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Partial differential equations of mixed type has been a very active topic since
F. Tricomi' s pioneering work on the eguation
yu,, +u, =0 1)
which bears his name. This is mainly due to the significant role it plays in the theory of
transonic flow. It also appears in various fields, for instance in the theory of plasticity
and the theory of deformation of surfaces, just to name a few of them. There is another
type of partial differential equation of mixed type. M. Cibrario [17] considered the
general second order eguation

Alz, pu,+2B pu,+Clx 3w,

LDz Pu +E@ Pu,+Flz pu=10 (2)
where the coefficients are real analytic functions of real variables (z, y) and the
discriminant A (x, ¥) = B*— AC may change sign across the type-changing curve I't A
— 0 and is of mixed type there. She proved that eguation f1) can always be reduced to
either of the following forms

g™, tu, fals PYu, b Py, telz pu= 0 (3)
u, +y™ T, Fatz Pu, b Pu,telz Pu=0 (3
Thus, Tricomi’s equation is only the simplest model of (3,) where I’ is not characteristic.
Equations of the form (3,) is also of considerable interest. The earliest example is
u,, + yu,, +ou,=10 g = const. (4)
which has been studied by L P. Carol' [2]. Let & be a domain in (z, ¥ plane such that
gn {yg==0x=&. @=r,Ur,ur,risan arc lying in y == 0 with end point A
and B on y=0, I, and I'; are characteristics of (4) in y = 0 through A and B
respectively, When a<Z 0, Carol' proved that the Dirichlet problem (problem M) for
(4) is well-posed, while for o =0, boundary value can be assigned on I, (problem E).
Equations of the type (3, also appear in gas dynamies (for instance, conie flow)
[3] where we are required to solve the Busemann equation
(1l — 2w, — 2eyu,, + 11— ¥ u,, + 2azu, + 2ayu, —a (a+ 1)u=10 (5
The unit circle z*-- y*= 1 is the type-changing curve and also a characteristic curve
for the equation {5), which in polar coordinates can be written as

_ondu , 13du (l 1S )3_“ 3 i
(1 r)3?3+rfaﬂa+ " - 2ar = afa+ 1yu=10 (5
Near the type-changing curve r = 1., (b,) becomes asymptotically
2% % 1 3
"DE.?_;:-*+§£_ (?+a)ﬁ—afa+l)u.=ﬂ. p=1—r (5.0
1

Gu Chac-hao proved in [4] that the Dirichlet problem is well-posed when o =5, and

when a{% boundary value can be assigned only on that part of the boundary inside
the elliptic domain z* -+ y*=<1 .
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Equation of the type (3,) also appears in magneto-hydrodynamics, see Seebass [5]-
In this paper, we consider the second order linear equation

tee = YU, +alz. ¥ u, + bz Ny t+elx Pu=0, e=0 (6
(be. (3, with m=0) in a region Q=& Ug_ 9, =%0 {g=. =0} . We

assume a, b, ¢ are analytic functions of the real variables z and y . We also assume
hi{z, () =5b,= const. {7
Our main idea is that, anv solution of (6) is “glued up” from 2 solutions each in £ and
£ _ . The smoothness of the solution is determined by the constant b, in (7). Different
requirements on smoothness lead to corresponding boundary wvalue problem. More
precisely, our main results are: first, we prove that all solutions of (6) admit an

asymptotic expansion
wiz, ) ~ da. @y +y 2 b @y A=1—b (8)

L ]

near y = 0 (but y 3= () . Next, we prove that all solutions in &, or &_ can be extended
“analytically” into Q_ or & respectively. From these results we can give well-posed
boundary value problems.

Equation (8) is a Fuchsian type partial differential equation. From (8) it is seen
that y = 0 is a singularity of the solution, while for equation (3, there is no solution
with remarkable singularity on y = 0. This would help to explain the difference
between (3,) and (3, .

