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Abstract
A restricted parameter identification problem for general variational
inequalities is studied using the so-called asymptotic regularization method. Some
applications , including the evolution dam problem ,are also briefly discussed.

1. Introduction

In [43, Hoffmann and Sprekels discussed an identification problem of general
variational inequalities under a functional analytic framework. The problem they treated
is the following .

Let H, X be two Hilbert spaces, V be a separable and reflexive Banach space
with dual " and X, be another Banach space, such that the embeddings V A e
are dense and continuous and X, is a dense subspace of X . The dual pairing between
elements of ¥* and V is denoted by ¢ » , = ) .The inner product in X is denoted by
s+, «3.Let ¢V be nonempty, closed and convex. Then, the identification problem
is as follows;

Problem (F) .Given " € D(8) | € and y* €V~ , find a* € X , with (
a®,u*) & D{As) , such that there exists a w" &€ &§(u") which satisfies the variational
inequality

lw® A (a*) FAfa , u")—Froo—u*rFFQ@)—¥@ ) =0, VYeEl
(1+1)
where, & , A,,A:, ¥ are some given operators which will be defined in the next section
(or see [471).

The main purpose of this paper is to discuss a similar problem with the restriction
a* € X replaced by a* & K for some nonempty, closed and convex subset K of X,.1In
many physical problems, the parameters we want Lo find should belong to some specific
convex and closed set. The method we use is a combination of those used in Ei)5 =042
and [6].

2. Solution to Finite Dimensional Problems.
let H,X,V,V*,X: be the same as in section 1. The norms of these spaces are
denoted by ||*||j=.r.1E'Hx_-.||'|1p'.-fl|'|r*' and ”'”J-f.:.1I
respectively. Let ¢ (¥ be nonempty, convex and closed. Let K X, be nonempty,
convex and closed in X . we consider the following restricted parameter identification

problerm ;
Problem ()., Given u* € D(S) [ C,f" € V" find a* & K ,such that there
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{Tn(ﬂi U,y (E: Hﬁ}} = {%H_E‘"Al(ﬂ) +.r‘l:(ﬂ! ﬂ)p E} + [%1 &:|

—'{Aj‘:-l:i}, ‘H:’—' {ﬂz(&-p u)-'. H_‘u'} (2" lu)
Gala, ) = — {—-;‘m—l—_f' . UY == F(u) — [1—", a:|
-+ {‘dl{ﬂ}i u*) (:2 « 11)
Foruwe V* TV we set
(€O, w), Ca, u)} = {w, u}, ¥ (g, u) €B (2+12)
Thus, the ¢ =+ 1) -th step of Problem (P.) is equivalent to solve the following

problem
Problem ( 7T.) .Find (a,u) € @ , with u € D(8) , such that there exists w &
S{u) ,satisfying
{(D? w) + Tala, ul, (E, E) — (&, u)} +§':E£t ﬁ} _Q:{ﬂt ﬂ}EDh
Y (a4, u) €EQ (213>
Theorem 2. 1. Suppose that (Al) — (A7) hold and =0 is given. Then, there exists h,
0 ,such that for any & € (0,hky) ,Problem ( P, ) has a solution {(Bepta) Jusg s
Proof. It suffices to prove that for any =1 , Problem (T.) has a solution. To
this end, like the proof of Theorem 2. 1 of 47, we need to check several things.
First of all,since g, is convex and continuous on B ,we have
D{3g.,) =B (2« 14)
Let us define Q;B—2"" by @Ca,u)= {0} X 8(u) .Then, @ is maximal
monotone. By (A1) and (AB6) and the definition of & ,we have

(Py (o) 8") € int(D(@ NG (2 +158)
By (2.14),we have
int(D(Q)) N D(3g) #= D (2 « 16)
and
@ NintD(Q +3g.) =G intD(Q) %= & (2 +17)
Also,the-same argument as in (4], we have
Ei(g.—l—]fu)=3§.+3}fa {2 b 13}
where
Xitud—a i (2+19)

