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Abstract _
_ This paper studies the Cauchy problem of totally characteristic hyperbolic
operator (1. 1} in Gevrey classes, and obtains the following main result;

o ' - "
= (o is definded by (1 = Ta),

Under the conditions (I — (VI}, if 1==s <"

then the Cauchy problem (1 « 1) is wellposed in B (CO, T), Gl (R ;if g = - i 1

then the Cauchy problem (1. 1) s wellposed in B (C0, £J, G? (R"y) {where ¢ >0,

small enough) .

1. Main Result

In this paper, we consider the Cauchy problem of totally characteristic hyperbolic
sperator with weight m-k in ¢, i &

Pu= (*Df Pt z; DYDY+ « + » AP0 2 B) i SR

4 P_(t, z: Dduflt, &) =f z, & 2 €ER=1[0 TIXE

Dudt, ) | ,m,=u,(2). f=j=m—fk—1
(1= 1)

Problem (1 = 1) was discussed by (11, C2]: but in this paper our conditions are
different from those in (17 or [2]. Suppose
@M. k€eZ, 0O0=k<=m
(D). Order P,(t = D,) < J. l=j=m
ah. P,G D)= >, 6,020,

A=
4, o) € B(O.T), G R)) (Z=lLI<jism

(IVi. The characteristic polynomial of F satisfies
Tn + 2 Efam“mi_!]. 2 "1_13 “} I:l g'ﬂ:i*:-""_“
e [ B =7 (1« 2)

.y 2

=0 tr—at z; &) « T (v —tu(t 2 8)
o I =1

where m,+ m,=m, my;=2:¢>>0. a rational number; & { z; &, p, it 25 B

B(C0O, T2, 5,0 are all real valued functions on Gx RY:if. o) €2, |8l =1, we
have: A, (h 23 &) A, (6 28 A<iFEi<m), g 218 Fult 58 (A1
j<mp and 4, (0. z: & F0 A=<i<my) .

The indicial operator of P

(1) Supported by the Science Foundation of Academia Sinica
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Lt z; DY) =404 —1) + » ¢+ (A—m-41)
+ B0, 2: DIJAA—1) = » ¢« (A—m-F2)
u!- . o :
+ By (0, z; POAGA—1) » + ¢ (A—m+ k4 1)
is a non-singular operator of order k with parameter A , we assume

(V). LA, =;D,) is uniquely solvable in G (R") for any A &€ Z, such that A=
n— k *

Under the conditions above, Tahara (3] considered the H™ wellposed of Cauchy
problem (1 « 1), but in [3], the lower order part of operator (1 + 1) was restricted. In
this paper. in order to solve the problem (1. 1) and improve the result of (3], we use
successive approximation method in Gevrey classes, thus the restrictions in lower order .

terms of operator (1. 1) are weakened. Let
P=P+F (1«3

F=t'Dl < D D Va0 ) ™ prips o S e () "R RASADETA . i the

gl | ] - =1
™

principal part of P; F= > Z ap (b ) ™I DRTID? s the lower order part
it | f =i
of P .

Using successive approximation method we can get the formal solution series of
Cauchy problem (1. 1). Thus we have to impose some restrictions on coefficients of B
in order to ensure the convergence of the formal solution series, namely

(V1) . ap (b, &) =825, @, ), 1< |gl=5ji— L 2= j = m.
where w(j, S € Z,., . andw(j A =1 if 1 |fl=Cj—1, 20 ik,

In (9], the index of &'-wellposed was introduced. Here we will see the index of
" —wellposed of operator (1, 1) depends on the order of degeneracy of principal part
and the coefficients of lower order terms of operator {1, 1). Set

dim—ji+|f|. B
_Jwih B I |8 <i—1 2 i<k (1 =4}
Cleh A+ —k IS (fl=si—L i+ 1l<sj=m

then d (m — 5+ | £, B) =1 is a positive integer. Define

r; = max {|,t‘.'?]—d["4:,{"'5'—:II B, (d=issm—1) (1 + 9)
| A mi
and for any positive integers k, =o, (1="k =—m— 1, 1="i=_m — 1), suppose
y= max [%) (e .o, 1 (1 « B)
rmimm—1, A :
o= max (kiy_l_m._t) 1+«
Lsnisim—1 m—t

then o =1, and T i the indéx of " -wellposed of operator (1 = 1).