From the condition (7). we have

bix, ) =b,+ b, (z. ¥)
Introducing a new unknown function » (z. )

vz, y) =ulx. ¥)exp [% Ja {z, l])tix—i—é—yblii. ﬂ}]

equation (6) becomes an eguation inw(z, #) :
e+ ¥0,, 1+ [alz, ) —a(z, 0) — yby(z. O Je.,
; 1 bz, §) —ybi(z, Mo, +co=10
where T (z, ¥) is an analytic function in (z, y) near y = 0 . Since
atz, ) —alz, 0) —yd/ (x O =yalz. ¥
bz, ) —ub,(z O =b,+y[b (z. ) —bx, O]=b+y%:0 ¥
hence, without losing generality, we may assume that the coefficients of (6)
afz, ). bz, y) are of the form
alz, ¥)=vwa lz, ¥) 9
bz, ) =b+ ¢'h(z )
Using characteristic variables
g=z+2(—p71
p=z—2(—p7
(6) can be written as

F ) -l
ey — LﬁJr C—m4Q m jut
+LE—E_-¢_ (& — ) B ?;.:.Ju,,+r:cg. 7w =0 (10

with g’=f =— %4—&”: ﬂunst., A2 o, B(& » and C (4. ) analytic in &, near &

= 7.

In hyperbolic region £_ where y =0, £ g are real variables, while in elliptic
region &2, where y =0, &, 7 are complex conjugate, But in the following we would
treat £ and 7 as independent complex variables.

Now we give the following

Definition. If (& — 5) “*f (& 7 iz an analytic function of & and 7 near E=1, we say
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f( & 5) belongs to the class A(p).

Iff=Ff+f. whereff€E A, L,EA(l—F—p') wesayfE A.

We are going to prove the following main theorem.

Theorem 1. Al solutions of the equation (6) iwhich are analytic when |£ —n| =0 is.
sufficiently smaoll belong fo the class A. Here we assume

2 Z

As mentioned above, we assume that £ and n are complex.

We need some lemmas for the proof of Theorem ].

Lemma 1. 7 f, (& ) € A{p), p=0 . converge uniformly near E=n to a limit f (4,
7)=0(1) + (E—m”., then f(& n) € Alp).

When p=0), the lemma is valid when assuming (& — ) ~°f, (£, 7) converging unt formdy.

Proof. We restrict ourselves to the case p =0 . It is easy to see f(&. n) = (£ —
) g (&, n) , where g (£, 7) is analytic near § — 9= 0 (possibly with singularity at £ =
7) and is bounded. From the theorem of remowvable singularity for functions of several
‘complex variables follows the lemma.

Now consider the Euler-Poisson equation

BB f): u;,r—g_ﬂu{—l—::{‘—ﬂu#=ﬂ an
with complex & and # . Its Riemann function is known [6] to be
] {;_ \‘?} s .

R(5. 7 8o ny = Fig F. 1, o) (1)

E—n)” G—m"*
o L £) (1)
(E— 1) (La—m)
and all of its solution analytic near £ — n = 0 can be written as

uld, n = ﬁﬂptﬂ'} (2 —a) ¥ la—q) - da
Lo
+ (E—pg'TEF J ¥ (ar) {g—a}"‘_l{ﬂ—ﬂ)‘"*ia £13)
?

where @ (a) and ¢ (@) are two arbitrary analytic functions. Actually, we can repeat the
proof given in [ 7] almost word by word. When Ref and Ref’ don’t lie in between 0
and 1, these integral should be understood in distributional sense, i.e.as Riemann-
Liouville integrals. It is easy to see, u (&, %) in (13) belongs to the class A.

