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Abstract
Recently R. Jensen {17 has proved the uniqueness of viscosity solutions in
Wi of second order fully nonlinear elliptic squation Fi(D% , Du, u) == 0 . He docs
not pasume F to be convex. In this paper we extend his result C1] to the cass that
F can be dependent on z, i. €. prove that the wviscosity solutions in W= of the
second order fully nonlinear elliptic equation F (D', Du, u, r) = 0 are unique. We
do not assume F to be convex eithet.

1. Introduction
This paper deals with the problem of uniqueness of viscosity solutions of the fully
nonlinear second order elliptic partial differential equation
F (D%, Du, u zx) = 0 in
with Dirichlet boundary condition
u=g on dJ%a (1. 2)

i

(1. 1)

For any & = [} we define
Ft (D%, Du, u, ) — F (D%, Du, u, z+eDu/(1+ ]Lml“}fh in £, (1.3

F- (D%, Du, u, z) = F (D', Du, u y—sDul (14 |Du|d®H in @, 1.4
where £, = {z € 2 |dist (. 35 e}

In 1983 the definition of “viscosity solution” was introduced by M. (3, Crandall and

P. L. Lions (2] as & notion of weak solution of Hamilton-Jacobi eguation

HDu u z) =70 in 2 (1. 5)
Under some assumptions, they have established global unigueness and existence of
viscosity solutions. In P. L. Lions work™ the definiton of “viscosity solution” was
extended to second order problems, i e, to (1.1), and under some regularity
assumptions on F which include the convexity of F. the unigueness of viscosity
solutions was proved. Finally R.. Jensent proved unigueness of viscosity solutions of
(1. 1) and (1. 2) in 1086. He does not assume F to be convex but only not allow spatial
dependence in z . The techniques he used in (1] are new. He constructed two
apptoximation operators AtCu] =u}f = A7 (w) =u; and proved his result.

In this paper we prove a maximum principle of viscosity solutions which implies
the unigueness of viscosity solutions of (1. 1y and (1. 2) in the two CAsCs: () F is
degenerate elliptic, decreasing and uniformly centinuous in z : of ¢f) F is uniformly
elliptic, nonincreasing Lipschitz continuous in p and uniformly continuous in z . We do
not assume F to be convex either. The techniques which we use are similar to that in
(1] but with some improvement. First we prove that AT [+ takes viscosity
subsolutions of (1. 1) into viscosity subsolutions of Fr (-1 =0and A, [ + ] takes
viscosity supersolutions into viscosity supersoclutions of F7 [ » ) =0. Then we obtain an
estimation of semiconvex functions. Lastly weé combine these results with results of C1)
and give the maximum principle of viscosity solutions.
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We implicitly assume throughout this paper that £2 is a bounded domain in R*, gis
continuous on &4 and solutions of (1. 17 and (1. ) are always in € (),
We wish to thank Prof., Dong Gaungchang for his suggestions and advice.

2. Viscosity Solutions
We begin by recalling some definitions. The set of n %< n real symmetric matrices
will be denoted by & (n) . These matrices admit the partial ordering > where M > N if
M — N is positive semidefinite, A fully nonlinear P. D. 0. F C + ] is defined by
Flel(z) =F (D%, Dp, ¢, =) (z)
for all e SR ) (2. 1)
where FE C(Sn) X R"XRX ) .
Definition 2. 1. The operator FU = ] is degenerate elliptic if
. FM, 9, 8 2) =F(N, p, £&, ) (2. 2)
for al M >N and all (p, 6, x) ER" < R % 2. The operator F[ + ] & uniformly elliptic if
there is a constant ¢, > () such that
F(M, p. t. ) =F(N, p, £ z) Z=c,trace (M — N) (2. 3
for ol M > Noand (p. £ 2) ER"X R X Q
Definition 2. 2. The operator F[L + 7 is nonincreasing if
F(M, p t, ) =< F(M, p. 5, 2 (2. 4)
for al t =3 and (M, p, 2) € S(n) ¥ R* > Q. The operator F([ « 1 is decreasing if there
1 a constant o, = 0 such that
F(M, p. t, 2) —F(M, p, 3 ) <c,(s—1) (2. 5)
Jorallt>sand (M. p. 2) € S(n) X B > 0.
Definition 2. 3. The operator F[ = ] is Lipschitz in p if there is a constant ¢, = 0 such
that
F(M, p. t, 2) —F(M, q. t. ) <e,|p—q]| (2. 6)
for all (M, p. 0. £, 2) ESn) X R XR"¥XRX G0
The operator F[ » ) e uniformly confinuous in z if there is a confinuous increasing function
o (x) such that o (0) = 0 and

