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1. Introduction
Let e and ¢ be two elements generation Douglis algebra™ , which are subject to
the following multiplication rules.
it=—1,te=¢i, e =0, =1
where 7 15 a positive integer.

Definition 1. We call a hypercomplexr value if a = Z“*Ei yuhere ay Ck=0,,7) are

k=

r

compler numbers, a, ts called the complex part of a. Set @ = Eﬁkeﬂ | a | =E it

ki B )
b |I$|1'samm‘ymm&wma£ |ab | < |a| | 5], ad is a real hypercomplex value and ad
oy

Let D=4d; 4-¢(z)d, be a differential operator, here ¢(z) is known nilpotent
funetion.

Definition 2. A hypercompler function w & C'(G) is called hyperanalytic if & is a
solution of D =0 .

A kypercomplex function w& C'(G) is called generalized hyperanalylic function if it is a
solution of Pw 4 Aw - B = (.

A. Douglis'?,R. P. Gilbert*™®™ , G. Hile!¥, H. Begehr®™ ' and Hou
Zongyit™ ™ have discussed properties of hyperanalytic and generalized hyperanalytic
function and their boundary value problem.

Definition 3. A kypercompler function ¢ (z) is called a generating solution of the operator
D if

1) £€2) has the form t(z) = =z | Ehfzjf"éz'—}-T{ﬂ "

2) T € BU(C) and i
3) Di(z) =0 in C.

By
1 - ?J‘
where AL, z) =’I’(¢}—T{z) s 10e canr get
1 M
- | =TE—z]" 7" .

where M is o constand,
In this paper we deal with some operators in a Douglis algebra and their
application ta PDE.

R.P. Gilbert’ introduced Pompieu operator J af =— —_H‘ﬂé?;@}fg ¢:, and

discussed differential property of J; ,he abtained
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Dif=1f Gl 3)
and then he investigated a series of propertics of Jg, but he could not study operator
I7 ,because the definition of operator Jg is not reasonable.

Now we introduce the differential operators

3= a(2)3: + f(2)8:, 3 = B(2)3: + al(z) 3z (14
where i %
gt iz Al s 4
ﬂ'::-z':l — ﬁ,E e ::iTj-! ﬁl::.z} E-:E-_I = f;f_; {:l 5.}
obviously we have
gt(z) =1, at(z) =0 (1+6)
and we also introduce the integral operators. en
(g — L [[6DEDST o g L [[UBEIIEOIS,
Jl w k)T EHE) — =) A w A G — ()
Hf= (II*—a)f (1+7)
F

where o = . Operator T is different from operator J , since the integrand has weight

ts
Dt{&) and operator IT is new.

9 Differential Properties of Operator T

In this section we discuss differential properties of operator T in O7(&) and
L,(G) .

Theorem 2. 1. Let G € €7F, f(z) € €2(G) ,g€ B"(C) ,0a<"1,m=0, then

1) Tof € C*HH(T) \To is a tolally continuous operator. i crCa)

DY) T of = FodTof =1IIf,
the integral of operator IT is in the Cauchy principle value sense and IIf © 3 L

. Lemma 2. 1. Lﬂﬂiﬁabmmdcddamaiﬂmiaﬂnﬁmem&emLMycmMmrm, we

CH) & turns out

ﬂa;ﬂ£{§}3wdﬂ¢= ——El—i deﬁ(c_‘j} (8.« 1)
] T
3 [ teDeCEhdng . 1 J‘_ PEIdCE) . ’
Nt =ty == G — ey O R

]
swhere the integral in the left of (2,2) is in the Cauchy principle value sense.

Prooi. By applying Green formula, Pompieu formula®™ and properties of £(z) ,
this lemma holds obviously.

