits o unique solution u=1u (£, )
salis fying

w&€ L0, T; H"**(R")) (2« 4)
w € L*(0, T; H'(R") (2 « 5)
and
[ S upme o> lnamer
U[k|=z
e 1ol ta+ [1FG ) lianit) @ - 6)
]
where C, s a posilive constant independent of T, k= ( k1, o, Ry }is a mudti-indez,
%] =k, + ...+, (2 + 7)
and
l&]
Dromo B - @ - 8)

=5 dztL....3zk
Corollary 2. 1. By (2. 4)- (2. 5), we have, with eventual modification on a set of measitre
zero on [0, T] .

ue (0, T]; H'T' (R") (2« 9)
Then, of we suppose furthermore that

Feo(o T]: H7'(RY) (2« 10)
by equation (2. 1) we have, with eventual modification on a sct of: measure zero on [0, T,

w0, T): A =VRY) (2« 11)

We turn now to the decay estimates of solutions to initial value problems for the
homogeneous heat equation
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{;;E——m;:D. ¢, 2y e R, X R" (2« 12)
=0tu=gp(, z&R" (2« 13)
The solution to problem (2. 12)-(2. 13) can be denoted as
u =& {f)p (2 + 14)
where
Sy 1 p=e-ult, +) (2 + 15)
is the linear operator defined by
il ) J. e 1s—81 kg, 2y 7o (2 « 16)
(2+/mt) YF

in which & = (£, .. &) and |2 —&[*= 37" | (&, —4&)*.

By Young' s inequality (ef. [8]), it is easy to get
Lemma 2. 2. For the solution {2, 14) to problem (2, 12) - (2. 13), we have, under the
asswmplion thal the norm appearing on the right hand side below is bounded

I DES O @) | prgn < CFHHG=ID @ || oy, ¥V 220 (217
where & i3 an arbifrary mudli-index, €, s a positive constand independent of € and
1="p g2 (2 + 18)
The combination of Lemma 2. 2 and the usual energy estimates gives
Corollary 2. 2. For the solution (2. 14) to problem (2.12) - (2.13), if the norm
appearing on the right hand side below makes sense, we have

| D (8@ @) || prommy < CL 4D -4 | || s2mny. ¥ 2 =0 (2 « 19)

where k iz an arbifrary mudi-inder and C i3 a posiive constant independent of .

Moreover, directly using the preceding expression (2. 16) and noting the Sobolev
embedding theorem, for the .= -norm and the L'-norm of the solution., we can obtain

Lemma 2. 3. Let N be an arbifrary nonnegative integer. For the solution (2.14) o
groblem (2. 12) - (2. 13), if all norms appearing on the right hand side beloe are bounded, we
et

| Do 8 @y @) || wo. oo gum

< (1 +# —'—||.;.g||“.f++1-|+nm.] Viz=0(k| =0 1) (220
and

| DS ) @) || woremmy <= Coll + 6 5

| @ ll woststige,., ¥ =0k =0, 1)
(2 - 21)
where Cyis g posuive constant wmdependent of L.

MNow we give some estimates about product functions and composite functions,
which can be proved (ef. [1]) by means of Holders inequality and Nirenberg's
inequality [ 9] .

Lemma 2. 4. Suppose that

1

.%;.4*%:_. T, T 2+ 22)

r
If all norms appearing on the right hand side below are bounded, then for any qven infeger 5=
0, we have
| D ) || sy ZCaC | F U eremm | PP | oy + Al D°F || pegmems || 2l L”?E} e
and for any given integer s==1, we have
| D" (fgy — FD°% || premm
ig:( ” 'Df ” EF (R"} | j}'_lﬁ ” LE(R™ ‘|‘ ” D'J" ” LY1tR™) ” g ” r."m':n:' (2 = 24}
where O, 18 a positive constant only depending on 5.
Corollary 2. 3, Under assumption (2. 22) if all norms appearing on the right hand side
below are bounded, then for any given integer 3 =0, we have




| £g Il wormm =C, 0 |5l erem | g | weewmn + I £ | weaees Il 8 | 27 cmn)
(2« 25)
Lemma 2.5. Suppose that F = F (w) is a sufficiently smooth function of w =
(o onnn, 2y ) 1l