-+ oo & G°
MNow, it remains to check T, is continuous, bounded , coercive and pseudomonotone.
Since dim Wy ,dim Vy <Zco,we can assume that there exist a, § > 0 ,such that

lall x,<ellallx,», Va&€Wu (2 - 20)
”“”Pﬂ.ﬁ”””ﬂf YueeVy (2« 21)
It is easy to show that for any (a,u),(d,4) € B

| 7oy 9 =Gy > | e < (5 +ap I Al IG 1<) Hu—ill
+ (8| A +ap?| Azl [ || 22 llﬂ'_ﬁ?”.x}i
+{call Al +aprll Al Clu—w lat llulad

clu—illattla—idlxf 2 - 22)

which gives the continuity and houndedness of T.. For the coercivity, let us take (a,u)

Eq, ;
{To(a, u), (a, u)} = {%u -+ Aila) 4 A:(a, ud), vl -!—% el %
— {ACa), uy — {ACa, u), x— 4"}
=L lullht el it dua, ), un)
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exists a w"* € S(u") ,satisfying
(w* + A4(a") + Ao, u*)—f ", v —u*)+F(@)—¥(") =0, VeveEl
(2 +1)
Here similar to (47, we assume;
(A1) §.D(8)CV—=2"" is a maximal monotone graph with 2= € int D(S) .
(A2) A, ;X—V* is linear and bounded , with

| di€ad [ve< | Al lallx, ¥V ¢ €X (2-2)
(A3 A, D(A4,) CX XV —V" is bilinear with
XX VDA (2« 3)
| (AaCay w)y 03 | << [ Asll Nalle lullvllells
H‘:ﬂ:upﬂ}Exn}{F}{F (2= 4)
(A, u—o),u—oy =d|lu—v| 5,
W (a,u, ) EKXCXC (2 +5)

for some positive number 4 .
(A4) W,V — R is continuous and convex.
{A5) Problem (P) has at least one solution a* € K .
Now we turn to study a finite dimensional analogue of Problem (P) . Tet V¥ T
V. W C X, be two finite dimensional subspaces, satisfying the following assumptions;
(AB) u* EVy,Pr (K)CK , where, Py, X—+Wy Iis the orthogonal
projection.
(A7) Foranya € (I —Pw)(K) CWi,u,v € C1Vx,
(A (a) + Asla, u), v —u*) =10 (2 +6)
Our finite dimensional identification problem is the following;
Problem( P¥). Given u* € D(S) N Vu,f* € V" ,find a” € K[| W ,such
that there exists a w* € S(u") ,satisfying
Cw® 4+ A, (a") 4+ As(a”, u*) —f*, v—u") + ¥ () —¥(u") =0
' Yoe O VFy (2+7)
We now introduce a sequence of systems of variational inequalities, the solutions
of which will converge to a solution of Problem {(P%) .Let e =0,k = ) be given, we
consider the following problem,
Problem (P,) . Given (go,us) € (K[ W) X (D(SI[1CFx) , find Ctta s Ua)
€ (KM W) (DS N C M Vx) ,such that there exists a w, € 5(u,) ,satisfying

‘:Ew—Fﬂhﬂ 4 A ey 1) + Abagry g d —F"» U — Uppr)
p + W () —F(up) =0
[, — | — (i =i 28
4 Ax(d — Gy as ) s Uagp— 8" ) =0

W (a,2)ECGa (KNWud X (CNVx)n=1,2,
It iz clear that at (n -+ 1)- th step of Problem (P;) , we want to solve the
following equivalent problem

For (8.,%) € (K W) X (DO NCNVy) . find (a,u) € (K[ Wad X
(D(SY M € Vs ,such that there exists a w £ S(u) ,with

r:e%w 4 AiCa) + Aula, u) — f*, 2 —u) + W) — Flu)

h
Y (d, 28) €EC
Now, let us set B = Wy X ¥y . The dual pairing between elements of B* and B is
denoted by { = , * }.It is clear that dim B<Coo . We define 7.;B—=B" and g.:. B—
R as follows.

