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1. Introduction
In order to study nonlinear PDE, the theory of paradifferential operator was
introduced by J. M. Bony in [2]. Using this theory, the propagation and interaction of
singularities of the solution of non-linear hyperbolic equations were studied by {11, [2]
and [37. This paper will use Bony’s theory on the hypoellipticity of non-linear partial
differential eguations, an abstract of main results of this paper have been published in
[&].

Consider the following nonlinear second order partial differential equations:
Fox, v, u, uw =0 | 65250 i

where z & £, £ R"is an open set; F is a real valued C™ function of real variables.
Given a real functionu € CL. (&) , p=4 ; we define

L= D ay@add+ 2, b@a;+e (1. 2)

i k==l FER

which is the linearized operator associated with the equation (1. 1) foru ; wherea, =
LTy I:,_'JI. ==t R

a () ZETF;; (2, ulz), Vulz), Viulz))
b, (x) =g§{m, ufz), Fulx), Vaul) 3 k=1, 2, ..... n (1. 3)
kS
'JL ¢ (x) =§—i{m. w(z), Vulz), Viulz))

are all real functions in Cf;%. Let us first give the following definition:

Definition 1. 1. The linear operator (1. 2) ts said to be subelliptic, tf {a, (zy) =0 for
any = & £ ; and for every compact subset K C &, there erist constants e =0, € >0, suck
that for all @ & C7 (K) | the subelliptic estimate:

el 2ci{| L, ¢ |+ el (1. 4)

holds.

Our main theorem is as follows:

Theorem 1. 2. Let u € €L, (8), p=4 be a real soltion of equation (1.1). If the
linearized operator defined by (1. 2) is subelliptic, then the solution u & O (8

If I, is a self-adjoint operator, and the subelliptic index ¢ is independent of A . Then
the consequence of theorem 1.2 is still true if we only suppose p=>d4-2e . Now it
remains to find the sufficient conditions for operator L to be subelliptic. First, if L is
elliptic, it is also subelliptic, and ¢ = 1 in this case; this is a classical result. Secondly if
operator is degenerate, of course we will consider the so-called Harmander conditions
and Oleinik-Radkevic conditions (see(5], [7]) respectively.

For general operator (1. 2), Let
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gs(e, &) = D a, @) GE). J=T G

e

i3
gl+I {:m’J ;J 3 |§| : _ﬂlal::_:ill_r}ngi- I = l' sEaEp ) {1- 5:'
T

- —~3 :
golz, &) = 5 (b;(x) — Eﬁ-‘- @) (e
Je=1 =1
Then functions g, (x, £ (0=C j=C2n) are homogeneous of degree 1 and €™ in variable £
0, and Cf,'in variable z . Let a = (¢, «o0, &) . 0= a; = 2Zrn be a multi-index,

denote |a| =k .If p — 3= |a| ., we define
0ol & = (— 13" Mlep wom a0 Gads sl (1. 6)
to be the Poisson multi-bracket. Then function g, is a homogeneous degree 1 and €™ in &
= 0, and ¢4 *in z . We have: _
Theorem 1. 3. Let u € €%, (5 be a real solution of equation (1.1); if there exists
posifive infeger p , such that p == p + 3, and the linearized operator (1. 2) satisfies:
(i) (ap(@) =0 forallz € Q.
{(it) For any compact subset K L2, there exisls O == 0, such that:
S lgata & |P=C|E|* forall (z. & EKXRY [|=R>0 (.7
o=y
Then the linearized operalor L s subelliptic, 1. e. u € C7.
If (1. 1) is a gquasi-linear eguation, i. e.

M X+ Xa+ fz, w) =0 (1. 8)
F=1

where X; = E“#:‘ (z, w) 8y j=0, 1, coo.. m ; ay;8nd f are all €™ real valued functions

of real variables. Then replacing g, (x, £) above by
‘::-:_f (z, &) = Eﬂ” (z, ulx)) (&), j=0. 1; i m

B ]
theorem 1. 3 still holds, under the condition p = max{2, p} .