Our main result is as follows:
Theorem A: Under the conditions (1—VI), for any u,(z) € G, (R") (0="j=m—Fk

— 1) and F@, =) € B((0, T, G, (RY), if 1£sﬁar%l,me.cmy problem (1 + 1)

has a wunigque solution in B(LO, T, G (RY)) ; i_f.&:ﬁ,ﬁenﬂﬂﬂ‘mmﬁgr problem (1 +

ir

1) has o unique local solution dn t w(t, x) € B(L0, &), Gygz1(R") ) (where £ 0, Sﬂmﬂ
encigh) .

Similar to [17 and (2], by Borel's technique, thecrem A c¢an be deduced from the
following result:
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Theorem B. Under the conditions (1) — (V) and V), for amy f(t 2) €
B(CO, T), Goa (R, satisfing Dif(t, @ |,y=0(¥ i=0); if 1<s<< 2. flt
Cauchy problem

Pult, ) =Ff{, %), (£, =) 82
Diutt, ) |,_,=0, VYV iz=0
ar

has o unique solufion u (¢, ) € B(L0, T, GL.R"). a'_f3=ﬂ__l, then the flaf Cauchy

(1 - 8)

roblem (1 » 8) has a unique local solution in t w (2, z) € B ([0, ¢, GTrL(R") (uwhere ¢

=0, small encugh).
We know that the key problem is the proof of thecrem B. By using successive
approximation, to solve the flat Cauchy problem (1 = 8) is equivalent to solve

Pu,= f(t, ). (t, ) € Q
: k (1 = 9),
Diu (. z) |,_,= 0, YV i=10
and X

Diyly=0, VY iz=0
(1. 9, and (1. 9), have a sequence of solution {e,} e & B (Lo, TI. GLE (R"), and

Z“i is convergent in B ([0, T, G..(R")) . Because of operation F satisfies the
J==0

conditions in [3), thus we can obtain a sequence of solutions {u;},.,
B(LO, TJ, H™(R" ) from (1.9), (j=0) .It only remains to prove

(H) u;(t x) € B(0,T), G, (RM).Y j=0
() E“; (¢, ) is convergent in B (0, TJ. G, (R™))

g1
It is obvious that (H ) and (H,) ensure the existence of solution in theorem B.

At first, several lemmas will be given in section 2:; and then we will prove the
consequence (H ) by using energy estimates in section 3; in section 5 we will prove
(H,) and unigueness of solution in theorem B.

Remark 1.71. From (1], Remark 1. 2, condition (V) is reasonable.

Remark 1. 7. If o = 1, then theorem A implies that the Cauchy problem (1 » 1)
is H= wellposed, this is the same as in [3); if m, = 0. my=1m ., then the main result
of this paper is the same as in (4J; if k=0 operator (1 -1) isa non-characteristic
operator, the main result of this paper is the same as in (5], [6), (7] and (8.

Remark 1.3. About Gevrey classes and Gevrey pseudodifferential operators,
definitions and properties, see [61], (127, [13], [14), and C15].

