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1. Introduction

Various types of nonlinear evolutional systems of partial differential equations can
be derived from a great amount of modern research in physics, chemical reactions.
mechanics ete. such as the linear or nonlinear parabolic or pseudo-parabolic systems. So
that it is meaningful and interesting o discuss the well-posedness in global of some
basic problems as periodic boundary problems, initial-boundatry wvalue problems and
Cauchy problems for the above mentioned systems. There appeared some papers
concerned about the problems of some types of the nonlinear pseudo-parabolic equations
and systems':"‘f“+ In this paper we are going to consider some problems for two new
types of the nonlinear pseudo-parabolic systems, which are, in particular, different from
the systems discussed in (1. 2].

Now let us give some conventions of notations for the following use.

Denote by (x, v) the inner product of two vectors u and v.

(u, v) = r u s vdz,also |ul s, 0| wm= 1, o= (— X, X) .

X
Denote by [u, »] the integration from 0 to t of the inner product of two vectors u
and » .

[au, #) == -r{u* p) di = -[ J_ﬂ « pdxdi
o ‘,

also |]*;u|| EE{Q‘,=Eu.u]. g, =itz |z€EQ=(—X X), & (0,4 } . Denote

by L, (0, T; H™ (&) the collection of functions (or vectors) utz, £) , which when

regarded as functions (or vectors) of variable z belong to space H™ ¢ and when whose
norms |uf ¢, &) | g= o are regarded as functions (or vectors) of variable ¢ belong to the

space L, (0, T) .
The following two lemmas will be used repeatedly in this paper.

Lemma 1 (Nirenberg' s lemma) L o _r odz=0 or v|lim—x= ¥ mx =
—X

0, then we have
¢, 0 lo@=Clo,(+. 0L w2, D | Ve L0 1) (1)
m%=a{%—-l} +a—alae ) r=L1<s =500,
In particular, we have
190 B o <Clo (. B |F@leCe, O 2@ YEEC T) @
Lemma 2619, Lt @, = { (=, ) |z € 2, £ € (0, T) } . Suppose Gt G Ty wasee Tig)

« Project supported by the National Natural Science Foundation of China
B7




is a function of g vectors &, Zy ... Z,. k (Z=1) — times continuously differentiable, and
Zotz. ) € Lo (@) [ L0, T; H* () . Let M = max sup | Z, (=, &) | . Then, we have

1 e, £ E Gy
the inegquality

a* : ; :
DD Comg Y g TS EY <CM. k@ D2,1Z(. O|pa

k
dx L, G

o

Ve [0, &) (3)

2. Periodic Boundary Problem. Cauchy Problem
In a rectangular domain @, = {(z, D) |z € Q= (—X. X). ¢ e (0.7} we
consider the nonlinear pseudo-parabolic system
Lu=u~+ (—D¥A B uax+ (— 1) YBu,ax,

] i
+ 3= DA F e wa-dw) =F G 0 4
i=—a
and the periodic boundary problem
{u (z, &) =ulz4+2X. £) 5)
uflzx, 0) =z

where M =>1 is an integer, u= (2, ... ty) and f= (fi... £,) T are N-dimensional
vector valued functions, A(f) and Bare & X ¥ symmetric matrices, F;(u, ..., wa—1) (J
=0, 1, s M) are arbitrary nonlinear functions of MN-dimensional vector variables p,
= (Prus weees Pivm) » Pam =1t {m =0, 1, .00, M—1:k=1 ... N).
Assume that the system (4) satisfies the following conditions:
[ 1 A¢H and A’ (¢) are bounded matrices,
ii) B is a positively definite constant matrix:
(B2, &) =by,(& &, YLER", 5,>0
#i)F;(j=0, 1, ... M)are nonnegative and m 1-times (6)
continuously differentiable, m =M,
iv) foo—u, € L (@), @(x) € HYT"(Q), m=M.
f: and ¢, are periodic functions of z with period
| 2X, k=1, ..... N, f= (fy se Fute = @y eer Pyl
Lemma 3. The solutions of problem (4) (5) satisfy the following estimation
luf =, B | % o == €1 £l i,m,} + lelawwmt. ¥V EE [0, 7] (7
Proof. Taking the scalar product of the vector » and the system (4) and then
making the integration (Lu, u) in the domain @, (0 <C == T) , we get