Fid) =10 (2 + 2B6)
For any given integer s-=0, if a vector function w=1w{z) salisfies
we WHT(R", 1<<p=< -4 oo {2+ 27
and
| w0 ]| pooumy =< M (2 + 28)
where M is a positive constant, then the composile function
F{w) € W"?(R") (2 « 29)
and
| 7wy || woremm = C MY || ]l wermn (2« 300

where C (M) denotes a positive constant only depending on M.
Lemma 2.6. Suppose tht F=F (w) is a sufficiently smooth function of w =
A wy) satisfying that when

| ] == v, (2 + 31)
then :
Faoy =0 (|w]'™ (a=1 inleger) (2« 32)
For any given integer =0, if a vector function w=1w(x) salisfies
| w | LES R =y (2 = 33)

and such that all norms appearing on the right hand side below are bounded, then
” F {t'”::l |! Ao TRR) ££‘l, il w “ whtRn |I ! ” L {R™) | w " :;II;H':I ':;2 * 34)
where €, 13 a posiive constant (depending on v, Jand p, q, 7 satisfy(2. 22).
Lemma 2.7. Suppose that F = F (w) is a sufficiently smooth function of w =
() ween wy) salisfying (2. 31)-(2. 32). For any given integer s=0, if vector functions w =
@ (x) and w =i (z) satisfy (2. 33) respectively ond such that oll norms appearing on the right
Rand side belme are bounded, then
| Femy — F ) || o e,
<CAllw |l oantll® I we. v qgm T | W || oo grm)
+ lw® | weemm O @l ergn + 1|2l Lornd }
s (@l s+ N # poo )™ (2 + 35

m which
w® = — (2 + 36)
p. g, 7 satisfy (2. 22)and C, i3 a positive constant depending on v, .

3. Initial Value Problem (1. 1)-(1. 2)

for Nonlinear Heat Equations
For any given integer s = r -5 and positive constant £, introduce the following
set of functions
X.g=f{v=uvit 2 |D, (v} =EF} (3« 1)
where
D, () =supl +0 | vt, *) || we—r—s @y +sup e <) || v
=0 P

o 12
+ ([T D Inee ) lhanit)
Ll (3+2)
It is easy to prove
Lemma 3. 1. Endowed with the metric
pls, OV =D, (6—0, Y& 0 X, » (3« 3
X, pis a nonemply complele metric space.
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By the definition of X, 5, if E=1, then
sup Nodt, *) || weoomm = 1. Yere X, » (3 + 4)

Hence, for any » € X,  (with F<C1) , we can always use hypothesis (l.6) for
F v, Do, D?* ). The main result in this section is
Theorem 3. 1. Suppose that the nonlinear function F on the Tight hand side of (1. 1)
satiafics (1. B8), and (1. 8) holds. For any given integer s = n - 5, there exist surably small
positive constants & and B (B<1) such that if
pE WHLRY [ H'T RY (3 +5)
and
| @Il wermm + |l @ || wr+1mn = dE (3 + 6)
then the initial value problem (1. 1)-(1. 2) admils a unique global solution u & X, gon i =0,
Moreover, with eventual modification on a set of measure zero on [0, =0}, for any T >0, we
furne
v E30, T; H'T(R*) N o0, T H YR (3+7)
u, & L0, T; H*(R%) NCC0, T]: H YR (3« 8)
Remark 3. 1. Using the Sobolev embedding theorem (observe that s =n + 5) , it
casily follows from (3. 7) - (2. 8) that the solution given in Theorem 3. 1 is the global
classical solution to problem (1. 1) - (1. 23 . Besides, according to the definition of X, 5.
it can be seen that the solution possesses the same decay rate when ¢ — - o2 as the
solution to the initial value problem (2.12) - (2. 13) for the linear homogeneous heat
eguation.
" We now prove Theorem 3. 1
Let & be agiveninteger—= n -+ 5 and £ (F=_1) a suitably small positive number to
be determined later on. For any function

viE X, g (3 = 8)
wie define a map
Tiop—+u=Tn (3« 10
by solving the following initial value problem for inhomogeneous heat eguations
w,— Au=F{Av), {{ =) € R, X RB* (3«11
=0tu=gfx), zc R (3+12)
where .
Av = (», D,», DIt (3 - 13