+[25%, i o] = A= F A —a, W u—e =0 20D

54



>Lulli g lalli—apl Al lallxlulsliu iy
>(£—Lyal e 1) lul}

(L —ZLyan e ty)lalk @ - 23)

Hence, for given ¢ =0 , we can choose hy=>0 , such that for any & € (0,he) T is
coercive with respect to 0 &£ B® .
Finally,since T, is continuous and dim B < oo we have
lim {7 Ctms T O o, S Up) — (a, g} ) = {Ti{.'ﬂ'q! 1?}3- E:&, E) — (o, %))

Y (a. u) €EB (2 - 24)
whenever (dn,ua)—> (d,%) weakly. That means T. is pseudomonotone. Then, our
theorem follows a general theorem on variational inequalities(see(d]or 810,

Theorem 2. 2. Suppose (A1) — (A7) hold and {(aa,ua) )2, 18 @ solution o Problem
CP,) . Then, there exists an oo & K [| W ,such that '
| 4 — 2" || v—0 as n-—+oo (2« 25)
| ¢ —@ee || x—0 as n—+oo (2 + 26)
and Ges i3 o solution of Problem (PY) .
Proof. Set g, = ta = u " , 3 = gy — @ " . Similar to (47, we can get the following a
priori estimates.

elgm e+ Dpas i+l aar:llp<ellall z+ Nnllz €2:20)
sgg{e lgall 24 [l 915 +268>7 laslly

]
<ellgll st Nwlli<ee (2 - 28)
Thus, (2.25) follows (2.28) .On the other hand, (2.28) implies Il 2 || x is
hounded. Therefore there is a subsequence a,, such that
Qo= & K[\ Wy in X (2« 29)
It is clear that a.. i a solution of Problem (P¥) . The derivation of (2.27) and

(2. 28) shows that the same estimates also hold if we replace y. by 6. — 8o . Thus, we
have,in particular,

& H Pat1 “ :; + || dati— @ea |.| :,ﬂe Il ¢ “ :r -+ !l Gy = oo “ _;:: (2 « 30)
This implies limCe || g« || 5% + || @2 — aee || 3) exists. Together with the proved (2. 250,

we have
lim |!ﬂ,Tum§[1=:i 2+ 31)

i D

Then, (2. 26) follows (2. 29) and (2. 31).

3. Stability and Solution of Problem (P)
In this section we first show that the limit point g of { Py} is stable against
perturbations in the initial data.
Theorem 3. 1. Let (A1) — (A7) hold. Assume that inifial data Catud), |A] =< A, s are
given such that
at—=al, uh—=uy, ag  A—0 (3 - 1)
Then there is an h € (0,h,) such that for 0<<h="Kh the following assertion holds: If
Lak,ul} o, solves (P.) utth initial data Cal,ul), |A| <4, and a’ iz the limil point of
{al} ,then
at —al,as A—( (3 +2)
Proof. Let 0 <"h=<_h,. From (2. 8),we have
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i 1
Uay | — Uy

‘:ET - wd, - ACaly ) + Aa(any s wr) — "y )

+W() —F, )=0, YevellVy (3 +3)
with some wi,, & SCul,. ) ,

tyy — O
[{HLT!- '3?"!1:+:j| - ‘:A‘llh}'_ﬂi+|} +£‘41(ﬂ_5:+19 ﬂ:h:‘: 'EIL_,—IE':FE[}

YoE K[| Wy (3 4)
Let g = u* — u’, v = a* — 22, gt =u} — »* . Then it follows from (3. 3), (3. 4);

Ypty =Yg
Le +1.F1 4wl Aal ) + Aol wad — F7 Uy ™ Ugiy)

Pt ) — Tl )= 0= u“'%_“‘ + wly, + Aiaiy )
-+ Ai(ﬂ:+[i uf':"]} _.'F. . 1-'[:'-1-1_ “:4-.1} +w{ﬂf+1} ==y ’f"{ufﬂj
hence