M
'%_ (1, #) —|—"%" (B w, t u) -+ EEF‘{ 1 I U w—1) M, Uil
= [f.. ] +-%"($L [y —F-lE—L'BtP“”p g™y — (A uw, uxl (8)

Since F; == 0 and the matrix A (f) is bounded, then by applying the Gronwall’s lemma
we obtain the estimation (7)

Lemma 4. The solutions of problem (4) (D) satisfy the estimale
[ o ) | paeimgy < C By || D25 W 1,000 |9 |antma), ¥ ¢ € (O, T, m=M
(9)
Proof. By making the integration [Lu, (— 1) *u.am) (m=1) , we have

1 1 [
E(u,_-, Hom) -E—E{Bu,u+-, U M+m) E [5; (F (8 ens U w—1) i), u,n+.nj|

= (=D uad +5 @, 9™

f=n
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+%{Eg}{.ﬂ'+-}' qj{H+!'-'} ., [:,4 (g] U M, u=n+n:] {]-U:'

The first and fourth terms on the right side in (10) may be estimated by
| CA @ uxtm, wusnd | + [CF, (= 1) u,e] |
{Zfll FllZp + lluws=|l 2 o), if m=< M,
(I 27%F | B o + |l tamn || £ 0y), if =M

{11)
We estimate the last term on the left side in (10) as follows:
'H =
E [E—_ F; @ e u =) ), t:,-+.1]
f=0q
b
== Z LI (i, s M w—) Homds, Homds] E [E“la_,_ji“ wti—b, U -+.f} (12)
F=a =G L=

The first term is nonnegative, hence we with main strength estimate the second term.
From Lemma 3 we haveu € L (@), 0=i<~M — 1, and from Lemmas 1 and 2 we

have
sup |::,-+.-—-{ s, O]

— X
ﬂclu.m—-':-. D |3 o ltmbsmstr (o, 0 |Foy YV LE (O TD (U3

3

M—1
Ia_ iF {H ..... ‘H-l'—!} E{?E Iul“'l"{' . -” |:,.:|:';|].: lﬂkﬂm, #E Eﬂr T]
Ly (@) =g
(14)
Then, the se-::-nncl term on the right side in (12) may be estimated by
E [Eﬂ-i & ‘--I-'.I—l' H;--i-.!}[
1!-l:l b= ]
FF
gcﬁ g; L_%Fﬂ]u,.ﬁ_; 0|5 s ltgmts Co o O | oyt
. | m
ECE E -J.’Ju.‘-f'!'—"( LA |§*¢u} Iu1ﬂ+!—*+l( LR ) ré:u}:.
= =] a
.H';F—!I. 2 _1_
s (D upriCe, 0 1E 0 ) st Co s O |t (15)
Ly 2
=0
Hence, from (10) we derive the inequality:
M
(=, =) 1+ (U Mbm, U N+=) EEF-T (U, weeee B M—1) B e, Umts]

J=2

= || pifl tygp T @ atn g + || v | E,ﬁ?‘}}
E m
+5=E E J'|1J,-+:—-( w0 |é:{m | mta—str { +, £) iﬁ,-;n:. | ymts €+, B |L=-:.D:|

im0 k=1
M=

(2 ]tl'- '+I{ " ff-} I_;_, = }%—dvﬂ- I:]_E::I

o

where Ai=0ifm=M, h=m—Mif m > M . We are going to prove the boundedness
of the terms on the left side of the inequality (¢16) by the method of mathematical
induction. For the case whenm =1, since k=m=land thenk4+i=M, m+ i —k
=M, YO0<i=M—1, 0=<j=_M. hence, the second term on the right side of
(16) may be estimated by

M m
TECiE E £|u,-+:—l( .

el kel

1
(s, B) I.E,m:n
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The first term on the right side of {25} may be estimated by

|Cf (— 1) ™ua=]| << “Eu wbmy, uptm] + O || DEF ||} o, (27)

where k = 0 when m << M, .ﬁ“m—Mwh-en m=M.
Then third term on the right side of (25) may be estimated by

iE[ﬂ (Fy(, oy p= 29, c-1:r-*-**’u.w]