FM, p t. ) — (F(M, p. . ) <o(|lz—w]|) (2.7
for all (M, 9. &, 2. P ESR) X R X RX Q22X R
Definition 2. 4. w € € (L) is a viscosity supersolution of (1. 1)if
FIM, p, wiz), ) =<0 forall(p. M) € D"wiz) andall zE€ Q
(2. 8)

w = O 18 o viscosity subsolution of (1. 1) if
FIM, p. wiz), 2 =0 forall(p, M) € DTwirdandallz € G (2.9
w & € (D) is a viscosily solution of (1.1) if both (2. 8) and (2. 9) hold, where D 1w ()
and D7 w (x) denote superdifferential and subdifferential of w (x) | respectively (see(17).
Lemma 2. 5. Let 0 & € () . The Jollowing are equivalent: ;
(i) w is a mscosily supersolution of (1. 1):
(i) F (D (x)) , Dplxy), @iz, z) = 0 for oll open set G C Q2 and oll (x, @) €
G CTAE) such that w(z) Zofz) foralz € G, wlz) =@z .
The proof of Lemma 2. 5 is similar to that of Lemma 2. 15 in [1].
Lemma 2. 6. Let w & € () « The following are equivalent:
(i) w is a viscostly subsolution of (1. 1);
(it) F(D'p(z) , Doz, @z, 2) =0 for all open set G C § and all (2, @) €
GO such that w(z) <@z forallz € G, wiz) =@ (x) .
Definition 2. 7. For all e € (0, &,]) (2, iz the range in the implicit function Theorem, see
C11). we define
FECM, p. t, 2) =F (M, p. £, 2tep/ 1+ |2|5D (2. 10)
forall (M, p £, 2) E8) X R XRX Q. NHisveryclear bt FEEC(Stn) X B" W B
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w8 .
Definition 2. 8. Gwen GC R and & €7 (G) define the novmol lo graph (@) of

(x, @ (2)) by
s L
giz) = (14 | D@ | T De ), — 1) (2, 11)
and define
1, () —=supin=0|B({z @) 4o (z), m [ eraph (g — 7, forallz€ G}
: (212}

Lemma 2. 9. Assume u € C(&) W T (&) = a viscosity subsolution of (1.1). If
FC » 7 is degenerate elliptic and ronincreasing then uwl —'e is 4 wviscosiy subsolution of
FX(«J) =0 for amye© (0, 2. , where u, was defined s B

Proof. We shall prove this Lemma by showing that (ii) of Lemma 2. 6 holds for
ut —eon Q,. Let ¢ ¢ £, be the open set such that (z, @) € G X O7(G) . (@) —e
@ (z) forallz € ¢ and uf (z) — &= @ (&) We define that @, (z) = @ (&) +d|lz—
iﬂlaand&; (z) = gy (2) + g — & |z — z,|° then ab (2 < @ (z) for allz € G and 2wy (2.
= @ (zp . Let 3 (x) be defined by (2. 11D with @ -——'E: and ¥ (z) defined by (2. 11) with
¢ = P, + &, We have

(zp @ (z)) +ev (xp € graph () (2.13)
by the proof of Theorem 2. 21 of [(13. Note tha: v(xy = ¥ (z,) and
5 (xg = @s (@ e, thus We sec

{z, Pslzy & T ev (z) & graph (u) (2, 14)
We claim that fg, 4. (G,;) = ¢ for some open set G, G . Indeed, jet (&', ulz')) =

(z, @ (xy) + e (2 then
| (" — =z, ulz') —plzy) | =¢

| (' — =, uz') —%(EH | =&

forallz & G (2. 15

Thus, we have
Bt(z, @(zd) 4 gw (zp, & [1graph (@) = &
t follows by the definition of g that for some 7 (&) e
B((z, Pszs +&) +1¥ (z3, 7 () graph (g, + & = &
Thus 7g, 4+« (xg =17 ¢ and by the continuity of Do and D*p we conclude that there is
an open set (f, — G which 15 a small neighborhood of z, such that 7., + (Gy) ==&