;R |
{3!“4-1}.+y:r yi+1} + {-‘qi{ﬂf:;~1? ir:+1} ¥ ?i+1:]

i1 B2 {A!(}’:-iq) +-"'11{}’f+u ”i+1:1.9- El'f-m:" =<0 (3 +5)
Putting n = a’,, in (3. 4) yields:

j_.-"' £3h '.|"'t |
[ﬂ"lﬁ_.! ’P'f+1:| b |:'+—]h_"!!- ‘]f':+|;i| s {J‘IL(‘}-’L_J +-“it{}':+” uf-i—l:: * !.l':+|:’
e ‘:"1&(}':4-1‘3 —|—A={}J:+” ”:m} » Q‘.u+1:’ =0
and putting A = 0,7 =a},, in (3. 4) yields;

ey
[{E'I_Hh—ﬂ.f '}J:.L.|_Li| = {AI[:']'"frir:I} +A1|:}’:'+11 ﬂ:-ﬁ-l} ’ "?:]4-1}
So we have
{:‘ili}’:-,-jj ¥, -"13':}":4-1!- ﬂi+:j ¥ !"f+:}

PR |
= [Lﬁ{"t ‘.'ﬁ’i-m] g ‘:14!{1‘i+n 31':.”): *i‘f+:> (3 - 6)
Combining (3. 5) and (3. 6),we get

i A
u — ¥a = —7s
':."E!r‘-rlh ¥ yi+|,:" + |:?1+:h L 4 ‘,I"'i_l.-[j|

-+ ‘:J‘it(ﬂf+u i’:+L} ’ !I':+1:' = {Ai{“}’:f'u El"i+1j » q:+:} =0 (377
This is the same inequality as (2. 25) in ([4) . Starting from this inequality and using
the same arguments as in (47, we can obtain the assertion of Theorem 3. 1.

Now we discuss the situation as dim Vy—=oo .Let {Fx}y=. be a sequence of
subspaces of ¥ such that (A6) holds and u, € D(S) (] C M Vy. ¥ N =2. Assume to
each NV that there is a subspace Wy, of X, such that (A7) holds and as € W, -

We assume further that,

(A8 (V, || « || ) is a Hilbert space,i. ¢. , | + || v is induced by an inner product
f+,=)on¥F.
(A9) FyCVrenl¥ NEE;HLJ Vy is dense in V. Py (Y CC,¥ N =2, where Py
=
denotes the ( = , + J-orthogonal projection operator onto Fy.
(A10) a, & K,a.—a weakly in X implies 4;Ca,,u") — A, u") weakly in V" .

Theorem 3. 3. Let (A1) — (A10) hold. If {al} denotes a sequence of limit points of
the solution of (Pyws) »then each subsequence has a weak cluster pownt w K which solves CE).

Proof. By Theorem 2. 2 for any N =2 , there exists an an, € K [] Wy such
that with some w), & S(u")

(w4 Ae) + Ala, ") —fryo—u" ) F ¥ (@) —F@* =0,
{3+ 8)
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YevEC[Fx
The a priori estimate (2. 28) gives that {a™} is bounded in X. Thus a subsequence,
again denoted by a" , converges weakly in X to some a € K . By the boundedness of
&(u®) we may assume that w® —=wr* weakly in V* , where w" € S(u*) by the
rhaximal monotonicity.
MNow we show that a. is a solution of (P) with w°® e F(u").
Let v € € be arbitrary. By (A9), Py,» € €[]V and | Pryo—o |l yr—=0 ,25 ¥
—= oo, Yye have
L% 4 Aies) T dalliass %) — P v—u* } +P(0) — Wiu*)
= (w4 AiCah) + A, u°) — £ Pryo—u®) + W (Pryv) — Flu®")]
4 Ciw* —ut + Age. — o) 4 Ao — i, u" ), Pryo—u®)
+ ¥ ({p) — ¥ (Pr,v)] + C{w" + Aila=) A Ay B0 — Proed )
The first bracket is nonnegative by (3. 8), and the second and third brackets approach
0 as N—=co , Hence passing to the limit as N —= oo yields
L " +A1(um} + A3(8eos i B il v—u"3) 4 ¥F(v) "W{ﬂ'}él}, Yevel

i. & do Solves Problem (P).