Ju=u
3H+§ )
E [E'mip (2, wvee, H M= U, {—1]“"“‘“5""““.—4_.:] [
_1’—:1
i [u Mtmy wxtn) HO{ || uppetm || E gy + l o ll £ ep? (28)

Then, by Lemma 4 from (25) we derive the ineguality (24).
Lemma 7. There is the estimation of the solutions of the problem (4) (5)

3m—.ﬂ'+1
o+ tma | 2,0o <000 | Zmf |l sy 19 latmr ) m2 M
(29)
Proof. Taking the differentiation of the system (4) with respect to ¢, we have
(Lu) y=uy+ (— 1) MA@ u,w. + (—1¥A (B uax

it 30
o (= 1y M B Sy 2 e

{F, {u, U M—1) w0 = T
EEl]

| 2tma |

2z79: s

Then, by making the integration [ (L), (— 1) ™u =], we have
I:t.l: Mt U ﬂ:!:! -f- [:_E':.l: M=, H’+|-!:I:j

= [fi (—1)"um]
— [{A{t}u3+-,—|—éf (2) u Mdm) , 2 M- h-l:l -}-
[; (— 1) iﬂ; 7 Fi s wenn un—ug), (—1) u,--.:] (31)
The first term on the right side of (31) may be estimated by
|Cfe (— D Mwamad | = [0 (— 1) Muoudna] |
b
< lntng, wutmad +C (59 | Dafe |l £, cop (32)

wherehi=0whenm=M.A=m— M whenm >M.
The second and third terms on the right side of (31) may be estimated
respectively by
| CCACE) umdm, - AT () u mbm), ustma] |

b
= ",'l'q'Eﬂz""'“F- up+mal + C (b { || woatm | iim,} + || wert= || Lyeap ) (33)

= i1
} I:E t—=11 i+1. T (Filu, .. vp—ug), (—1) ’“ziﬂe{|

JxmFi=N+tL ’ s
— ||ij_dm{f-'j('u, easap it — 1Y Wt ) — 1) 1-3,-,1,:+.¥{|
bo
g Ctinsnk RO 00 LUl Gl g il oy b 5.8

Then, by Lemmas 4 and 6. from (31) we may derive the inequality (29).
Corollary. From (29) we have
|t (o, £) | g 0y <const. Y i€ (0, T (35)
Having the estimates (9) and (29), we may prove the following main theorem.
Theorem 1. Suppose that the conditions in (6) are safisfied. Then, when m = M fhe
periodic boundary problem (4) (5) has a global solution u(z, £) € Z=H"(), T; H* (1))
When m = M -+ 1 the periodic boundary problem (d) (5) has a global smooth solution,
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BH—1 L
- 1ﬂa_n+.:|'l: LI !-:I |51{":"«‘ (E 'II-II’_I+[I:: L t::l |E,I{.m, )-:Eﬁr-t
o {1

A m MH—1

<o 33D sup upiCe, D |om

=0 kel jemp PETES
o (|| upmts—r || :.,w; + | umtsmrta || }...u:r;.- + || s |l Etw,::'
< O || uprtm | 3 g+ 8l E ). (Whenm=1), ¥ tE o T s O 1 b
Then, by applving the Gronwall’ s lemma we have
|“:“'+1'|: ., ) I;..,n:.n:ﬂﬂfi’ur 1[ f" Ly i@e)" I'?-'IJ'.I"""”::J:J- Yee [0 7] (18)
It proves that the boundedness of the term |ux+=( ¢, ) |, 0 holds form =1.
Now we assume that the boundedness of | etm (o, 8) |1, ) is known for m =d .

we have to derive the boundedness of it form=d -+ 1.
Whenm=d—+1,sincek+i=MI4d, m+j—d=M-+4+d V¥V 1=k=m 0=
i==M—1, D=ji=M, hence  the  terms |umts—s € s, 8) |5 oy aNd

fup+i o 8) |2, (=i M—1, 1=<k="m, 0=0j="M) in I are bounded, and
we obtain the result
T=<om{ || it || E,_l.’ﬂ.} + [l ul il{ﬂ,m}- Yie (0, T) (19)

Then, by applying the Gronwall’s lemma we derive from (16) the boundedness of
| ueats (o, 8) |5 - Hence, it is valid for all m (== 1) the estimate

|yt o, ) Eg (5 =<c@, || Dl Ly iidg)* |@| gutmiey). ¥V E€ L0, T 20)