Now we return to the proof of theorem PG

Proof. we assume that m = () at first.

oo ool ThleDECEICFCE ) — fCz)) =) t.DECE ) dag 2
mep=— 1 | S = ﬂ-u{c} =i 47 Y

L

when f& C.(@) , the first integral is a weak singular integral. By use of lemma A |
the second integral is in the Cauchy principle value sense.
We set
g(z) =If, Ai=1(8) —t{z), = $E) —t(z), do=1t{z)) —t(2)

thus
g(z) — g(2) = — *1-J]tgﬂrﬂ;'3f{¢} (L — Lldo; — $G0 G + £ ()

T
)

o FFEN a T d
= — ﬂ—ﬂ}gm B (£(8) — Fa)) o — £ ﬂcgmm (£ — F=I 5
i e

=
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[fr:zl:mczlwr—fc D _ﬂ'm} r*"'“f":ﬂﬂ**ﬂ“@‘f“ £z nacz)]
L2

diﬂ# 11';'1-3
£J1+JE+J3+J4 {E“i:'
By use of Pompieu formula,we obtain
) == 2me _[H:Q} —i(z) = _ﬂ‘tiﬁj — t{z) L)
thus =
Jam = s (— h o T e ‘”3}) 2+ 6)
-d-u -"jlil
So we get =
920 — 9() =T+ Tak (FGa) — fla)) [ — D24 LED =0 amr:z}]

— flz) (8P (z,) —3aP(z)] (2=7)
where &(z) —2] = .J‘t{é‘;)ﬂ-‘i;ﬂiz) .Since GE ", 0<"a<"1, similar to the
discussion on pﬂ:-perties of analytic function, we have @(z) & C77Y{T),3dP(=z) €
EE0G)

On the other hand for f € €.(&) ,we have
1FC20) — F(2) | < H(@) |z, — z]|* . (2« 8)
[Tl S MHG) |z2i— 2|7 | Ty < MHG) |2, — 2]"! (28}
where M, is a constant independent of & .
Therefore "
|glz) — g(2) | T M.(AVCLFy G|z, — z]|° (210

where M.(G) =1 4 2M,+ €.(3F,G) 4+ H{(&L,G) and
| T f| < MH(G) 4 C(f, HCED, T) < M.(GIC(Ff, &) (w119
Moreover , by use of (2. 10),(2. 11),we can obtain
_ CuUIf, @) < 2MAGCLSf, &) (2 +12)
that is, when f& C(G), Hof € C.(G) and [Ty f is a linear bounded operator from
Q.06 to itself.
To study differential properties of Tof .set h(z) = Tof

B(s) =By po _ﬁﬂ'ﬁ-:ﬂﬁ'if(ﬁ — (7,
iF

iz ) —t(z) 4,43
@
Bl [m%+¢le};¢cz) _aﬂﬂ}
then we can get estimate
iz —biz) oo Ao, ]|
TR T dﬂf(z)|
< MH(G) |z, — z|* + jawt:z:} — 22 =2 o5, 8 (2+13)
thus
h, h £y
E—Hf——f{z)—ﬂ I:—HJ‘—E:-J“(::J#{J (2 + 14)
we hawve
TN e 1 e A =
{ﬁ;-— 3 Che— i) = IT7CED + 2 D, S
Ry = ITF{tz) + fC2) (L):
That is
ATf =k = ah; + fh. = (FEITf+ ftiz}t:ﬁ} = ITf (2« 16)
ITf = dh = Fh; + a@h. = (FEIITF+ f(z2(IE) = F(z) (2«17}
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Tt imnplies that theorem 2. 1 holds for m = 0.
For m =1 ,hence f &€ CL(&) and then

ot el [T DY £(E)dog T
s = .«:J]u{r;:nw—u:zw Feioia)

BeR T Al FCENL(ED
T 2w ()Y — ()
;4T

A s FCedi (s i z
Lalim | - ass gy TR R (28
|| =
by simple caleulation, it's easy to get the following formula of ITf
Hf:f’(z) —}*Ta{af} (2 » 19>

1 oL FCEIdECEY

where ¥{z) = — Pl | 210E) — 202D is a hyperanalytic function,then we have
e
AT f=a¥ +3(Tx(af)) =3f (2 - 200
A f= W 4 3(Ts(3f)) =¥ + I (3f) 2+ 21>

By these formulas we get JIf e ¢L(GF) when G & i, fe OL(G) and recursively we
also get ITf€ Co(@) , Tof € o+ (@) when ¢ € Cp% and fE o () , finally we
get
on (T f, §) < 02 (3Tef, ) << KC7T'(Tof, Gy < M(m, a)CPCF G,
(2 +22)
where K is a constant independent of m,a .
It means that T is totally continuous cperator from Cr (&) to itself and I7 is a
linear bounded operator from CF(G) to itself.
Theorem 2. 2. If @ is a bounded domain sn plane and & L,(G) , (p==1),then
1) HE‘fE I"PI:G:' ¥
9) ITof is @ linear bounded operator from L,(G) o itself and we have the estimation ;
chﬂf! {-;T:J ﬂﬂpr{f: ﬁ:’ (E « 23)
where

2.5 6 = ( [[15 |*w;)'_l
K]

Proof. By singularity estimation of f@—iﬂnﬁ and the method of C10].