We shall prove that when & and F are chosen to be suitably small. T is a
contraction map from X, zinto itself, then the Banach fixed-point theorem can be used
to get the desired conclusion.

First of all, using Lemma 2. 1 we can easily prove

Lemma 3. 2, For any v © X, ;. with eventual modijication on a set of measure zero on
L0, ==, for any T2>0, we have

u=Typ & L0, T: H'**R") N C([0, T]; H'"'(R*)) (3« 14)
u, = L0, T; H'(R") (3 » 15)

Lemma 3. 3. Tmaps X, pinto iself, provided that & and E are suidably small,

Proof. By Duhamel’s principle; the solution to problem (3.11) - (3. 12) can be
expressed in the form

u=To=8 ¢+ J;S{ﬁ—ﬂFfﬂzJ{f, ) d7 (3 + 16)
Mote that it follows from (2. 34) and the definition of X, pthat
| Fedvtr, «3) || wo—srgmn =C fetw <) | wergm || 2le. =) [| Sz o gme)

<RI+ n T (317
here and hereafter € denotes a constant. Moreover, under hypothesis (1. 8) we have



fﬂ Art—n—tad4+nFTar<ca+n: 3+ 18)

Then, by means of estimate (2. 70y tin which we take |k| =0 N=8—=n — 3 ) and
noting (3. 6), we get from (3. 16) that
hwit =) | we—s=s oo gm

e+l el w—sramm
¢ L]
G L (Q+t—n"F|| Fiaviz, + ) || w—rrmnd?

o o E ] LIod
< Q8E(1+¢& ~F 4 CE* L (14+t—o T+ zdr

<c,(l+n"TGE+ET™., Yit=0 3+ 19
where 7, is a positive constant.
Similarly, note that it follows from (2. 34) and the definition of X, ythat

| Feance, +)) lwan=<Clloe <) it Lo ) I/ s
A fa—1b
<cptd+n T o o) || erran@ - 200

and
|| vir, =) "; fr;-+=mm,. = |! 0 fy PR “ iR T e “ LG “ w o™ Tt
+ 2 !l ﬂ:t’ L P “ i"{u":

|B] =2

<cpd+» i+ > Doz +) lhan G- 2D

|| =2
Moreover, under hypothesis (1. 8) we have

-|1f1—|—’r}_%if£ﬂ (3 = 22)

Then, by means of estimate (2.21) (in which we take || =0, N =4) and noting
(3. 6), we get again from (3. 16) that
luct, =) || werwy =9E + BT, Yt =0 (3 + 23)
where €', is a positive constant.
Finally, according to (2. 34) and the definition of X, y. it holds that

| FAv (. =) | H'm‘:niﬂ leir. +2 | grets cam | w(r. *) I s o= cmmy

<cEQ+nF oG o) [ atmy (3 - 24)
Furthermore, under hypothesis (1. 18) we have
A+~ dr<C (3 + 265)
Then, naticing (3. 6, it follows li:mrn (2. 6) that
( f S|P <0 | i-f.ma,da)mﬂ C,(6E + E'T {3 - 26)
|2] =2

where(, is a positive constant.
The combination of (3.19), ¢3.23) and (3. 26) givesu £ X, z. provided that &
and E are suitably small. The proof of Lemma 3. 2 is complete.