4. Applications
The method in this paper can be applied to many physical problems including all
the examples in (47. For the sake of comparison, we take Example 1 in (4] as our first
example and discuss it once again using our method. Then we take nonstationary dam
problem as our second example. In our examples below £ C R™ is open and bounded
with a sufficiently smooth boundary J&2 .
Example 1. Consider the problem
Given ¥ € HY@) [ HY=(2) and f* € H'(&)find a matrix
a® = (aj) withae" € K such that — % = {a=~u*)=f"
If we assume that

(4+1)

K= {a= ":rlu:l': ai; L&)}
then problem (4.1) is just the same as Example 1 in [4) . Now let K be the set of
physically admissible parameters which we assume to be of the form
K= {a= ('ﬂi_-l'}: iy & L™=(58), aiyy= @, “ dij ” LELR) i.ﬁ:
Ha(z)E = al&| W £ E R, a. e in 2} (4+2)
here a = 0, f = 0 are fixed constants.

Problem (4.1) with K satisfying (4. 2) is the restricted parameter identification
problem. After making some specifications as in [4], one can see that the assumptions
(A1) — (Al0) might be satisfied. Therefore we can apply the method which is
developed in previous sections to this problem.

Example 2. (Nonstationary dam problem)

We consider nonstationary fluid (say water) flows through a porous medium (say
dam) 2 R™.Let I', be the boundary to the imperious ground, T € R, 0T <"c2,

and st Q=2X (0,7, S =IX (0,T), > =32 X (0,73, 2,,= ¥R
. Assume that the boundary data for pressure ulx,t) are given by
g £ L0, ¢y H-=(@)), g" =0 (4« 3
Now we can state the weak formulation for the nonstationary dam problem as follows
Given 2" € K (see (4. 2)),find a pair

Cu®,y*) € L3O, Ty H'(2)) X L=(Q) with u* =0in @, u* =g" on W ram
y*" C H{u"),p"(z,0) =y in 2 ,such that

_ﬂ"vv-a-wu-+y-m—rm£m Vo€ H'(Q), (4 4)
g

v=0 on HS¥{0,T},e=0 on 21ﬂ Cg* =01,

LA



v=0 on >, N Cg*=0]
where ¢ = “Vz.. Set
AqQ) = {vE HY(@); v=0 on 3Q\I'} (4 + 5)
and let (u”.,A") be a solution of (4.4) . Then for any v E @(D.T;ﬁliﬂjj . We
have
J:'?tr ca* (Fu® +y*e) —p =0

L]

I}:'mz _B-?u ca*(Vu" 4y e)

g d
i /% : 12
i{_ﬂ-lﬂ (Vu" 4y e}l*} {:Ul?ﬂl

=« || 2 || Lacorimicon

Therefore

o

q

This shows that
y* € L¥0, Ty H'(@)") (4 + B)
and

_H-?“ ea (Vu" 4ye)+ (p|ey=0,¥ o€ L*0, T} HY(@))
@

(4 = 7)
where { « | » 3 denotes the dual pairing between elements of L 0,T; H'(2)*) and
L0, T, H'(52)) . (4. 7) can be rewritten as,

Hvu 2t (Tt Tt 948+ (pr |03 =0, ¥ v € 220, Ty B

i (4-8)

where u* & L0 ,T;ﬁ'l(ﬂj},u‘ —gt.
Now we can describe the corresponding trestricted parameter identification problem
as follows, _
Given z* € L0, T; H(@)) with u* > —g*and y* CTH@" +¢"),
pr € L0, Ty H'(2)*), find a* € K such that (4. 8)holds.

(4 « 93
We show that the theory of above sections applies.
Let
H = L* )
Vo= L0, T; H'(£)) where H'(Q) is defined by (4.5)
R B
X= {rI — ﬁ:ﬂ;j) g E LE{_Q} :-1'|i'r !‘*p_}‘-}
Xy= {a = '::{1.'_1':":!1:5 - Lm':ﬂ':’ R !;:-j}
K is defined by (4. 2)
and let

g=4¢f
{ Ad,{a) |v) = ﬂ-'ﬁ?v ca(Fg" +yre)

G
{ A;Ca,u)le)r = H?v N AVET
g
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Using these notations, it is easy to see that problem (4. 8) is a special case of Problem
(P) which is described in section 2. Using the same arguments as in Example 3 (Dam
problem) of [4], one can esaily see that all the assumptions (Al) — (A10) might be
satisfied if we additionally have that u* & L0, T; HV=(2)) .

C1J
L2]
L3
C42
£5]
L6
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