Theorem 2. 3. If f& L, (G) ,p=>1,then there exists the generalized derivatives of Tof

ATf=f, aTf=IIf (2 » 24)
Proof. It is sufficient to prove the following results.
J= Hﬁ;ﬂtigj ((Tdp + ol flde: =0, ¥ @ € DG) (2 - 25)
i
J = JI&;D&({:}E{TE}E‘Q? + fpldo, =0, ¥ ¢ € Dy(GE] (2« 26)

we assume f. & DO (G) and L,(f. — £ @) —0 ,it turns out
I,= || DI LT f3p + el f.)do:

LY

o

4D + TFH) —3(TH) » ¢+ (I » @ldo,

= || ¢.DE(E3(P « TH)do, = -% J(Tf.} . @dt(£) =0
ad

and
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L(T(fo— s @ S ML(fi— f, ©) =0, (n—>o0)
L?(H(fn_.f}r G}iﬂ;Lr{fi_fi E}—"ﬂ;. l::ﬂ—l"l:ﬂ}
thus we obtain I = 0 . By similar method we also obtain J = 0.

3. The Generalized Expression of Second Order
Hypercomplex Equation

Now we consider the second order hypercomplex equation
Fow 4w % + pdtw + w0 + p 30 A k2, w, Jw, Juw) =10 (3 -1
where hiz,w, dw,dw) = rdw + rdw + rdw 4 rdw 4+ s0 4 5.0 + 5, the
coefficients u;(z) (i=1,2,3,4) are bounded measurable hypercomplex functions in
G ; & is a domain in C,I'=23C is a smoothly closed curve, w is an unknown
hypercomplex functiong r(zj,sj(z} (i =1,2,3,4; i=0,1, 2) are hypercomplex
functions, belonging to L,(G),p = 2.
Suppose that
z | ¥] << ¢ (where we suppose 0-<Igi<Z1) (3 +2)

#= 8
LN P

where g3 (k= 0,+++,r) are constants, u{z) = Z,uf{:z]e* . According to homomorphic

B
classification method of . M. Fenwbang and IL I ITerpomeiasi, BE. B, Boaperun®™
indicated that the equation is & second order elliptic equation of £, class.
Definition 4. w is a generalized solution of equation (3. 1) if w&€ CWE) WG ,p
=2, and it safisfies this equation almost everyuwhere.
First let us define ¢f and logf for hypercomplex function, f= fo+ F ,F ix a nilpolent,

f= = g+ m (3+3
T (EM ) :
logf = log s+ Z&[ Z), G0 3+ 4)

we have easily the following ]emma
Lemma 3. 1. If f(z) is a hypercomplex function , fo7= 0,then

losf = log . HI-:}g_f=a—j.'f, émgfzf—}f (3 - 5)
Now we introduce operator

T =-L H&pmmﬂgmg) — () TE) —EGENIf(Edo; (3 +6)

&
when f& L,(G) , Tof have the second derivatives of 3 and 3

3T =TF, 3T = TF, 3T =1II7F,

AT F = ITf, 33Tf = f = 33T of (3 )
Theorem 3. 1. The generalized solubion of equation (3. 1) can be written as
wlz) =@,(z) + Pu{z) + Tof (3« B)

where @ (2) (=1, 2) are hyperanalytic functions in G, $;(z) €S C(D N WIHEH,.FE
L, (G) ,p=>2 and f satisfies

FC2d + T+ podl f 4 podT f 4 T+ Kf = g(=) (3 =9)
here K is a weak singular integral operator, g (z) can be defermined by the coefficients of
equation and hyperanalylic functions &, ().

Inversly, if there are two hyperanalytic functions ©;(z) € CW(EF) (W (G) , (i=1,2)
and f(z) iz solution of equation (3 + 9),then w(z) given by (3. B) is the generalized solubion
of (3, 1).