Lemma 2. If 8+ § & Z,let F(& m € A and write

fa Ta
u (S Ny = L _[ R(S. 7 &o M) S, nm)didn (14)

ther u (&, 7). (& =—=n) ‘g% {Q—n}‘g%aﬂ belong to A.
Proof. Function u defined by (14) is the solution of the following problem

*‘;»-g’ﬂ_ﬂuc+§fﬂua=f{§r ) (15)
u ':§J.r ﬁ':' = 0. ﬂfé‘. 7?;:] =
We can construct a solution of the inhomogeneous equation in the form

N
Vi o= 0 e &€ =p - B G

RE=

il .
+ =T [P @ E— V¢ » ]

==

where ¥ (£, n) = O (1) (& — ¥ . Substituting it into (15) and noticing that

FE m =S E—mr+FOE P

s )
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+ - [P O E—"+F2 & ]

o
FW e my =0(1) (&£— 5 ¥+, it yields, for example
T {ﬁ-l_ﬁ:l”{ﬂf‘g}uﬁl I]’{gj:ﬂ
2014-A+ 1008 + (14 Fre2 (8 = — Ffi° (&)
Since f+f & Z, we can Ecrh-'f: for »! and v®. V™ (£, 1) can be constructed by

successive approximation as in [ 8. the method used there is also valid in complex case.
Then letu =W <+ F , we have

S RN T T T | S N
Vo — g Wit g oWy =0

w":glv ﬂ} i— z"":I:gl.r ‘:Ij

wig n) =—uvlg 5
and W can be solved in thc form (13) and it is easy to prove that W © A . Hence
ulf, ) & A.That (&£ —n) Eﬁeﬂand §—ﬂ}?a—EAnre evident.

We can now give the

Proof of Theorem 1

1°  Anwv solution of (8) c¢an be thought of as a solution of analytic Goursat
problem

G, m =@, ull n) =9, eln) =¢ &) (16)
We first construct a solution ¥ (£, #) for the Euler-Poisson egquation (11) E (g )
satisfying (16). Evidently., ¥ (£, ) -E A Then let u =W - I-" we have

LWy = (§—m AL, ﬁ}3§+ (& — g B8, '?;J)—-;I-ﬂfé' mv (17)

Wi, =W, 9)=0
where I denotes the differential operator on the left hand side of (10). The right hand
side of (17 still belongs to the class A, hence we may consider a more general
problem

Livy =& mec A
R R, B
L ;_ﬂu.:‘l";_ T

=Ff(& N+ E—mAE pu, 4+ E—nNBE Nu,+CE P
which can be reduced to the integro-differential eguation

[ Ra
&y N9 = F&e o + J RCE n; 8 9 ((E—m AL 7 u,
";.:I Ty
4+ & —n B Nu,+C & puldédy (18)
;u s
Fi1(8e %o = L J R(8. . & no F(& M didy

E{E n: &, ny is the Riemann function (12) of the Euler-Poisson equation.
2%  We can solve this eguation by successive approximation, i. e, let

#y (£ N = F1(8e 7y
" %o g
U, (Lo M) = L J R(E n: &o na[(2—m AL o) (u,_),
1 #y

+ (A = *BA g (), OE Y u, ]dgdn
From lemma 2, we have u, © A . We are going to prove that

Eu, ; E%—? and

ar
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all converge uniformly, and the sum Zu, gives the solution of (18).

qu £,

% gl

For the estimates of u, and its aerivatives, we note that & and n are complex
variables, hence the paths of integration can be altered quite arbitrarily. With fixed and
unequal &, and 5, we choose the paths of integration such that at least near &, and 7,
we have

&S0 T _Sﬂ_ﬂ-iﬂgﬂﬂ
5 —, | = BD —sinBCD—%
&—ns| _ BD _ SinBAD
S —o | A SinADE—=X 6
Lo — Ty ! ‘:d'_fl'ﬂl_ & = B = K* :
s&— 1 & — Ty g — 1
9 —m,| _ AD _ SinABD
r;-—nl_.dB"SinADEigff
Let M = max (K, K% , we have analogously
Ea— Mo =M 59— 7 <M &= & <M (19
Eo— S e i 4
We also assume
=54 I”'.""'" ul
2= . | 1
r-,f—‘-'.?{. =1 1*?-';:1 i