In particular, when m =M the estimation relation (9) follows.
Lemma 5. The solutions of problem (4) (D) sotisfy the estimate

| u I ;I.:q;.u + || uex |l i,m;_n =c{|lrl i,:qr:. + 1ol i) (21)
Proof. By making the integration (Lw, u,] , we have
Eu:! u:j + tBﬂ:'t! u:'ij
7 (Fy(u e U M=) %), U]

E)
= [:_f H;:I — [A () uxn “:”I:] + E{: (— 1~jj+la_x
- (22)
Since 4 (£) is bounded, hence by Lemma 5. we have

b
l E‘d {t':l ﬂi"-" ul"":j | EE{IEEIH‘, ﬂ':'"i:l + {.T
The first and third terms on the right side of (22) may be estimated by

a.i

=% i
ICh w4+ | D= DL E @ e wr-D 1) )
FL L]
<2 wd+ 1515 ep +€ 1ol danueva 23)

Then, by Lemma 4 we derive from (22) the inequality (21).
Lemma 6. There iz the estimation for the solutions of the problem (4) (5)
" Uy !l i,:ﬁ,: + H U M+, ” it-:-';r,} = C{ “ ﬂ:_y.f H ign;::-,.} Ar |‘i’|f£”+'{m}- m = M

(24)
Proof. By making the integration [Lwx, (— 1) Tu,=,] , we have
Eur"i- H,ﬂ1:|'+ EBul”"""-t! ﬂ:”""":j
=[f (— 1)™uam] — CAD) untm, uM4m]
I :
1 E [% (F,(u, ... w M=), (— 1) '+"-+'ﬂ;“"'uj| (25)
f=2
Since A (£) is bounded, then by Lemma 4 we have
| CA(8) tudm, UN+w] | < %Eﬂr"+"u- uM+n ]+ C By f. @) (26)

70



and the conlinuous deripalives w M+m—1 , U N+m—1,

Proof. In order to prove the existence of the global solution for the problem (4)
(5)., we take the functional space G = H'(0, T: W2 ~1(0)) as the base space for the
fixed point theorem treatment.

For every vz, &) € G, We construct a N-dimensional vector valued function
#(x, £) defined as the solution of the periodic boundary problem (5) for the linear
pseudo-parabolic system

#, 4+ (— XAt uam+ (— 1) ¥Bu,w,

M .
-i—lE (— 1) j% (F {0, s, v N—ug) = fz, 1) (36)

Fe=
with a parameter 0<Ch<C1. It can be easily seen that the solution of (36) (D) satisfy all
the estimates (7). (9. 21y, (24) and (29 . so by means of the method of
continuation of parameter or by the theorem 2.1 in [2]. it follows that the periodic
boundary problem (36) (5) has a unique solution u (z, ¢) in the functional space Z.

The correspondence of v to u defines a functional mapping T,: G—=Z ., where A &
[0, 17 is a parameter. For every v € @, the image T,» = u belongs to Z(Z G . Since the
imbedding mapping £ — & is compact, for every 0==A="1. the mapping T',: ¢—=2Z — (7
is completely continuous.

Let & be a bounded set of @ . For any v € § ¢ and any 0= A, A=<_1, there are
T,v =u, and Tiv = uy. The difference vector w = u, — uy satisfies the linear pseudo-
parabolic system

I, :
w4 (= DH¥A@ w+ (— DBy + 43 (= DI (R @, e 0,4 10,0
Je=a
K )

i
= G {= D DL E, 0, v (37)
T
and the periodic boundary condition
wiz, &) =wiz4 2X, §) (38)
{ﬂ:r ﬂ'} == {}
It follows immediately by Lemma 4 the estimate
lwlle=llue,—us| s =Cla— 4] (39)

which means that for any bounded subset § of &, the mapping T',: § =G is uniformly
continuous for 0=_i<_1.
When h=0, for any #+ € &, T =u,is a fixed vector.
Now we turn to consider the a priori estimations of the solutions of the periodic
boundary problem (5) for the nonlinear pseudo-parabolic system:
w4 (— DM At uan 4+ (— 1) ¥ Bu,a,