Apply Lemma 1.29 of (11 to @, and @, +¢ € C” (G, . the conclusion is that
there is an open set G, ,and a funection g, , € € (G, ) such that
@y, (T epeviz)) =@, lx) +eteqgeviz)
Do, ,(ztepev )] = Depy (2] forallz € Gy (2. 16)
Do, Mz +epev(x)) = D¥p, (z)
Since u) (x) =@, (z) +& for all z & G and dist (graph (g, 4+ ) , graph (@, .)) =& We
have u f2) =< @, , (z) for allz € G,,.- By (2.14) we see that
u (x4 epov (@) =@s (2T EPY (%) )
Set 7y = %, ep° v (T . note that ¥ is a viscosity subsolution of (1.1) and by Lemma
2. B we conclude
F (D', , (29, D@y (@), Po.c @), To) =0 (2. 17)
By (2. 16) we have
P, (20 =@ (@ =9 @
Dy, e {Eh = D, (x5) = Diep (xy)
Do, . (zy) < D¥p, (xg) = D' (&) -+ 281
Qince F[ + J is degenerate elliptic and nonincreasing, we sce
F (D (zp + 261, De(zo. P (T, 2o+ D (zo (1 + |Dg (9 |3 MhE=0
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By the continuity of ¥ - ] and the definition of F;'[ + J
Fr Dz, Dplzy, @lzy, z9 =0
Lemma 2.6 now shows that u}f —e is viscosity subsolution of F*( » 1=0. This
concludes the proof of this Lemma.
Lemma 2. 10. Adssume thal u & O W™ () iz a mm&zﬂy supersoludion of
(1.1). If FC+1 is degemerate elliptic and nonincreasing then u_ - is a viscosity
supersolution of F7 [+ J =10 for alle € (0, g,] .

3. The Maximum Principle
Definition 3. 1. Let w € € (&) [\ W* ™ () and define
= {2 € Q| for some pE B(0, &), wiz) Sw(zx) +plz—z) for all z € 2}
(3. 1)
Remark. It is clear that if x € g, and w is differentiable at = then Dw () & B (0, &
and w{z) = w(z) + Dwfx) (z — ) for all z & @ . Furthermore if z € g, and w is twice
differentiable at = then D% (z) =<0,
The next two Lemmas are from [17.
Lemma 3. 2. (Lemma 3. 3 of (1. Letw € C (&) N W= (2) and assume
Diw=>— K, in L& (in the sense of distribultons) (3. 2
for any directions A . Then there iz a function M € L' (2. §(n)) and a matrir valued measire
I'ec M (2, 8(r)) such that
(1) D%w =M I (in the sense of distribations)
(42 Pwsmmdarmﬁwsmm&bemmeﬂmm
(#i) I'(s) iz positive semidefinile for all Borvel subsets, S, of £,
(WM& & =—K,|&]° foradl2c R, for a.e. & 2
Lemma 3. 3. (Lemma 3. 10 of (1)) Assume w &€ €' () [ W () and that (3. 2)
holds. If w has an interior mazimum then there are constants ¢, =0 and &, = 0 such that ¢, is
dependent on K, , §,ts independent of K, and
means (g,) = c 4" for all §<d, (3. 3)
Furthermore, let w, (x) be the reqularization of w (z) and let g} be the analogs for g,, then there
15 a constal n, = 0 such that
Dw, (g5) = B0, &) if d<Cd, and n<_75, (3. 4)
Now let us estimate the ratio of trace (M (x)) and |Dw (z) | on appropriate subsets
of £
Lemmsa 3. 4. Let w & C(Q) [\ W"™ and assume (3. 2) wvalid, If w has an interior
mazimm then there i a constant ¢, > 0 which s independent of K, such that

J- Cr (M () =/ | Dwix) | Tdz = Ok
'dwg_l

forall d<"d,andallk € ZT (3. 5)

Proof. By (3. 4) we have
Dw, (gitngl) = B0, S\B0, 6/2) if § < d,and g< 9,

Thus, we conclude that

j |t D%, @) |*dz = " J |detD%w, () | dz = 2" J’ 25
piadra FYAT YN By g el g
= n" dp = ¢ " forall d="4, andn-"n,

RN RN
where ¢, =r"w, (1 — 27" , and w, is the volume of unit sphere. Because D, (z) =0

for all + & g} we have
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f | (tr D%, (1) ~ |"de = ¢ d”
i';"'*f'z_.-':

For any sequence 1,0, by the definition of g;. gjand w,it is not difficult to see

that
meas{ {‘limsup gl g, =0 foralld € (0, &5 (3. 6)
meas{limsupl (g, ¢ MNgB1} =0 for 0 <74 <8< 4, [
= oo
meas{g,\ U gs} =0 foralld & I (3. 8)
& g

where [ C ¢, 89 and meas {¢0, 695} = 0. We prove (3.7) only. Indeed, w o
W' and so we know that there is a set B & such that meas (F) = 0 and Dw (x)
exist for all z € @\ F and