Z2. Lemmas

Lemma 2. 1. Let =0, q==0, and pt+q=1; denote & = (1 + l&|H 2, A=0p
( ¢&» ): then for any r=0, we have
ot o= | AP |5 e | (where | + || is L-rorm) (2 + 1)
Proof. It is easy for us to prove the estimate (2. 1) by Holder inequality-
Let N © N, a natural mumber, 1= j;=<<m— 1(1=_i=_ N) be positive integers,
then
Lemma 2. 2. There exist constants A, By, such that
Nt v g BV L 1h e 2B 0 o N (2+2)

Proof. Set H = Nt "t 149l o o « N°¥, then
N1 =ce ¥N¥ (by Stirling formula)
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Lemma 2. 3. Under the conditions above , let y& [0, 17, then there exist constants A, B,

== 0, such that
{pCGhid o o v 0 ) 1T ABY « pHT 0l (2«3
Proof. Forany t =0, we have 2! < Aa"(x! =Tz +1)): so
{'}J{jl-{-u - % » _|_jh_]"|i ! %AB{F{J:_i_ o +j3.':3 }U,-!-- e S
S A L — 1Y « T T watr

Suppose A =0 is large enough; for any non-negative integer I and real number r =0,
assume

Q. t A =AD" (=D
Then we have
Lemma 2. 4. Under the conditions above, there erist constants A, B, >0 (independent of
r), such that
* RPN (A ) . AT s by G 4200 (2« 4)

Proof. Because of [r 4 (4,4 + « « 450901 = 2P0 FRT o wiwiyp g 4

eov e ) e 2T 4 e 0 o 45093 r ! . Hence by lemma
e
Fhim—U N e im— LW 8 Na ) |;'J.|.. EYARE T Y
Qe bipy @ b M KA 2 4B ) UN Y e

e A;EE{H—I}JB;A.:&—LJ :INN{fL-|—+ P +'FH“P'-'?F EE.I f- 2’:‘51}

3. Proof of (H))
In fact, it is sufficient to prove that for any g(t z) € B([0, T). GL.(R") .
Dot = |,_,=0(¥ i=0) . the flat Cauchy problem
Puft, ) =gt ). (¢t 2) €8
Diuce, o3 |._,=0. ¥i=0
has a solution (¢, =) € B ([0, T), GL. (R") .
Here we have known that the problem C3 . ma il has a solution in
B(LO, T, HT(R") f(by [3]). Let the positive rational number g=gp/q, (see
condition {IVy ), g, and p are positive integers, For & € R, define

N

(3 + 1)

By (L0, TJ. 8 = {a CE Mgy iy Zti“a‘l:t, ) 3;='§-:- p.EZ,. N EN,
a;{t. =: & € B(CO. T, 3;*3} (3 +2)
It is cbvious that B (0, T, Sh) C B} (L0, T2, S40 < By, (€0, T, S&.) .

Let 3i=tD— A, = Do) (1<i<my)
B 4;=thi— st z; D) (1S j<<my)
Hu=2ddzs* = * aﬂ]aﬂl:-l—l i Entl-l-r-g
we define the modules W, (0 =C p=_m) over the ring of PsDO of order zero:
W.= {clla; ¢t «: & € B0, 7], 8a) };

Wo_i= {Dicidis » +3:v » 3 &lt, 2, & € B0, T), S }:
g ]

W= {3 ¢ oi(t, z; & € B0, TJ, 83 )

4

Wy=0p{E (0. T). &3}
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Similar to (1], section3 (or [4], section3), we can obtain easily.
Lemma 3.1. For any i, j, there ezist PsDO ay by, ¢y € B} (C0. T2, 85
such that
L3 ;) = a,3:+b,,3; + ¢y, (3 + 3
Lemma 3. 2. For any monominl @2 € W, (0="u<Zm — 1) , there erist 3, and @l
E W, .., such that

a1

ol =al, 4+ 2 3wt (3 + 4)

Fe=1 oy
where c,; (4, z: &) € B (C0.T), 850, wly, , € WEa:
Letwg ;€ Wa_, u 2) € €™ ([0, T X RY : define

Wty = }1‘_, >l @i | (3 - 5)