Proof. Assume that w(z) is the generalized solution of equation (3. 1), then w{z)
€ OWE) M WIE) , so we have 33w = fF € L,(G) . By use of properties of operator
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T,, we have daT.f= f,let o =Tdf , then dalw—w) =0 .5et W= — @, W
satisfies equation 33w = 0 ,so die = @(z) , where $(z) is a hyperanalytic function. On

the other hand, Jiw =& ,s0 0 = ¥(z) 4+ T, @ and then w = F(z) + T
Now we compute To® ,

Ceradhit L f;ﬂ@ﬁiﬂ'
Tab=—17 H 10 — 1(2)

L _%ﬂ&uﬁﬁ;ﬁamngm;) — £(2)) (I8 — t(z))do,

g ™

=1im—iﬂ-a;mﬁa[émgmg} — £(2)) (2(€) — £(2) ) Jdo; (3 + 10)
Py

by use of lemma 2. 1,we have

7B = - J{F(;‘}lmg(t(@} (=) CIEY — 1)) ) —
EL
— 5L tim j B 1og(£(E) — t(=)) L) — £(2))dE(E)

In wvirtue of
llog (€)Y —t(z)) | = [log(é — =) | +
' < M* + |loge|

2(— i}‘—‘(ngé = Z{z})#\

N

we obtain

Ta55=ﬁ Iaﬁ{;)lugﬂ{;) — 4(2))dE() +§%E Isﬁfgﬁlngitiﬁ} — t{z))di(5)
a4 a4

o E?l + EIJ:I.
where ¥, and @, are hyperanalytic functions. Set @, =¥ + ¥, , w(z) can be expressed
in the form of (3.8) .Obviously ®:(z) € C'(G) N W;(F) .Substituting w into
(3.1}, we know that f(z) satisfies (3.7), where K is a weak singular operator from
L,(T) to itself and is linear combination of T' JT,T,and T,. g(z) is linear combination
of coefficients of equation (3.1}, ®(=2)(i=1 .2) and their derivatives up to 2-th
order,so g(z) € L, (&) .

Inversly, for arbitrary hyperanalytic functions P (z) € QUG M WiHE) and fFE
I,(3) satisfying equation (3.9), then w(z) = &, + &+ Tof must be generalized
solution of equation (3. 1) since (3. 7).

Theorem 3. 2. Suppose the coefficients of equation (3. 1Y satisfy (3. 2), then that
equation (3. 9) has unique solution flz) € L(G) , p=2 for any g(2) € L,(G'_} s 1. e. there
exists the generalized solufion w (z) of equation (3. 1), which depends on two arbifrary
hiperanalytic functions.

Proof. By use of theorem 2.2, we know that IT and IT are the linear bounded
operators from L,(G) into itself and K is also the linear bounded operator from L,(G)
into itself.

For the coefficients u,,7,,8; (i =1, 4,j=0,1,2) satisfying the following

L

4 sup |ul + =4, 2,0+ A<I<] (3+11)

T e
where A, is the norm of operator IT on L,(G),A: is the norm of operator K, disa

positive constant, by use of Schauder's fixed-point theorem, we can get the result of the
theorem directly.

4. A Priori Estimate
We denote the Schwartz operator Sy,y is a Holder continuous real hypercomplex
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function defined on &, 8y is a hyperanalytic function and satisfies

HF Re(8y)(z) = y(7) (4+1)
gy T =
The equation Jw = 0 can be written as the following
wWe: =) (4 2)
k=]
thyE = — E‘iri—jwj:? (k=1r, 7) (4 =2")
=t
we consider the boundary value problem
Rew(z) =y{z) = E}I#{z}ek, ze Il (4 = 3)
Obviously the solution of (4. 1), (4. 2), (4. 3) can be expressed by &y ,i. &
w,(z) = — J-y;({i.ﬂ‘{z, ) — idG"(z, 7))
r
1 o Jb =
3 ~E—£ S 00, (Giz, &) + Gz, £))do,
5 ™0
o k=1
-+ _"é"-[ Eal—jmﬂ{ﬂ']{(z! (j} A G..I}FI{EE é)}{iﬂ-‘:—
g =9 .
(k=10, 1, *»+; ) (4« 4)

where G'(z,&) and G"(z,&) are the first and second Green functions.
Let @(z) be a conformal mapping from & into unit desk, then G'(z,8) and
'"(z,{) can be written as
T plz) — @)
Gt(f-j :: = = J.GE.‘ ————
5 2w 1 —@(z)p{l)
Gz, &) = — El;h:agl (p(£) — ()X (@(8) —@l=))]|

when 7 is unit desk, (4. 4) can be written as

1 MO+, 1 (T[e 210,
wD =52 |“Fe—o --**‘;_'r?ﬂ[é' —Hz_l-éﬂ}dﬂ‘*
r L7

nﬂlr?e+P(ﬂ?.;},(k=[}, 1, vee, 1) (4 + B)
The following two lemmas are obvious.