Lemma 3. 3. T is a contraction mpmx,.;,prmﬁdedthmﬁand,ﬁwemimﬂy amall,
Proof: Forany &, #€ X, s, by Lemma 3.2, if 0 and F are suitably small, we
have

g=T8 u=Trc X, & (3« 27)
Let
p® =0—1, u" =@ —u (3« 28)
we want to prove that if § and F are suitably small, then there exists a positive constant
5 = 1 such that
D, (u*y <D, (»") (3 = 248



By the definition of E‘ . we have
{;;,“ — Au" = F (Af) — F (AD), (t. ) E R, X R* (3 = 30)
= (=1 r e R° (3« 31
It follows from Lemma 2. 7 that
| Feasie, «3) —F(AD(r, ) || womsrgpe
<Ol oS tr e | ety
| 7¢z +) || W' an
+ o e o) [|wemr=ncomn [ 20r ) [ wein
¥ ” vz, *) ” ‘:I"';-L‘"*{H'}} (3 + 32)
| Feaste, ) —F(aAs(z. *)) || wern
=i “ v (r, *) || geramn ” CRCANCIN N JFrpe
+ Ne* . +) | pewn |l vlw, ) || etrge )
LEte wyll metes (3 + 33)
| FAs(e, =)) —FCAB(r, +)) || wecmmy
<C{|[[o"(x. *) | sretaan |l v, ) || wroeo
% " g ilry es) “! w2 g || pir, +) |.| H""*m"]}'
I 2ce =) || 5ot mn (3 +» 34)
here and hereafter, for abbreviating, we write
” ﬂi'ﬁ {7 *) || WP gty = ” Dz, =) lE W FR") %+ |E E',,-z:- LE, =) ” W P Ry

(3 « 35)
Moreowver, noting the definition of X, and D, (#) , we have
lo* g ) || wrtram <€ Q47 750, (%) P
u fa -
RO SRR |, L R
[k| =2
I2° ¢ o) || womm < C 147 "3, (0*) (3 » 37)

and some similar estimates for # and
Using estimates (2. 207 and (3.32), (2. 2D)and (3. 33), and (2. 6) and (3. 34)
respectively to problem (3. 30) - (3. 31), similar to the proof of Lemma 3. 2 we can get

sup (1 +oElut it o) || wrer—ncoge = C,ED, (") (3 + 38)
sup | u* & ) || woren < C.E*D, (2™) (3«30
)
—rk E ﬁ ﬂju {"'5'- . ) !l E"{E"]ET) iggEﬂD, ('EJ":' {.3 - "IG-}
|| =z

where €, €', and ', are positive constants. The combination of (3. 38) - (3. 40) then
leads to (3. 29), if E = 0 is suitably small. Lemma 3. 3 is proved.
Now we use Lemmas 3. 2 and 3. 3 to finish the proof of Theorem 3. 1. In fact,

according to the Banach fixed point theorem. if 6 and E are suitably small, T should

have a unique fixed point u = Tu € X, . which is nothing but the unique solution to the
problem ¢1. 1) - ¢1. 3) . Moreover, by (3. 14)-(32. 15) we have

FeAdw) € a0, 7]: YR, Y T>=0 (3 + 41)
Hence, it comes from Corollary 2. 1 that
w, € OO0, T]: YR, ¥ T>=0 (3« 42)

This finishes the proof of Theorem 3. 1.

4. Special Cases in Which the INonlinear
Term F Does Not Explicitly Depend on u

In this section we consider the following initial value problem




{::;— Au=F(Du D), (¢t ) €E R, X R" {4+ 1)

=0:tu=¢plx). € R" (4 » 2)
in which the nonlinear term F = F (D,u, D) does not explicitly depend on 2 .
Let
A= ((A), §=1, vr 8 G40, 8 j=1. ceee W) 4+ 3

Still suppose that in a neighborhood of 4 =0, say, for |A| =1 F=F(&) is a

sufficiently smooth function with
Fei) =04 (@==1, integer) 4+ 4
We want to prove that in this special case, for any dimension » =1, the initial
value problem (4. 1) - (4. 2) with small initial data always admits a unigue global
classical solution on #=0 and the solution possesses some corresponding decay
properties as ¢ — - <o . In order to get this result, we need some more refined estimates.
For any given integer 2 —n + 7 and positive constant K, introduce the following
set of functions