=1 gz
Then we have the following energy estimate:
Lemma 3. 3. Under the assumplions above, we have

i%ﬁ’ (t) = const « Wit) + || T | (3 « 6)
It is w::ll-knn::wiu,. flat Cauchy problem (3 = 1) is equivalent to
Pu=t""*Pu=¢"""90t, 2) =g 2), (& o) €K (3+7)
Diudt, z) |,y=0. ¥Yi=0

If ud, z) € B(LO, TJ, H”(R") ) is a solution of (3. 7), let
M— o= = §
| (e L0, TI) (3 + B)

Bo) =23 2, ¢l 4'Diu
j=10

im=g
Then we have :
Lemma 3. 4. There exist constants ¢, ¢, =0, such that
B,y Sed™Wity, (€ (0, TN (3«9
Proof. Using method in ([16), the totally characteristic operator #A'D/ can be

expressed in the form: FA'DI= > >c, wl_, (c.i(t z:8) € Bl (L0, T, 850 .
=l g
On—i € W,_) ; this means that there exists ¢>>0, such that ¢ || A'Diu | =
const =« ¢ (¢) . So the estimate (3 « 99 holds.
Lemma 3. 5. Under the assumplions above, there exist constants €, Cp Ca, Such that

Bolt) S ot™" J:“ar"’*” | Pu || dz. € CO. T (3 + 100
f

Proof. Using method in [16). we can factorize the totally characteristic operator
F into

+

P=I,+ i} Zﬂn. o,
oyt 2; &) € BE(LO, T, 85, @i, € Wo_) 3+ 11)
By estimate (3. 6):
z%w () <<const « W) + | (H.— Pru |+ | Pu | <eWw) + | Pu|l ,so
La™W @) <t | Bu | 3+ 12)
Since u (¢, z) is flat at ¢ = (0, 50 we have
Wt = —th"’f_"’_’ | Pu || dv (3+13)

From estimate (3 » 9), the energy estimate (3 » 10) holds. .
We know that the right hand side of equation (3 + 7) g, =) &
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B(CO, T), G2 (R" ) , and g (f, «) is flat at ¢ =0, so we can assume
| A <’ @ & H. ¥Yr=0 3 4A>0 (3 + 14
where @, (I, t, 4) = A"r!1°¢. [ € Z,, be an arbitrary large number.
Let u(t ) © B(C0, TJ, H™ (R*)) be a solution of flat Cauchy problern (3. 7),
suppose

M—Llm— L=
E.)=> 26| atDdull, rz=0 te (0 TH (3 + 15)
. fem0 (=g
Then the main result of this section is
Lemma 3. 6. For any r=0, there erists a constant [,=> 0 . such that for A, B>0. large
enough, we have the following energy estimale
E. () <Bc I;7'Q, (L & A, A - 16)
(& Z,, be'an arbitrarily large number, 1t = [0. T
Proof. Beeause u (0, ) = 0 in B(C0, T1, H”(R") . hence for any ¢ >0, there
exists d = 4 (e) > 0, such that
E_(f) <<e t&E £0, &
For any fixed ¢ and 4, define o (£ € O (R) . satisfying

0, :
D<o =1 and ¢ =

ta|eo baan—-
O

=
1. ¢ =

Then it is obvious that

E ) =@ E. 0 + (1— @) E. @ @050 +e (t€ (0, TH
Similar to [1J. lemma 3. 5; sincel is an arbitrarily large positive integer, so We can
obtain by induction, starting from estimate (3 + 10), that there exists constant By,
which is dependent on é ; and 4 = 0 large enough; such that

o) B, (&) << @(t) B,e' 177" @, (L & A, (e (0. T (3 « 17)
This implies
E () <<Bse' 17 Q. (1, . A 1o (e 0, T (318
Secondly we will prove that there exists a fixed &, > 0. such that
E.(h<B, ;'@ ¢t &, € TN {3:+:19)