w, () —=wir), Dw,, (&) —= Dw (z) as i—+=0oo

Let € {limsupl {g,' gt ] g4 INE , there is a subsequence {m,} & {#,} such that z

€ (gy gl [ g for all k. Now by the Remark we see

Dw (z) € B0, &) (3. 8)
w, (2) Sw, (@ + ﬂm,,u ()i & —%) forallz € 2,
L] ] &

But z € g so | Dw, (2 | =& for all k, let k—=oo we have |Dw (z) | =d48>=>4" . This

contradicts (3. 9) and so
Himsupl (gy g3 MNgult T F for 0 <24 T d<d, Q. E. D

Let & & T, we have

meas( (gD [ %) == meas( (go g} [ gk + meas (g:\gy)
First let p—0, and then let 8’ =47, by (3. 7) and {3. B) we obtain limsup meas

g0

Cloahgd MgLI =0, i e lim meas Cég gD M gL) =0.Thus, a,(d) = meas{gl\gs)

4+ measC (g \gD Mgkl —0 as p—=0, for a e € (0,60 . Let V;=1{6E

(0, 69 |a,(277@) — 0 as p— 0} . Each set V,is of measure zero S0 vV =|J V,is also of
g =

measure zero. For each 6 & (0, 4 M\ we have
meas { g:_%\'ﬂ 1_445} + meas { {91-".!“"-5:._"5) N F;_H_]g} —0 as 7—0
(3. 10)
for all j € Z*. By the definition of w,. for any direction 4

Do, () = j b,z — & Dhw (&) dg
R'l‘

= J' $,(x— &) (M(&HA M+ _[ ¥, (x— &) (@I (&) 4 2
R" B®

By lemma 3. 2 we see

Dhw, (1) > J P, (x— &) + M (&) dd =M, ) (3.11)
Rh
M_(x) =M (z) as qn—=10, for a. e. ¥ & £ (3. 12;
By the definitions of g} and g,and Remark, we have
0 ==trace (M (x)) = —nk, fora. e. x E g, (3. 1:8)
0= trace (D%w, (x) ) =trace (M, (z)) = —nk, for a. e. z & gj
(3. 14)

Set A= Fqa—1 4'15.\52_-’4 and -ﬂ":l-' — EE—H- Ly E__-‘,‘:.- we have
| ¢traceM (z)) — | dz — J- |traceD%w,_ (x) |"dz

" 7
At B PR e

JF',_—J“I' l-ﬁl"-.i'g_'{,ﬁ
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"da

= | (trM (@)~ |*dz — J

_.-l|"“|_,-1’;I .-1|"'|.-11:I
where § & (0, 9V . By dominated convergence Theorem and by (3.11) — (3. 14)
we have

J | |tr M
A} A

"

| trdf (z) |*dz — J | te DFW, €2
AhA

e M| | de =< J-Im,.w{m:l | [te |* — |t M, |*|dz—0 as n—10
o

J |tr D%, (2) |*dr = (nK,) "meas (4\A4)

AghA

Since (3. 10) holds, we see that

meas (AMNA) = meas{ (gl—s+1.0\gy—1+1,) U Clg g2 [ gi—si 1y =0 asg—0

Thus J- |tr D, (z) |"dz—0 as n—= and we conclude that
A

=

| (trM (z)) ~ |"dz = c, (27 FT) "forall j € ZTanda.e. € (0,4p .On

T o PAT A P
the set g,~s+1,\g,—4 we have |Dw()|=<27"'¢ =a e, and so

[]crM )~/ |Dwiz) | Tdz =c for all j€ ZVand a.e. 6 € (0. 5y .

dpy =10, —
By adding these inequalities from j = 1 to j = k we obtain

J [] ttrM 2)) =/ | Dw (z) | dz = ook for all k € Ztanda. e. € (0, &y
54—y

(3. 15)
This gives the result claimed by this Lemma.
MNext Theorem is the fundamental result of this paper.
Theorem 3. 5. Let w, v € C (i) [ W™ (£ . Assume u, v are viscosily supersolulion
and subsobion of (1. 1), respectively. I'f cuther
() FL + ] is degenervate elliptic, decreasing and uniformly continuous inr,
ar
(B) FC + 71 is uniformly elliplic, nonincreasing, Lipschitz conlinuous in p and untformly
CONENUos I T
then
supter—u) T <"supfv—u) "
= aor
Proof. This will be a proof by contradiction. Assume that the Theorem is false,
then
My == sup (» —u) g7 — sup (v — u) T=0
=) Fa

Let 3 — v —eand @ =u_ -+ ¢ . We find that there is a constant £, > 0 such that
sup (s — ) T —sup (v — u) T Zm,/2 ife e (0, & (3. 16)
ﬁ't B‘.Ei‘_'