3 When estimating u,. we should distinguish two cases. One is
1—f—pF =1—28=>10
In this case, all functions in A are bounded near § —p =10, and
[ RS g e a0 | = |2 —n|®le—n]"Fl&—n|?IF B B 1 o) |
<cle—n|¥1g—nl " 1&—nl™’

Here we note § = § . If u,_, can be estimated by

| (€—m 2 M @+ E—BE » @), +0& D] =M.,
{which is valid for n = 1 ), we have immediately

i T
£=1 " |agan)

1

If >0, then from 1 — 8 — f =]1— 28>0 we have ﬂ{ﬁﬁi’_?. Hence the above

integral converges, so we have
lu, (&, no | <M, <&M, 0<<6<C1 small enough (20)
when | &, — & |and |5, — #,| are sufficiently small. If £<"0. from ¢19) we know that
the integrand is bounded:
S

& — 1ty

g
L

=

hence (20 still holds.
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For the derivatives of u, we have

(€a— Mo "4 (Es N () Biim AL, 7o) ! (5s— o) 'R (&o Wi S0 Mo [ :l.;----.';'m"-'ir“]'iI .

+ (£, — 0y 'A &, 1) j J- R(2, n: &y o[ Jd&dn (213
&

where [ ] stands for
E—MAL M U ), + E—PBE » @_),+C& Du,_,
MNote that

Ry n: & M) _(éﬂ:;}u)

E,—,;#R (& m: &y W) = — BRG,—m ™"

G—m¥ 2 i i G20
Y Tt et e LeF 73
We now estimate the two terms in (21) separately.

First for the simple integral. When § =0, we have 0= § < % . hence

| A2y 1o (Fa— ) *BE, ni &0 7o) | <max|A|[&,— 0, Fl&i— 0| =< u
when § <0, we have o
= Mo

|""l":‘:f-:- M) {gn_ﬂu:':ﬁ{‘gr 7 Lo Mo | ﬂmaxhﬂ |';_ﬂ'n|1 ‘; — =y
Here we also made use of (19).Summing up, we know the norm of the simple integral
is less than%.ﬂf._l .

MNext consider the double integral. When § >0, 2— (f4+1) — (f+ 1) <0,
hence

Fg+1 g4+1 2 o) =0() fl—ﬂ‘}_“=5’(lj[
aﬂ’_ﬂ_ﬁntga_ﬂ‘_“‘:u‘l‘g_ (g — 0y (§— 1)

fgu_?ﬂ {g_ﬁu}]“
(So— o) (£ —

g, t—m (g, =it ) = g)?
hence | | |
1 ;u . ;_7? :
‘flf‘;b ﬂn:' {gu "?u:' 3; ‘ﬂmaxlﬂi{ﬁ 1; _ﬂl"-’ |;_1h ‘; _ﬂlﬂ
AT — i f- il ] — 1) ':g_ﬂ} I
+ BC | &0 — 4l |§n 7|7 & — 7 {‘_f_'??.:.:' (E.—m ¢ }
From (19, g:& = M, ?;“' m)ﬂh’ hence the last term in the above
| 0

expression will not be bigger than
Si]'ﬁu_*}nll_ﬁlgu“ﬂlﬂ_ll‘g_ﬂl o |§_'i'?u|F
: : @
From all these, we see the norm of the double integral is less than ?M,_ .+ When

=0, we have
2— B+ — B+ =0

hence
P(E+1 £+1. 2,.00=0(1)
and a
— T - =T
AL, 1o (& ‘Elr:“lfil’li?{lu—f;rl’
= [&=a] . |8 =2
g gt 51 (o e 1Y B "'ﬂ'n &, —n]® |§—ﬂq|"|§¢—ﬂ|‘
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Hence we still have that the norm of the double integral is not bigger that %M"‘ -

Summing up. we have
1%
9&,

‘Ac-:{. 79 (& — 70
,3:.:

B, m0 €m0 22

and we know E-u_, Eau* E Sﬂl

4*  We are left with th:: case
l1—f—f =1=—28<C10

=8M, _ <&M,

< OM,._,<8'M,

— B =1—2f>=0.