In fact , if estimate (3 « 19) were false, then for any 6>0. £, (® = B0l Q.
(L. t, A) , since E, (¢) is independent of &, this means there exists 2, = 0, such that
E. () — B,e' I7'Q. (L &t A) =, =0, (Y =10

That is
E () 2B, I,'@. A ¢t A +e& 0 d=0) (3« 200
This is contradictory to estimate (3 = 18).
Let B==B,, . the energy estimate (3 + 16) is proved.
Now the consequence (H,) can be deduced from the estimate (3 = 16) easily:
Let u(f =) € B(CO, T, H® (R")) be a solution of flat Cauchy problem (3« T
for any a € £ . from the energy estimate (3 « 16) we have
| Do || < || A7u || <E.() <Bel;'4'r1't, (r= la|) (3 « 21
(where B.c¢'.l, and A are all independent of r). This means u (L, 2} €
B(CO, T, Gi=(R") ) .

4. Estimate for Lower Order Part
Lemma 4. 1. Let ut, z) € B¢C0, T, G4:(R") be a solution of flat Cauichy problem
(3« 7). Then for any r=0. 0="s+j=m— 1, there erist B, ¢, 1, and A which are all
independent of v, such that
g A Diu || <Be' Iy "PQ Lt A, @€ L0, T (4 » 1)
Proof. By energy estimate (3 =« 16), we have
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A= || ,.-i'*‘ﬂ"'-h'u |:| Be! E_I'l';? (f, & A f4d + 23
Let w, (f, 2) = A" "' Diuit, ), p=m—1—i— i€ Z,, then

laopl = full < [*["e e o [l bl asaty oo - 2
A J j I TRl r Avdedl, s« o dbs
6, & 0, T, 2=_i=_p: t,=10) (4 « 3)

Since [ is arbitrary, we can take | — (m — 1 —i) =L,>=0, (0="{i==m—1— i) ,
then

F
| A™+Dix | < Be' 17 (} )rf@, @t A
]

Lemma 4. 2. Let u(t z) € B([0, T), Gr:(R") be a soluion of (3 = 7). Then for
ony r=0, and infegers 1="j=—m—1, l="i="j, O"k="i; there exist B, ¢’ , [, ond A such
that

¢ || ATTD e | Bty TR L b AL e L0 T (4 + 4)

Proof. Let ¢, =t — k&, jo=j— 1t r,=r 4+ k: then using lemma 4. 1, we have

Ui || A taDiu || S<Be'Iy TR, (Lt A)

Lemma4 3. Letuct, v) EB (L0, T, GL.(R") be a solution of (3 + 7). Ther for
any r==0, infegers 1= j=_m—1, 1=i=_j, 1=k =i, and py& (0, 1], there exist B, ¢, I,
and A, such that

i || AT || SCBAISIEENQ L, (L G Ay, € (0, T]) (4 +5)

Proof. Let Z, (&) = ¢/ || A""'D{7%u || . By lemma 4. 2, we have

PRI [ ey 08 e eV T ¢ A S (4 + 6,

Let us replace k in lemma 4. 2 by &' —h(h =1, 2, + + + &) respectively, then
Z O Er Bty BT T e e R A) (4+68),
Zo it e Betd e P Lo, ) ¢ 61

Let p& [0, 1), and p+p=1; by lemma 2.1, we have
Z,) < @7 | DI e @Y | At |t =22, - 22,
(4 =7
By (4 « 63, B =l (Be' [ ™40, (L & A)]7; at the same time by (4 « 6),.
2 (B Iy ™Y =0 v iy (L & A T 20 estimate (4 + T) gives
Z. () == Beriz wote =N g 1 o @it A) (4 = 8),
Secondly, from (4 « 6);and (4 « 6) ;4,8 =2, 3, » = «,  ¥), and (4.7), we can
obtain
Z,@) Bty ™I TR (8 A 4+ 8)s
Z. r:f.;u £ Bz 2P0 ol oD 4«8
MNext we repeat the above process to estimate (4 » 8),, = = =, (4« 38), : then
we have
el Bl o Qe et £ ) 4.+ 95,
Z. () éaca o tmu-_i+t—1ﬂ@|'+tuh (& A {d » Dy -,
Hence we finally arrive at the final estimate as follows
Z @y Bt A SR g T LAY e B i M T Y Qan (B A
(4 + 10}