By the Theorem 1. 11 of (1], for any direction A4 and alle & (0, £,) we have
DPu<<Kje DNo=—K/e {in the sense of distributions) (3. 17)

Let w= 5 — % and we see that # € C (&) (| W* ™ (&) and satisfies (3.2) wiht K,=
2K /e . With g,defined by (3.1), w=1wand @ = Q, we see by Lemma 3. 3 that
meas (g, = ¢, (e) d" it & (0, 8

Let M*¥, — M—. I't, — I’ be from the representation given in Lemma 3.2 for v
and — %, respectively, i. e.,

el

Tl 7 i Sa s L s e s
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then M =M™ —;ff_ and _?!:'= 't — I'” give a representation for %. By Lemma 3. 15
in (1], fer a.e. x € g,., Du (z) and Dv (z) exist and

Dlxt+2z) —o(x) — Do (x) « 2 — (M (x) /22 2n<al|z|

Hlz+z —ule) —Dulx) » 2— (M (2) /22, 2y = —oa(|z]|H

Thus (Dvfr) ., MY () € D% (x) and (Ducx) , M (x)) € D74 (x) . Applying
Lemma 2.7, Lemma 2. 8 and definitions of viscosity subsolution and supersolution we
conclude that if § € (0. §) ande € (0, &) then

g T i e vt A O S

o for a. e. EE;,
Fo(M (x), Dufz), u(x), ) =0

These imply that
F(M* (z), D (@), 5 (@), z+eD3 () = (1+ | D% @ |5~
=F(M™ (@), Die), @@, z—eDi(x) » A+ |Di@ |~ H (3. 18)
fora. e. z & ;d. foralld € (0, 8y ande & (0, &)

Furthermore, by Lemma 3. 2, (3. 16) and the definition of g, we find that for any § &
(0, min (8, m,/ddiam& ) ., anve & (0, min (e, &)

Kjes I>M" () >M* () >>—K/e oI (3. 19)
| D% (x) — Duix) | =<4, $(x) —u(x) =m,/4d fora.e. € 7,
If (o) holds then for a.e. # € 3,
F(M*(x), D3 (2), (), 2+ eDF (@) » A+ |05 |5~H
N e Do e s = e B e b 2 [ DA
< —e, (T @ —5 @) +o@| D@ « L+ D@ |+

+Du ) + (14 |Dut) |H %)
By the continuity of F and (3. 19) there is a continuous inc¢reasing function » (£) (which
is dependent on e ) such that » (0) = 0 and

FM*T @), D3 (@), 5, z4+eDv @ » (14 |Dv @ |H~H

— FAMT () Da ), w2, z—eDite) + (L3 | Det a-h
= —c /4 » m+ o (2e) 454
iy

for a.e. 2 € g,, alldE (ﬂ. min(d‘., m)) and all e € (0, min (e, &,)) . First
choosing e sufficiently small and then taking § small enough then yields
F(M* (), DF @), 5@, s+2D5 () » (14 [DF@ |5~
{Ft’;:f“ (), Ducz), u(z), x —eDu (x) » (1 + |Du (x |®}"'"i'.'l'

fora.e. € ¢,.
This contradicts (3. 18)

If () holds then for a.e. 2 € 3,
F(M*t(z), Do (2), 5, e+ eDv () » (14 | D5 |5~ H
— F (M~ (x), Di(z), %), ¢ —eDu(x) » (14 |DE @) |H %

<. — ¢ trace l:_e:l-_:f” {z) —EF}"' (z)) +¢,| Du (x) — Do (z) | + o (2&)
By Lemma 3. 4 foralld & (0, 6 and alle & (0, &)
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tr (M~ (x) —Jﬁ*fmn}‘ix;}ﬂk
.M | D% (z) — DT (2) | 8 |

Jiu
where k, = |:meas (£ (—E—’-}c :| + 1., [zl denote integral part of x . Let
tr {M_ M""

| Du — Do |
then meas (E,(e)) >0 and for a. e. z € K, (g
F(MY (@), Dotay, (), 2+ eDv @ » (1+ | Do |H ™ H

— F(M (x), Duz), ufx), z—eDufz) » (14 |PDux) |H 7%
=< — ¢,y | DY (2) — Du(z) | + o (2e)
= — e, 2 ted o ()
Choosing ¢ sufficiently small then vields
FMY (), Delz), v (e, 4+ Do) « (14 |Dr ) | _%}
< F(M ™ (x), Dulz), ulz), z —eDu(z) « (14 |Du (x |*}_1J—‘:u

for a. e. z € E,(e) This also contradicts (¢3.18) and so completes the proof of
Theorem.

EI, {e)

{s € 3\G" L>2 - oo}
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