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Abstract

The present papel characterizes the asymptotic behavior of the
timedependent solution of the coupled Belousov-Zhabotinskii reaction diffusion
equations in relation to the steady-state solutions of the corresponding boundary
value problem. This characterization leads to an explicit relationship among the
various physical constants and the boundary and innitial functions.

1. Introduction
In some chemical reaction problems, a simplified model for the concentration
densities u=u (£, #), v =2 ({, 2 of two reactants, such as bromous acid and bromide
jon, is given by a coupled system of reaction diffusion equations in the form
7 el Dl?"‘us # (g — bu — el

(=0, z € 2 (1. D

v, — D,V Py = — ¢ uv
Where D, D, ,a b ¢ and ¢, are positive constants and & is the reaction-diffusion
medium. The coupled system is often referred to as the Belousov-Zhabeotinskii chemical
reaction eguations and has been given considerable attention in recent years (cf. C1-2.
1073 . Much discussion of Eq. (1.1} 1is devoted to the traveling wave solution in the
one-dimensional spatial domain &= R!. When £ is a general bounded domain in R
Egq. (1.1) is supplemented by a boundary condition in the form

a(e) Fu/dv+ flxiu=0

atmav/dv+ flziv=10
together with the initial condition
uth, ¥y =u,(x), v(0, ) =uv,z (x & &) (1. 3
where a =0, =0 witha-+ p = 0, 3/dv is the outward normal derivative on 38, and
g, =0, v, =0in & .1t I3 assurned that the functions in (1. 9y ¢1.3) and the domain &
are smooth and £ (z) is not identically zero (see(5) for the case fizy =0 .
It has been shown in (5] that for any nonnegative initial function . ¥y problem
(1. 1) = ¢1. 3) has a unigue nonnegative solution (u, #) . The aim of this paper is to give
a more precise description about the asymptotic behavior of the solution (u, ») in
relation to the steady-state solutions of the corresponding boundary-value problem
— DN iu=ula— hy — cu)
— D, o= —cuv
afzyau/av + fxu=10 (L. 5)
4@ v/ + B@v=0 (e D8 & AR
Since problem (1. 4) (1. 53 has the trivial solution 0, ) it is interesting to know when it
has a nontrivial solution, and whether and when the time dependent solution (u, o)

converges to-the nontrivial solution. Our main results characterize the asymptotic
hehavior of the solution (u, ») in terms of the various physical constants in ¢1.1) as
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(=0, =& 3L (1. 2)

(=0, re 2 (1. 4)




well as the effect of the boundary and initial conditions (1. 23 (1. 3).

2. The Main Results

The characterization of the existence of a nontrivial steady-state solution and its
relation to the time-dependent solution is based on the smallest eigenvalue A, and its
corresponding eigenfunction ¢ (x) of the eigenwvalue problem

Vietip=0 in@ Blel=0 onag 2.1
where B{w] = a (x) 3w/3~7 4+ B (z) w for any function w . It is well-known that i, = 0
and @ () >0 in £ . When a (z) >> 0 the maximum principle implies that ¢ (z) = [ on
£2 . We normalize ¢ so that max @ (z) = 1 on & . The following existence result for the
scalar boundary value problem
— DU =U—58N in &, B(J =0 on 32 (2. 2)
is well-knowr.

Lemma 2. 1. Problem (2. 2) has only the trivial solution U=0 when a <" A,D ; and i
itz a unique positive solution Uz (z) whena == 2 D, .

A proof of the above lemma can be found in (9, p. 11747, Based on the solution
U, of problem (Z. 2Z) we state our main results in the following two theorems.

Theorem 1. The sieady-state problem (1. 4) (1. 5) has only the trimial solution (0, ()
when a <C A, D, ; and i has exactly fwo solutions (0, 0) and ¢ Uy, 0) when a>> 2D, , where U,
15 the unique positive solution of (2. 2).

Theorem 2.  Let (u, v} be the nonnegative solution of (1.1)-¢1.3) with any (u,,
v) = (0, 0) and let Uy be the posilive solution of problem (2. 2). Then

Hm (udt, o), vt 2)) = (0, O (2. 3)
=]
when a < A,D or when u (x) =0, and
limfut, ), v, 2) = T (2, O (2. 4)

=t 0a

when @ = 4,0, and u (z) = e@ (x) , where ¢2>0 can be arbitrarily small,

Remark 2. 1. 'When a > 4,0, the conclusion in (2. 4) also hold for any U, (z) ==
0 provided that @(z) >=0 . For in this situation the maximum principle implies that
u(t, ) >0 on R* X Q. By considering problem (1.1) - (1.3) with the initial
functions u (¢, ), v (¢, ) in the domain (f,o0) X Q@ for a fixed {, >0, the
requirement u (£, £) == ew (z) for some &£ > 0 is clearly satisfied. It follows from the
unigueness property of the solution (x, ») that (2. 4) holds.