- ;
+ Z; (— DL Ry s wx—D ) =@ O
o
with parameter 0 == A=_1. By Lemmas 3-6 it follows that all possible solutions of the
problem (40) (5) are uniformly bounded for 0 =< A =1 in the base space 7 .
Therefore by the Leray-Schauder’s fixed point principle the problem (4) (5) has at
least one global solution u {x, £) € Z..
When m = M + 1 the existence of the global smooth solution for the porblem (4)
(51 is the direct consequence of the estimates (9) and (35) and the Sobolev' s
imbedding theorem.
Theorem 2. The global solution of problem (4) (D) is unmigque.
Proof. Suppose that there are two solutions « and » of the problem (4) (5). Then w
— u — v satisfies the following system and periodic boundary condition:

M )
w, -+ (— 1) YA w4 (— 1) HBw.u'¢+ Z (— 1) "% (F; (%, . U M—1) 1)

=0

(400
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3 3.8 H-léi
-+ E (— 1 @((E Ep.“’*')”"): 0 (41)
wiz, £) =w(z4+2X. D
wlz, 03 =10 (42)
where the symbol “~" denotes that the functions take the mean values. By the Lemmas
4 and 6 the vector functions us, w»p(k =0, 1, ..... 2M ) are all bounded in Q,. hence

——

aF
the vectnrsg;i(m =ups k=0, 1 ..., M=—=1; =01, .... M ) are also bounded.
¥

Taking the scalar product of w with the system (41) and integrating in @, (0= ¢
=T by parts, we have

M
%{w. ) —|—%L’Bw,:, w, ) -+ EEFJ- i -te UM —1) Wys, Uys)
M H—laE
=— LA w.n, wx]— E |:(( E"ﬁiw:" )11,,- ), w,.-:| (43)
d=0 =1 -
By applying the Gronwall' s lemma we have
Iw{"* nlbl{m'l_lw{'- EJ]J;'[:?::‘] (44)

Then, it follows that w=0, {.e., u=7».

Since the estimations given in the above lemmas are all independent of the width
2X of the rectangular domain @,, by taking the limiting process for X == oo, we can
obtain the sclution of the Cauchy problem

ulz, 0) =@lz), —mco<zx< -+t oo (45)
for the system (4).

Theorem 3. Suppoze thal all condibfions for fx, £) and @ (x) in the Theorem 1 hold in Q.
= {—co< z<_+ oo, 0<It<T)} . Then the Couchy problem (4) (45) has a unique global
solution u (z, ) € H* (), T; H™ (— oo, 00)) when m= M, and has a unique global smooth
solufion with the continuous dervatives w n+=—1 and u s +w—1 when m =M= 1.

3. Initial-Boundary Value Problem
{A) In {rwe consider the nonlinear pseudo-parabolic system

Lu=u,+ (— ¥4 uw+ (—1)*Buw, +

&M
5]
-+ ?_‘g (— 1:.1'%{;15 (8, oy w =) us) = flz, &) (46)
and the IBV problem
ﬁl.(-—x, £ o=up(X, H =0, k=0, 1, ... M—1, te (0, T A7)
(z, 0) =), 2€ [—X, X]
Assume that
1) A () is a bounded matrix,
11) 715 a positively definite constant matrix,
tiz) F -(j s ) ] SRR [E} )art nonnegative and [M] -times
ST & 2 (48)

continuously differentiable,
w) fe L ({z): plx) & H*™ £y and vanishes together

with its derivatives of order up to M — 1 at the ends
|- of the interval [— X, X,
By making the integrations CLw, u], CLu, (— 1) ®u_w]), (Lu, (— 1) ¥u,wx,] respectively
and applying the Lemmas 1 and 2, we derive without difficulties the following estimates
of the solutions of the IBV problemn (46) (47) immediately:
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luce, &) |dwm=C{ | Flli,up + |lels*a}). ¥V IE o, 7 (49

luCe, & |k <C{ | Flli,ep + |Pli*e}. ¥ € L0, T] (50

I, |l :l..lm,: + || uoax, || :':Wﬂ =ci{lrl :,i{ﬁ-,.} + @i e} (51)

Theorem 4. Suppose that the conditions in (48) arve satisfied. Then the IBV problem
(46) (47) has a unique global generalized solution u (z, £) € H'(0, T: H™ (D) .