Let B=¢""'F, hence by condition (VD) :
] §j =1
ik Z‘; jz: E-, (t. ) g B et max 0 i =8 ﬂr—jﬂf
X - T

i=t gl

37




m  §—1

— E : E 'I: ﬁjﬁdi{ﬂ—i+|ﬁl-ﬁ3+r"'".iﬂr'—.iﬂ.ﬂ'
x
j=2 | fl=1

Let us replace m — j -+ | #| by 4. then we can get
m— 1l i

j&= E 2 !E,..+|ﬂ—:;,;{i. ) tif:r-ﬂ-l-:f—!.ﬂ'lﬂif—l.ﬂﬂf (4 = 11)
J=1 g =1
Since d{4, ) = 1{1<. |Fl =" j,1=j==m— 1) is a positive integer; hence we
can choose several positive integers 1=Ck;== |#|(1=j="m— 1), such that k; =o;
Thus v defined by (1 + 6) belongs to [0, 1]. Using lemma 4. 3, the main result of this
section 1s :
Lemma 4. 4. Let u (¢, z) € B([0, T), G}:(R")) be a solution of (3 + 7). Then for
any v==0, there exist By’ , Iy A and A, which are all independent of r, such that

| 4By || < Be! A DL Qg+ 1,8, 4D, (&=Jil::=1, te L0, TJ).
G
(4+12)
Proof. By (4 » 11),we have
- m—1 E
APu || <e L E = gepiT Dty || (4-13)
—
Sl || =1

By lemma 4. 3
B HI— 8L || ArDi=Vlpty || s Be! L0 0 (U205, Byt A)
< Bc' T"':'{"”_’-ﬁu_E”_‘i+1’?}'@r+:,y{f +1, &, A).
Tet -"'il — g{:m s I)Tmlz“{j-ﬁﬂml . and we know 'I'T_,_.:E:'m 1_ j{m — jl —|—.;:_:.‘j.-":| 4 {1 E:__jé
m— 1) ;hence — k;fy>=— (m — j—+ k;») and estimate (4 - 13) becomes

=1
| APu || <Beh 4, > 577 Q 1, A4 1, ¢, A, (4 - 14
J=1

5. Proof of ( H.) and Unigueness of Solution
We know that the flat Cauchy problem (1 = 9);(j =0) is equivalent to

ﬁﬂu=tm_tf='f{ﬂ! 3‘)! 1::'!':- 5:.‘-:' 'E £, '{_5 " ljr.
Diu(ty 2) |ime=10, ¥ 120,

F_:'H_F#—F‘HJ—]_,. 'I::f, I]EQ} _:]_,_},..-rlq {:5 . 1}
D:Hj':ﬂ. i":}l;_uz ﬂ. "lifr i;ﬂ. g

By consequence (H,) (see section 3), the flat Cauchy problem (5. 1);(j=0)
has a solution u;{¢,z) & B((0Q,T],G:(R")) ;i. &

Eﬂjﬂt, x), (u;(t, z) € B(L0, T], GL.(R") ), be a solution ef(5 = 1);)

=

(5= 2)
is a formal series solution of flat Cauchy problem (1 = 8) . Next let us consider the
convergence of the formal series solution (5 « 23,

Lemma 5. 1. For any » =0, N & Z,;let uy(t,z) € B(L0,T] LG (R")) be o
solution of (5.1)y + Then there exist sufficiently large constants A, B and C which are all
independent of v, such that

| Aruy || <TBYNYC=D7Q, (14 N, t, 204), (¢ =—27>>1,¢t€ (0, T
5+ 3)