Fene 4.1 Tt G be it deak o oo Borindary of O P& ,%-—.::a-::l ,2<p

’{T'%"E Jthen Sy has the follousng estimation

| Syl wien =M vl eper 4= 6)
Lemma 4. 2. Let & be g bounded domain, I' its smooth boundary, f & L,(G) p &€ CL(I)

and sel
_ 1 |eldTf
r

then we have the estinadion

I Rf || W,',-:F}EM" ”f“r (4«72

Theorem 4. 1. Let @ be unit desk, I’ ifs boundary, fE€ L, (E),pe Cl(I), g€
(), h a1, 2<<p <y then

| SCeTH | mym=4. [l 7l , (4+8)

Proof, Let w = S{@Tf) ,we have the following estimate for each component
!l tlly ” p'f_“-'r " P{‘?Tf} |.| ,Eﬂé |E f!l r
I dswe ll == || 2.7CpTH) ||, = || 23.RF | ,=CEl 71l
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thus
| o ll weem =<Ca |l £ ,
lew |l ,<< | PCeTFY | o4+ || PCand |l 5
= C1 “ .f” r+-¢'1r H il ” P{—:SE ” I ” ’

|I3;w,, Hr= “'Q'lw'k "J'E'g:”f”r 1%
” CRIH ” s |I 23, Bf " e || E;P(wl_;] ]!. pi‘ﬂ: il f ” P+ A ll 1oz ” r
=cilrl,

and then

I will wiem=€. I 51,
where A, is the norm of 3, P on L,(&) and recusively we have

|| iy H W L (T < !| £ »
s0 we obtain

| 5eTH | mar <4l £1 5
From (4. 8),we get
| 38T |l , =k 7l , 4+ 9

where k& 15 a constant.

5. Pseudo-Neumann Problem
In this section we consider the boundary value problem
MutAdw=y=yi— v, 2€T, (A7=0) (513
where A, v are Holder continuous hypercomplex functions, 3, and y. are real
hypercomplex functions. From section 3, we know that the generalized solution of
equation (3. 1) can be written as (3. 8). Substituting (3. &) into (5. 1), we obtain

AQD, + T 4+ A@P+TF) =y, — iys (b= 2)
so we can change (5. 1) into the boundary value problem of hyperanalytic function.
Re(A(aD, + 3@)) =y, — Re(A(T(f+ F1)] (5 -3)
Re(iA(ad, — 3@,)]) = p2— Re{A{T(f— fI)] (5« 4)
Assume £(z) is a normal generating sclution (i. e. £(0) = 0) and set
gir) = L log l{i
i Esi?}acfjjé
l g(x) 1"
(5+«5
ANl ey o ¢

where » is an index of problem (5.1), % =ind 4 =-E-l:rdrargiﬂ where A= 4,+ A, 4

is a I;iilp-c:-tent function. & and # are real hypercomplex functions, function () — $(7)
is single-valued. Let

wl(z) =800 — ) — (8 — o) (5« 6)
@(z) = t(z)%exp{iS(8 — )} A t(2)"p(z) (5+7)
we know that @(z) is a hyperanalytic function, (=) satisfies
pt(z) =p(x)A(7r), (zET) (5« 8)
where AL R
Pa [%} "expas (v) (5 - 9

here p{r) is real hypercomplex function on I” and p, > 0.
We discuss the two cases as follows.
(I} CEEE'- l » H ‘C:: !] *
Reducing problems (5. 3), (5. 4) to the following

o ﬁi_@m+amﬁ~f—~ Rah?&+fﬂ&Jv+ﬁ (5 +10)
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YA D Il lyg i \
Ee %(T) {3'5'5. aﬁﬂ:)}v—%‘% Re [}ET(;F _‘?):|_E,P:+ Fs {5 11:—'
and solving (5. 103, (5. 11) ,we obtain
3B, + 9P, = ()@ () (8 + F) +ield (5« 12)
AP — 3Py = — it(z) @ (z) L (T Fi) + 1cad (5-13)

where o; (i=1, 2) are real arbitrary hypercomplex values. Because 3%, (i=1,2) are
continuous at z = 0 , pseudo-Neumann problem is solvable iff two functions