Functions in A are O (1) (& — ) "~ in this case. Let
(8, M = (& —m'""¥e (& W)
we know that the », is bounded and

‘At&; ) fé—ﬂ}za'::lv{-.ﬂ{; 1) {r';—ﬂ;r:lfa" =l L S D,

= |£—g|—%. [Hr:;—n:ﬁa"gurmg By iy a0 T =T oy

If we can prove that

:éi::;—m’a‘ I BE— mﬂ*%;—l—&(g, e

‘: m= 1 EMH—I

which is valid for » = 1, then v, can be estimated as follows
7 S iy ’
G—10" 0 G = | [ “R& w8 w0 @—m "o Jagay
;. Ty

where [ ] stands for

A€ — R+ BE—n e+ O,
and
Ty
RG. 7i 8o 10 =G os P (6. f. 1. @
=(l—) " ¥E—p¥E,—n F—p) "
e F(l—p 1—§ 1. o)

=0) G,— ) "L =) G — (e — g £

hence

5 M
v, (&, Ng = j O E—m* Y@ —g2" 7 E— [ Jitdy

":L L

Denote 1 —f= 4§, , wehavel — 28, =2 —1>>0 and
- Ta
n = | " [ 0w e—m*@—nh@—n AL Jaztn
1 1

Hence we can repeat what has been done in 3°, and Theorem 1 is proved.

Remark.

1. If we return to the original variables, what we hawve proved is that, all solutions
of equation (6) which are analytic when y == 0, can be expanded in the form
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ulz, ¥ = Qe @y Db (@) "

- ome=g A=
2. Equation (6) belongs to the class of totally characteristic equations [9], [10].
In case when (6) is elliptic, it is proved in [ 9] that all its distribution solutions can be
expanded as

ulz, ¥ = >, a,@y" +y* > b, @) "

= A=1
and can be extended across y = 0 . But in our case of mixed tvpe eguation, we cannot
make use of this result directly. That is why we made use of the Riemann function
which is closely related to fundamental solution.

In the following, we shall follow the method of solving boundary wvalue problem,
i. e. first solve the problem in either the elliptic or hyperbolic region, then solve it in the
other region, hence we need an extension theorem.

Theorem 2. Al solutions of class A of (6) in the elliptic (hyperbolic) region can be
extended "analytically” info the other region.

Here, analytic extension of v = u, + y*u,, u, u, € A , means analylic extension of
u, and 4, .

Proof. Letu(x. y) = u (& ) be a solution of class A of (B) iny = 0. We have
proved in Theorem 1 that u=u,+ (£ — 5 ' ¥u, where u, (& 5) and u, (& 5) are
analytic near £ =5 .

First take u, (£, n) . Expand it in Taylor series

u (& o= > ul (& & —p*

L]

It is evident that ¢’ (&) is analytic in £ . Returning to z., y coordinates yields

u, (z, ¥) = ZH.‘” {E-i—EE—y'}if) A" (— T

o e

= Nu @yt (22)
]
where ¥, (z) is analytic inz .

Substituting (22) into (B) gives recurrence formulas for u, () which can be
divided into two groups, one for even »’ 5, the other for odd »' 5. Since the coefficients
a(x, ), biz, ) and ¢ (z, y) of (6) are analytic in z, ¥ and in their Taylor expansion in
y there is no half power of ¥, we see all u, (x) = 0 for n odd. Hence (22) can be put
into the form

u, (=, ¥) = Zu," (z) y" (23)

L]
Where u) () = u!” (£) is analytic in z .
In [11], we proved that we can find an analytic solution I/ (zx, ) of the Fuchsian
type equation (6) in the form