Y,e={v=0v@ 2)|D,(») <FE) (4 + 5)
where
[T
D, (1) = SFEE{I + & _f-l- H Drﬂ 1 A ” R Ll ML
—I—s‘gx{_;- A+ | Dot ) || w—sigms
-+ sup Z (1@ " Dyt +) H LR
20 . 4 '
"+'( J‘:D E |I .D:'E-’ ) “ i}rm':.fflfji (4 « 6)
¢ |g| =2
in which
J%", if |k|==n42
Bk = (4«7

%—E—l. if nd2<|k]|<s

Endowed with the metric
plo, 9 =D,(6—0), Y6 vEY,; (4 « 8)
it is easy to see that ¥, is a nonempty complete metric space.
By the definition of ¥, ;and noting that s =n -+ 7, if E<1, then for any » €
Y, p we have
| Dot ) [lwnems =<1 Y t=0 (4 + 9)
Hence, for any v € ¥, 5 (with E= 1) we can always use hypothesis (4.4) to
P (D, D) .
Theorem 4. 1. Suppose that the nonlinear function F is sufficiently smooth and sofisfies
(4. 4. Without any limitation on the dimension n==1, for any given integer s=n—17, there
exist positive numbers & and E(E<"1) so small that if
@ € HTURY MW ™" (R (4+10)
it
|| ¥ ” artiogm 1 ” % ” wiTE Lip% = dE (4-11)
then problem (4. 1) - (4. 2) admils a unique global sobtion u € Y, zon t=0. Moreover, wilh
evenfual modification on a set of measure zero on [D, oo), for any T =0, we have
& L0, T+ H PR [T H' (R (4 « 12)
i, L0, T H (RS 0 aE0srd: iRy (4 + 13)
Obviously, in order to prove Theorem 4. 1, we only need to consider the case a =1 .
For any v € ¥, y. we define a map
T: v—u="Tv (4 - 14)
by solving the following initial value problem for inhomogeneous heat eguations
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{ic.—,d-u=pmm. (t, z) € Ry X R" (4 « 15)

=0tru=¢gpz), € R" 4 - 16)
where

Av= (D,v, D) 4+ 17
We want to prove that T is a contraction map from ¥, yinto itself.
By the definition of ¥, ;. it is easy to get
Lemma 4. 1: For any v € ¥, p, with evenfual modification on a set of measure zero on
[0, o2), for any T=0 we have
w="Tv € L¥0, T;: H'(RY) N 0. T]: H'T (R (4 + 18)
w e L0, T: H' (R") (4 » 19)
Lemma 4. 2, Tmaps ¥, ginto itself, provided that & and E are suitably small.
Proof. For the solution 4 = T'v to problem (4. 15) - (4. 16), we still have (3. 16)
and then :
Daul, *)=2D8(¢+ J DSt—T1IF{Av(r. +))dr (4 - 20
0

By (2.20) (in which we take |k| =1, N=s—n—6) and (2. 34) (in which
we take @ = 1), noticing (4. 11) and the definition of ¥, ., we can get from (4. 20)
that

|I Du(t, =) ” e L

<42 e e | we—srmm
’ e
-+ & J fl4+&—o)~ ]E Doir, =) || el ")

| Dot =) || wroo=gmde

<c, (146 T GE+ BY (4 » 21
Similarly. by (2. 21) (in which we take |[k| =1, N=s5—3) and (2, 34) (in which
we take a = 1 ) and noting that

” Dy (e, +) || fomtomm

= ” Dotr, *) [l pan |l Bovie, +) I 2o am

+ E | Diwte, =) |l P2am } (4 = 22
|2 =2
we hawve
sup (1 +8) V|| Dault, o) || wimnign <= Cy(6E + B (4 + 23)
g0

Next, using (2. 193 and noting that
| Feavdz, =30 || wolan

<0l Dotr. ) || we=mn (ll Divtr. o) || o + E | Dloce. =3 | 101 cgm )

|h] =2

<P A+0 A CEA+n T S | DG o) [ aran (4« 24)