Proof, Let || A"F || =S¢’ @.(I,¢,A) . Using lemma 4. 1(let i = j =0 ), we can get

from equation (5. 1), that
| Atuo || << Be' I7™Q.(L, £, A) < Be' Q.(1, £, A). (L,=1) (5« 4)
By lemma 4. 4, we have
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| 4B, || << Be' 4, Ezn YQ i, (I 1, £y A) (5 + 5)

Hence we can repeat the H.bD‘i.-’E: pr::-:esa t'::r {:5 1), to get

| Are, || << B Alziu Qe (U 15 8, 4D (5 + 6)
==
and
o m=1lm=1
| arPu || <B%' 43> > et 188G, 4y ay U+ 2, 8, ) (5T
G | |
Bepeating these steps, we can obtain inductively
w—] m—] L |
| Amuy || =S B¥Tigt AY E E'" EEhlhzmkr!‘,@'r+(hl+---+J:;N}1-I:E + N, &, 4)
fgmml g =l £y L

(5«8
where Eh,'"lr“. = I:'E-:I"'I"' {:N__ ljj—hyﬁ'r # EED"I' {ﬂ."_ 2)]r-rh;.-—.'ﬁ"_.-gu"ks.ﬁ‘}'iN—hf;ﬂrEN

— 1) hy o freee ] THEY L == 1) L Applying lemma 2. 2, we have
Ehjlﬂjmhﬂ%Aiﬂfﬁ—{l¢,+lf=~--+liﬂ}ﬁ'}' (5 i gj

By lemma 2. 4,we have _
Qe+ +mtiny oyl + Ny 8y A) S ABYNSHhatthdorg (4 N, ¢, 204)

(5 + 107
Hence from (5 « 9),(5 + 10) and estimate (5 + 8),we obtain

o= | LBl |
| drun | o BYFUATVABYABY {3 ] oo DN HH 0 CTQ (1N, 8, 2°4)
iy by=1
(51D
Because s<<0 , 1<k, <m—1,(1<\j<<N); solet B=DBA,B,B(m—1), C=
o' Bd.4, ,we have
| Amuy || S CBYNNC=D2Q (1N, ¢, 2°4)
The energy estimate (5 « 3) tells us,for any r =0 ,we have
| Aty || = CA»|* E(B*NYC—0"y (A=2°A, Y NEZ,) (5+12)
Thus, the consequence ( H:) can be deduced from the energy estimate (5.12)
immediately , namely

Proposition 5. 2. Under the conditions of theorem B, if 1 =S s<{8 = g

o — 1
formal series solution (5 + 2) is comvergent in B([0,T],G,(R™)) ;ifs=¢8=

» then the

o
o—1"

MMEW&EE(H,%—),MMWWWE&&M@ (5 + 2) is convergent in

B(CO, &3, 67 (R™).
Secondly, let us prove the unigqueness of sclution in theorem B,
Proposition 5. 3. Under the condifions of theorem B, let u (¢, x) be a solubion of the
homogeneous jﬁ:ﬂ: Cauchy problem
Py=¢("=Py =10, (i, z) & 82
Diult, I:‘l|._a—|:|' Yiz=0
Then u(t,x) varishes identically.
Proof;Let u;(¢,z) = uCt,z) (Y j € Z4) ,then (5. 13) is equivalent to
F"!J!-j=_F"!J'fj—n (uy=10), (¢, z) € 2, j'?,.::'ﬂn (5« 14)
ﬂ;ui{af. x) |:—{|= 0, ¥ 3,:":3'[:'
By the estimate (5.12), for any r =0, there exist constants 4,8, , sufficiently
large, such that

(5« 13)
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| Az = || Ay || S EATL” SECCBOYNYU—) (W NE€ Z4) (5+15)