3. Proof of the Main Theorems
Proof of Theorem 1. Let (I ;(z), V(z)) be any nonnegative solution of (1. 4)
(1. &) . Multiplying both equations in (1. 4) by o (z) and integrating over 2 vield

— D, Jqp?‘ﬁﬂdz = JQJU,.; (g — bl —cVy)dr
& &

e DI- J‘qﬁvwsdﬂ' = = CI. J?HEFSEI

£
By applying the Green’s theorem and using the boundary condition (1. 5) the above
equations become
(A D, — a) J‘q;ltf'ﬁd:.: = — J{bq&ﬂﬁ + cpll Ve dx
& = (3. 1)
i J-QJFSEI = — g, Ju;r;ffﬁ,l*'ﬁria:ﬂ 0

L
Since @ (z) >0 in & . the second relation in (3. 1) implies that Vg (z) =0 in Q.
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Similarly the nirst relation yields ug (x) = 0 when a = 4,0, . This shows that the only
nonnegative solution to (1. 4 (1. 5) is the trivial solution (0, 0) whena = i,D, . It also
shows that when a = A.D, the steady-state solution must be in the form (Us 0) where
U, is a solution of (2.2). But by Lemma 2.1, Uy is the unique positive solution of
(2.2) when a = i,D,. We conclude that ( I/, 0) is the only nontrivial solution of
f1. 43 {1. 5. This proves the theorem.

In order to prove theorem 2 we prepare the following Lemmas for the case [
Anldy

Lemma 3. 1. Tet a = D, and let (uft, x), v (¢ z)) be the solubion of (1. 1) -
(1. 2) corresponding to u, =M, v,= 0, where M, iz any constant satisfying M, == a/b . Then
v (6, 2) =0 and @ (, z) converges monotonically from above to a solution 45 of (2. 2).

Proof. It is easily seen that » =0 and & is the sclution of the scalar boundary

Aalue problem
4, —DVi=ula—bw, Blx) =10 u(, 2) =M, £ 2
Since u =M, and 2=0 are upper and lower solutions of (3.2) the standard
comparison theorem ensures that 0<"u(t z) = M, (cf. (6. 8)) . For fixed h >0,
define w(t ) =t ) —ul(t+h 2) . Then
w,— D w=uft z) (a—bull ) —ult+h = (@ —bu(t+k =2))
=Ca+butt, ) +ult+h =) Iw (3. 3
Since BCw) =0 and w (0, z) = M, — u(h, ) =0 the maximum pringciple implies that
w (¢, ¥) = () . This shows that # (f, #) is monotone nonincreasing. It follows from u =0
that lim@ (. ) = il (z) as { — oo exists. The same argument as in & 9] shows that &,
is a steady-state solution of (2. 2). This proves the lemma.
Lemma 3. 2. Let §,, &, be any positive constants such that b8, + cd, =< a — A,D, and let
(u (¢ x), B¢ x)) be the solution of (1.1) - (1. 3} corresponding to u, =d,@ (z) ., v,=10,

where a = A0, . Then u (t, z) is monotone nondecreasing and © (4, x) is monolone RONRCTeasyiy
in . Moreover,

limuft, z), 6, =) = U@, 0 (3. 4)

§==oa
where U g is the positive solution of (2. 2).
Proof. From u == 0, the constants v = 8, and » = ) are upper and lower solutions
of the scalar boundary wvalue problem
B, =— ﬂi?lﬁ = — {c,u)d, B(#] =0, w0, z2) =4, (3. 5)
This implies that
' 08 =) =4, (>0 z€ ) : (3. B)
Similarly from & = 0 the pair ¥ = a/b and u = d ¢ are upper and lower solutions of the
scalar boundary value problem
u,— D, Vu=ula—bdy —cr), Blul=0 u 0, =) =dpz) (3. 7)
if
— 80,5 % < dp (a — bd ,p — &)
By the relation (2. 1) the above inequality is equivalent to AD,a—bdgp—eu.In
view of (3.6) and ¢ =1 this relation holds by the condition on &, and &,. Since 4, =,
a/b the comparison theorem for problem (3. 7) implies that
S la) <uft z) <afb >0, =z € ) (3. 8)

Now fix A = 0 and define .
wit, @y =uE+h ) —ult 2), wit, z) =6t z) — s+ h =)

Then by (1. 1)
w,— DT w=u(+h o) la—bu(t+h 20 —ctlt+h 2]
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— u (¢, x) Ca—Dbulh ) —ew (L )]
=(a—b(ut+h z) +ult, 23) — B (¢t +h @) Jwd x)
4 teut, )@ 2)
@,— D, Vw=—clult 28U ) —u@+h B+ 2]
= — fcult )T z) + (e pt+ R D))wd x)