[&] =2z
we get

| Druct, =) || p2emmy ,
< CE(l 40 P ¢ j (A+t—n "% | Feao(r, <)) || grignde
£G’(¢SE—I—E:} (141 ~p i

-I—::‘?‘E( L (14— ~¥¥(] +f:—"+“£r)

i Tk
([ S s o Neanir)
U ja|=2

<, 61+t "M (SE 4 EY, k| =<s ¥V i=0 (4 « 25)
Finally, by (2. 8) and noting (4. 24) we have




( r 20 I D > | F:-m-}ﬂ)uzgc‘ (6F + B (4 - 26)
ol LY

The combination of (4. 21) (4. 23) and {4.25) - (4, 26) leads to the desired
result: w=7Tpr € ¥, ;, provided that & and E are chosen to be small. The proof of
- Lemma 4. 2 is complete.

Lemma 4. 3. If d and E are suitably small, then T is a contraction map in ¥, 5.
Proof. For any #, P E ¥, ;, by Lemma 4. 2, if § and F are small, we have

g=T8 u=T0EY, (4 - 27)
Let
" =5—90 u"'=9—4a (4 - 28)
we have
U —Au" =F (A0 —F(A®), (€ 2) ER, X R" (4 « 29)
=0:u"=0 zE R 4+ 30

By (2.20) and (noting (3. 35))
| Flavir, +)) —Flav(r, +)) || wo—srimm

< C([|[ D"z, *) |w—srmn | Do (. ) || iy
'-I'" || D’ﬂ“ ':.1:';. b :' || 7 P - LT | B_.EE‘-; ET', L :I ]l "I'-l—ﬂ.l':Hl:l:'

< CE(l 47 ~%**0p (»*) (4 « 31)
Similar to the proof of (4. 21), we can get
:ﬂ:ggﬂil +6 | D™t ) || wo—s—s o0 e, =< C,ED, (©") (4 « 32

Likewise, by (2. 21) and i
| Fias (e, +3) —FiAD(z. *)) || pr—s1pn

=0 “ Dou" (v, +) |i HYr™ 1' Dv(r, +) " H' 1w
4+ | Do™tr. o) || pmrmn I Do (v 2) || w1 an)
= “ Do~ fx. =) Il HY ™ Lem™ ! Dﬁ; (r. *) ” H*— 1 (r"

<CE{Q+ "G )4 (1 42 "%D, (") (4 » 33
similar to the proof of (4. 23), we have

sup (LY Du*t. ) || wo—s1am = C.,ED, (0") (4 = 34)

i ]

Moreover, by (2. 19) and
| Feas (e, <)) —FeAd(z, « ) || wllan

=CC| Do® g, =) I Wl o ey | Dz tv, =) || witl+2mn
+ ﬂ Do® (z. +) “ wlel+e e H ﬂ:; Siaps S Il Wi o0 gty )
<CE(+7 G )p, (")
+CBA+0 7T 3 [ D o) | e

[h| =2
o+ D0,07 D IDEE ) | aeme (4 » 35)
|b]=2
similar to the proof of (4. 25), we have
sup > (1462 || Dlu" 6, +) || piwn = CLED, (") (4 + 36)

Janlllgl
Finally, by means of (2. 6) and .
| FeAs(r, =)1) — Fldo(r, +)) || demn
<CE'(1+v "D ") 4 0B Y || Div* (. ¢ || fean
[h| =2
+eopiew®y > | D% o) || hewn (4 « 37)

| b | =2

we get
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Ife
([ 0o e ) lirandt) <c£D,0 4+ 38)
|-

The combination of (4. 323, ¢4, 34y, (4. 36) and (4. 38) gives
D u"Yy =< nD, (@) {4 » 3%
where 9 is a positive constant with =1, provided that F is small. This completes the
proof of Lemma 4. 3.
The remainder in the proof of Theorem 4. 1 can be completely repeated as in the
proof of Theorem 3. 1.
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