R
1< <f=—"7

LS e W W 1 a0 L T e
1

t’E [:'}1.3:1 rEE (ﬂ} _E') ) and N—=CcD then we also have 'H-{f-,.ﬂ.?:} =) in

,let N—=co , then we can get from the above estimate (5« 15)

let

B(CO, £), GEri(R)) .
Finally,let us give two examples;
Example 1. Let myo=0,m.=m=2,k=0,0,z) € [0, TIXH.
P=Dt— 5D+ alt, 2)D, + b(t, 2)¢'D, + e, 2, (g, pE Z4) {5+ 16)

L—]—E s p;}:ﬂ—l
Then m—ma:-:(l—q_l_"'—l: 0) = g;—i-?j_ﬂfé?‘i*?"lt

{lr p=g—1

By theorem A, if p =¢ — 1 , then for any s =1 , the Cauchy problem for operator (5
« 16) is wellposed in BC(CO, TJ, G (R »;if O < p<<g — 1, and 1 = 5

{g_?—gl;—Lp . then the preceding Cauchy problem is  wellposed in
BOCO, T3, GlCRY) 3 if 3=q-—u_ :l_—i? , then there exists ¢=>0, such that the
e

preceding Cauchy problem has a unique selitisn ate,z) & B0, o2 e " (RY) .
Historical Notes; The operator (5 - 16) was first studied by Chi Min-you [10] in

1958, Next, many works on this operator by several authors appeared. For instance

Uryu 117 proved the Cauchy problem for operator (5 + 16) is €7 wellposed iff P =

g—1;if 0="p<<gq—1,Tvri (5] showed the Cauchy problem for operator (5« 16)

is G wellposed iff 1<Cs=C This result is the same as theorem A. Thus it

g—l=7
can be seen that it is significant to study the Cauchy problem (1 + 1) in Gevrey
category. On the other hand, the preceding process also tells us the index of
G*-wellposed defined by (1 = 7) is precise.

Example 2. Let my=1,m., =2,k = 2,(t,zy e [0, TI X R.

P =34 Piaj+ Psd: + Fa (6= 17)
where
Pn=ﬂ{51 Ty — Fy "i"E;
Py=tb(t, 2)d. — t¥3 — alt, )P
+ 28D 4 o2, ) oty 2) et 2),
P,= 19713 — (b(¢, z) + 2qt¥ 3}
__clt, ) | 2b(E, x)  3BCL, r))
+ (s, 2 — B2 253 )
p2lm) 12D, (o, ) €00, 27— 120
Then the characteristic roots of operator {5+« 17) are
.ﬂft='§j j.-t= t-'tg,. j-,= _ﬁ'!'g

If alt,z) & O(t) , we know that the inditial operator of (5« 17) isa simple ordinary
differential operator

. :
7= — A (5 = 183
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1

1 .¢g=+%
Hence conditions ([)—— (V) are all satisfied. By definition, ¢ = Z
Sg—1 -1
g
Then theorem A ensures the Cauchy problem
Pu=f(t, z) , (¢, z) &€ (0, T) X R (5 - 19)

ul( ), ) = uy(z)

is wellposed in B([0, 71, GL.(R)) for any s =1 if gz% ; if g}% » the Cauchy
problem (5. 19) is wellposed in B((0, 7], GL.(R)) for 1%3{%3—-:—; . and it is

wellposed in B((0, ], G5.(R)) for s =%§:—i » where £ > () is small enough.

Finally I want to thank Pref. Chi Min-you for his patient guidance to the
author. On the other hand, it was lucky for me to attend the activity of PDE' 3 Year in
MNankai Math. Institute during 1985—86, and in that period author obtained a lot of
help from Prof. Wang Rouhwai (Jilin Univ. ), Chen Shuxing (Fudan Univ. ) and Qiu
Qingjin(Nanjing Univ. ). Here [ am glad to extend my gratitude to them.
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