This theorem is proved by applying the fixed point technique as used in the proof
of Theorem 1.

(B) In Qo= {(z.)|z€EQ@=(—X. X).t€ (0,.T)} we consider another
nonlinear pseudo-parabolic system

Tu=u+ (— ¥4 uw+ (— 1)Y By,

N

s .{E: o l}’% (F (o == ) = flz, 8) (52)
-0

Assume that
i) A and B are N ¥ N matrices, A(f) is bounded, Bisa
positively definite constant matrix, as defined in (6},
1) i, wewe, U a—1—2) (= 0, 1, .... M — 1)are nonnegative functions
Y (8 s Hp—1—s) E RYM P and j(j=0. 1, ... M—1)-times (53)
continuously differentiable with respect to all their variables,
i) FE L, (@), plx) € H*™ ) and vanishes together with all its

| derivatives of order up to M — 1 at the ends of the interval (— X, X
Lemma B. The solution of IBV problem (52) (A7) has estimation

” i, ” iz-;qg o |u (=, &) | ptog + ” UMy ” E,-:-;r,}

<c{lrfl ;f,{q,] + lo|iwwet. Y€ (0. T (54)
Proof. By making the integration {Eu. #,] . we have

5,

M =1
[:uu Haj _I_ EBH.-H‘_. H;l!j + 2 EFJH;-’!J u:irl':]' — E.f' ul:r T8 [:"'4' {ﬁ} u—'l:'”' u:":-:l {55}

-

The terms on the right side of (55) are estimated respectively by
I w)| <30 wd + O £ (56)
| CA (8w, un]| = %"’Euﬂ., wr ]+ C (b Cun ux] (57>

The third term on the left side of (55) is nonnegative. We add a term [uw, uy,]
simultanecusly to the both sides of the equality (55), and on the left side we transform

it into the form % (o, ue, u w) — % (™, ™) , on the right side we estimate it by

Cupe, 20d oL, w) 4 C B Cu, 2,0 (58)
Then, by applying Gronwall’ s lemma, we derive the inequality (54) immediately.

Lemma 9. The solution of IBV problem(52) (A7) safisfies the estimate
| 220, || Ly T |u s, O |p%e + | 2o, || Ly 12,

<Oy bo || Fll ey0p |Pla¥w). ¥ tE L0, T (59)
Proof. Taking the scalar product of the vector (— 1) My an, with the system (5Z)
and then making the integration [Lu, (— 1) *uax,] , we have

Cuu, wu)+ CBupx, ward = Cf, (— 1) %uan]d — CA@uaw, ueav] -+

M—1

i 3
+ D[ = D e v . (=D ¥ | (60)

d=0
By the Lemma 8 we have ups € L. (@p) . k=10, 1, oo M — 1 . Then by the Lemma 2,
the first and third terms on the right side of (60) may be estimated by
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M—1 i
|Cf, (— DM uped | + \ ) |:t—- 1}5% (Fy (, oer Up=1=) 1,4, (— 13’*‘1u,w11

j=b
bh w—3
=g Luax, wgx) +C ) {1 | Eyep T > Nl Eyep
j=t

b
< luan, uand + 0 69 (I Fld et Nullzgt B
The second term on the right side of (60) may be estimated by
b
I [:‘4 {ﬁj ulﬂ' u’“‘j 1 -‘:—:.‘H&EEH!:Hh ﬂ!‘”i:] + {:1 I:.'E.ﬂ:l E‘H,Hl', u’tﬂ'j (EE}

We add a term Cu,sx, us%,) simultaneously to the both sides of the equality (60,
and on the left side we transform it into the form % (u am, U M) — —]E‘- (™, ™) , on

the right side we estimate it by
| Cutam, %34, | = %EEH:L“P uad, ]+ C3(by) Cu o, TREN (63)

Then, by applying the Gronwall’ s lemma, we derive the inequality ¢59) immediately.
Having the estimation (53), then applying the fixed point technique as used in the
proof of Theorem 1, we have.
Theorem 5. Suppose that the conditions in (53) are satisfied. The IBV problem (H2)
(47) has o unique global generalized solution u (z. &) e HYWW, T:  H* (@) .
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