L8\ + Fu) +ie,102) , EE(P2+F=j,+i¢J{2} (514
have — x% order zero at z=0 when x<_0 .1In particular- when x=—1 , we get two
solvable conditions

ReS(I, +FO(0) =0, ReS(I:+ F(0) =10 ; (5« 15)
Let Hl' =%?;(3)5{3}_"{S(Fn+F1}“iﬂ{rz—F Fy) + tey "I'ﬂi} ":.5 A 15}

HY = 1p@ ST+ PO+ Fo Hie—e) (521D

Those above solvable conditions are equivalent to the following conditions
S(I = F,) _f-Sﬂfz‘i‘Fﬂ -+ i¢1 + Cp H(Pl_l_F:l} —|—T:S(P:+F::J + ¢, — €2
have — x order zero at z = {)
So f(z) satisfies — 2x — 1 complex relations. Thus solution of (3.1), (5.1) can
be expressed by
wlz) =TH +TH; +Tof+ ¢/ (5« 18)
where ¢ {s an arbitrary hypercomplex value.
Substituting (5. 18) into (3. 1), we obtain
F+ wJIf+ T f+ pudIF+ DI f+Q° () =2 (5« 19)
where Q*(f) is the linear combination of the operators Tf, Tf, Tof » Tof and
SCF),8(F:),38(F,),38(F,) . From section 4,we have
| SF ), = || 8{ReCpT G+ | =M | Fl -
[,<mal £l | SFN <Ml £y l3SFN =Ml £,

where @ = ;]::T = (M, so @*(f) is linear bounded operator on L,(&) . Denoting its

norm A; »when

A Db Ag < dp <1 (5 + 20)
P ]
then eguation (5. 19) has a unigue solution f(z) in L,(G).
(MMCase 2, x =10
In this case,problems (5. 3),(5. 4) can be reduced to

(3P, + a0 () .
5{3'1:'1— -H'ﬂ:'ﬂﬁ_'(r'} s
Re ﬁ("l-’-'}’ = Pg_t_ Fg (5 EE:]

Setting Pa(z) = Ec;ﬂ{z}" be a hypercomplex polynomial of degree m and miﬁng
R ]

(5.21),(5. 22),we obtain
P, + P,
= @{z) { Pemi(2) + =) "te
+ t(z)*S (0 + F) — t(z)"5 (Ret(2) —«p._(t))} & Ry
@, — Fhy,
= — ip(z) {P._,(z) +t{z)%¢
L i(2) S+ Fo) — t(2)"8 (Ret(2) P, (v))} & R:
thus
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amF%m&H,, 20, =By 1, (5 - 23)

where ¢y, ¢ (k=0,++,x— 1) are arbitrary hypercomplex values, ¢ and ¢ are
arbitrary real hypercomplex values.
Solving (5. 23) , we obtain
O =TH +¢, ¢ ,=TH,+c"
where ¢’ and ¢" are arbitrary hypercomplex values, set 0= ¢’ -+ ¢” , then the solution
w(z) can be expressed by

1'5":2)=TH|+TH1+TJ“!‘¢-: (b« 24)
so the solution w(z) of the problem depends on 2x + 2 arbitrary hypercomplex values.
Substituting (5. 24) into (3. 1), we also obtain a sigular integral equation for 7,
we only replace ¢ (f) by Q(f) and H' , H; by H,, H..Denoting the norm of
Q(f) on L,(G) by Ag, we know that there exists a unigue solution of that equation in
L, (3) if

P o P g | (5« 20%)

k=0

so we prove the following theorem,

Theorem 5. 1. (I) Case 1, %< 0. Suppose the coefficients satisfy inequality (5. 200,
then the sufficient and necessary condition for the solvability of pseudo-Newmann problem (5. 1)
consists of = 2x— 1 complex relations and its solution is dependent on an arbitrary
hypercomplex constant.

(I} Case 2, =0 . Suppose that coefficients satisfy inequality € 5.20° ), the paeudo-
Neumann problem (5. 1} is always solvable and its solution is dependent on 2% ~+ 2 arbitrary
hypercompler constants.
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