The above relation is equivalent to

w,— D,V w0, w= (cull £} ) 0 (L, %) 3 g
3, — DT 4 0at, DB= (cFCE+h D)W e

where _
a, (f, *) =u—b{g{£+h. )y + u (¢ £)) —cP(t+ k. z)

o, (L, ¥y =cu(t x)
Since BLw)] = B(&] = 0 and by (3. &) and (3. 8)
w0, =) =uth z) —&ptn) =0, @0, x) =d,— o¢h, =z =0
the maximum principle for weakly coupled system implies that w =0, #2=0 (cf. B F
see a_a_ts:JEErj) . This shows that u (¢, x) is nondecreasing and & (¢, ) is nonincreasing in ¢ .
It follows from the bounded property of uand § that the limits
limu (¢, z) = ug(z). limw (¢, x) = ¥, ()

F—=o

exist and §,p=u,=a/b and 0<<6,(z) = d,. By the same argument as in [97],
(u, 0, is a solution of problem (1.4) (l.5). Since u, =& and by Theorem 1.
(75 0) is the only nontrivial solution of (1.4) (1.5). wWe conclude that (ug #g) =

(/.. 0 . This proves the relation (3. 4) .
Lemma 3. 3. Let (& v), (u. ) Be the solutions given in Lemmas 1 and 2. Then

d=u, §=0.

(3. 100

Moreover
lim 2 (¢, =) = limu (¢, ) =U; )

lim ok, ) =10
2 ; a8 !-_" X '::3+ 1.].1::I
Proof. Let w = # — u . Then w satisfies the differential relation (3. 3) except with
i (¢ 4+ k. z) replaced by u (¢, z) . Since BCw) = 0 and @ (0, x) — u (0. 2) = M,— d,p ()
= () the maximum principle implies that w=>0 . This leads to the conclusion U= U

Moreover the results of Lemmas 1 and 2 ensure that lim # (, ) = ity (z) =dp(x) ast
—» co and therefore u, must coincide with Ug () . This proves the first relation in
(3. 11). The result # =0 and the second limit in (3. 11) also follow from Lemmas 1
and 2.
Proof of Theorem 2. Let U (i, x) and ¥ (¢, z) be the solution of the respective
scalar boundary value problems
U,— DU =Uta—5bl), BLWI=0 I (0, ) = #o(2) (3.12)
V,— DN =10 BIVI =0, V(0 2 =uv(x) (3. 13}
By the comparison theorem for scalar problems, the solution (u, v) of (1.1} — (1. 3]
satisfies the relation 0=<su=1U, 0<"w<"V . Since lim U, ) =lim ¥V (¢ ) = 0 ast
—+ == when a = A0, the result in (2, 3y follows immediately. When u, = 0 the solution
of (1.1) — (1.3 is in the form of (0, #) and thus it always COnverges to (0, 0) for
any a = A0, .
To show the relation (2. 43 when a = A0, and u,fz) =0 we observe from
Lemma 3.3 that it suffices to establish the relation u <u<"u 0<v=1¢ for the
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solution (. ¥} . By the comparison theorem in C5)this relation holds if (u, ») = (@ D)
and (u, v) = (u, () are upper-lower solutions of the coupled system (1. 1) - (1. 3), that

is. (u, ) and (u, v) satisfy the differential inequalities:
u— D,?TEEE fa — b — ov)
5, =D = — 0, u" >0, =€ Q) (3. 14)
¥, — D,T?iaﬂ;t‘ ta— by —¢®)
v, — D,‘ﬁ?’; < —cuv
the boundary inequalities

B(Zi1=0=B(x), B(z1=0= BCv] (=0, =€ 3D (3. 15
and the initial inequalities

=0, 3) — uel@) =0=u (0, &) —uel®),
B (0, 1) — v lx) =0=0v (0, ) — ()
Since (@, 0)and ( u, #)satisfy the equations
i — D, =i (a — bE)
o — Di‘?!ﬂ = — ELEEF
uVu = u (a — by —c¥)
and the boundary condition B(u) = Blul = Blo] =0] = Bls] =0, all the
differential and boundary inequalities in (3. 14y, (3.15) are fulfilled by ( %, v) =

(u, 7). (., 7) = (u, 0) . The initial requirements in (3. 16) become

M, — ulz) = 0= dp — tal2), By — va(z) =020 — wola)
By choosing M, = . (%), &, = ¢ in the definition of # and u the pair ( u, v)and (u,
0) are upper and lower colutions provided that vs < 8 » With the restriction v,<< d; the
result in (2. 4) holds for any wy = e . TO TEMOVE the restriction on v, we observe from
D<w-=VF and V (i z) —= 0 as t—=co that for any ve— 0 there is a £ = 0 such that
o tE, %) < 4. By considering the problem (1.1) — (1. 3) in the domain [ ¢, &) w2
with the initial funetion (% (f. 2). 7 (¢, z)) and observing that u (. ) = 4@ =ep
the solution ( u, #) together with ( 4. () fulfill all the reguirements in (3.14) (3.15)
and (3.16) in C¢,. o2 X g . It follows again from the comparison theorem and
Lemma 3. 3 that the result in ¢2. 4) holds. This completes the proof of the theorem.

(z € D Sili?
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