Uiz, ) = E-ﬂi (z) y* (24)

with U,(z) arbitrary. Using u, () as U (z) we get a solution of (6). Since the
recurrence formulas for U, (x) are the same as those for ] (z) , we know UV {z, ) =
u,(x, y) for y > 0. But as a power series in ., (24) converges also in a region in
y=_ 0, we know U/ (z, ) is an analytic extension of », {z, y) .
Similarly, we can extend wu, (z, ) across y = 0 into y <Z 0 . Theorem 2 is proved.
We can now give the formulation of boundary walue problems for (6) under
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various situations. Let the region £ be bounded by a Jordan curve I', in y =0 with
extremities 4 (0, 00 and B¢l, 0) and two characteristic curves I', and I'; in y=C0
through A and B respectively, I, and I', intersect at a point €' .
..-"1!'3:12"—2{'_?}_%=ﬂ
BC:z+2(—pt=1
Formulation of the boundary value problems depends on the sign of
1—pf—p =1—28=2(1—15b)
1° b,<<1. In this case 1 — f— ' =0 . We can pose the Dirichlet problem:.
i.e., to find a solution u {z, y) of (6) in 2 continuous in & and satisfies the following
conditions:

| g = @, (z)
u| e = @, (2)
*‘lrl='§i‘3u{5}

2 : length of arc I",
Here we assume ¢, and ¢, analytic, ¢, continuous and
@, (C) =@, (), @, (A) =@, (A), @,(B) = p,(5)

Theorem 3. When b,< 1 and — 1 + 2b, & Z , the Diriehlet problem for (6) ix well-

posed, the ?ﬂimmmum!ytwm Q2 when y7=0, and across y=0, it is C" condinuous
k= [1—5,]=0
Proof. Wae first solve the Goursat problem for (6):
] 40 = @, (£), “lﬂﬂﬂ";’i"::‘j

This problem is evidently well-posed. By theorems 1 and 2, its solution » can be written
as

w(z 9 = D r @+ D @y y<0 (25)

B A=
T {x) is analytic in x .
Next, we solve a Dirichlet problem in y =0
1"“l!"=' P, (3). “l,-m= Tol2)
for degenerate elliptic equation (6). Keldvsh’s fundamental result yields (e. g. see[ 12])
that this problem is well-posed, and theorems 1 and 2 show us that

wiz, ) = 2 F @+ V. @y g =0 (26)

P A = )
and 7,(3) = 7.(x) . Since the recurrence formulas for 7, (x), n =1 and 7, (). n =1
are the same, we have T_(z) = 7, () , hence

uilr, 0,) —ufzr, 0_) =g N ([y,(e) —p () ]+ 0O (1))
The theorem is proved.

The proof shows that the solution is actually “glued up® from two solutions, hence
it has a weak discontinuity along y = 0 and the smoothness of the solution depends on
the magnitude of b, . Using this principle, we can give other boundary wvalue probems. Of
course, we may demand that ¥,(zx) = y,(z) also and hence P, (z) = ¥, {x) and call the
solution, if it exists, “analytic solution®. It is very probable that the Tricomi problem
for (6) is well-posed in the class of analytic solutions when b,<" 1 .

2  MNext, consider the case b, =1 .In this case 1 — # — 8’ <0 and the sclutions
(25 and (26) are in general unbounded. Physical consideration shows that we should
look for bounded solution.

Theorem 4. When b,~> 1 and — 1 + 25, & Z , the following problem for (8) t& well-
posed and possesses a unique bounded analytic solution:

ul r, =P8
That ie fo say, in this case, no conditions should be imposed in hyperbolic regions.
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Proof. By Keldysh’s results the following ‘problem E’
Up = @, {s), u bounded

is well-posed for the degenerate elliptic equations (6).
By theorems 1 and 2, the solution can be written as (26). Since u is bounded,
p,{z) = 0 and hence 3, (z) = ) and the unigue solution is

ulz, 3) = 2,7, (@) 7 y =0

&=
Using 7,¢z) and y,(z) = 0 as initial data, we can solve the Cauchy problem for the
Fuchsian type equation (6) in y == 0. This solution exists in £_ . Theorem 4 is proved.
The above theorems can explain the results of Carol' and Gu chaoc-hao.
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