In theorem 1. 2, we need the solution u to be at least ¢'*. This condition can hardly
be improved when (1. 1) is a general non-linear and genuinely degenerate equation. C.
Zuily"? proved that there is a solution for a class of degenerate Monge-Ampére
equations, which belongs to €*%*, but not to €*. In theorem 1. 3, more smoothness for
the solution u is required. This is because that we need the coefficients of operator to be
smooth enough under our assumption, for the Poisson brackets to be definable. In order
to improve the condition in theorem 1. 3, we introduced the so-called Fefferman-Phong
condition in (97, which is kind of geometric subelliptic condition. In [9], we need only
u & &', Because of the subelliptic conditions in the preceding theorems are all given on
a linearized operator of solution u , which must be dependent on « . In [12], for Monge-
Amplre equation det (u,;) (z) = ¢ (z) , C Zuily gave a condition on function ¥ (z) ,
such that its linearized operator satisfies the condition in theorem 1. 3, this means the
condition in theorem 1. 3 may be independent of solution u under some cases. On the
other hand, we studied the boundary value problem for a class of non-linear egquation
(1. 1> in [11];and in (107, higher order equation was discussed.

The plan of this paper is as follows: In Section 2, we will prove the so-called
paralinearization theorem of equation (1. 1). Section 3 will give the proofs of theorem
1. 2 and 1. 3. Finally some degenerate cases of theorem 1. 3 will be discussed in Section
4.

-
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help and guidance.

2. Paralinearization Theorem
First we recall briefly Bony’ theory on paradifferential operator. For the details in
this field, see C1], (2], (3] and (4.
Let I (z, &) be a €™ function homogeneous of degree m (m € R )in 20, CP{(p>
0y in «, and [ (z, £ has compact support in z ; we define operator T, as follows:

Tal(d = (2x) " J.f'ffr;"—ﬂ. mIE—n mSGu(pdy (2. 1)

where ¥ € €% (R" % R™{0}) is homogeneous in £ of degree zero: and for sufficiently
small () < e, < &, ., satisfies:
@ m =1 if 8] <e|n]
X, g =0 if 18] = e:|n]
8 € ™ (R") satisfies the condition that §(z) =0in a neighborhood of zero; §(x) =
1 outside a compact set. i (£, 7) is the partial Fourier transformation in z of function
E{z, 1)

“We know for every s € R', T, H'— H'""is a continugus mapping. It is a class
of completely new operators; comparing operator (Z.1) with pseudo-differential
operators, we see the symbol [ (x, &) here is non— smooth.

Hence as pseudo-differential operators I (z, I} , we just have I(x, D) :C™—=C",
This is the reason that we cannot deal with I (z, D) simply as an operator of 87 4 class.
But for operator T,defined by (2. 1), the case is different; in fact, T, belongs to a subset
of operator 8%, (see [41). On the other hand, the definition (2. 1) is dependent on
choice of cut-off functions ¥ and § ; but it is easy to prove that if ¥ and & in the
definition of the operator T changes the operator remains unchanged modulo a {p— m)
— regularizing operator (i. e. an operator of order (m — p)) .

Definition 2. 1. Let £2 be an open set of R*, for m € R' and positive pumber p =0 ( p
EN) , we denote by E:r:s:-:n the set of such functions I(z, &) , which are defined on Q X
B™{0) . and have the following form:

PG, &) =l.(x, &) 4+ » » ¢ +lo_(nlz &) (2. 2)
where I, (x, &) is O and homogeneous of degree (m — k) in £7=0, and O (6 mox .
It is obvious that if ! (z, & has compact support in x , we can define operator T, =

m—[r]

Z Tﬂj, which is the same (2, 1) . We know T, is still a continuous mapping from H'to
=
Hog

Definitdon 2. 2. Let £ be an open set of R*, L: 20 (&) —= 2 (L) , is a properly
supporied operator. If there exists 1 € E:{QJ , for every compact subset K of & and function
X € O (Q) , which is equal to ! in a neighborhood of K, operator L — X Ty ts a confiruous
mapping from Hipn (K) to HER™P(2) (Y s€ER), we call the operator L a C*
paradifferential operator of order m and denote L & OFP ( E: (&) 3.

Let L & DP{E: (2)) ., it maps Hi, (@) into Hi, " (Q) . Let o (L) =1 be the
symbol of L ; and e, (L) =1, be the principal symbol of L . On the other hand, for an
operator L € {}P(E: {£) ), its symbol is unique; and the following symbol mapping:

o: OP(D, @ )~ 27 (D

is surjective: the kernel of the mapping above is a (p —m) — regularizing operator. As
we pointed out before, for paradifferential operator, we also have the symbolic calculus
similar to that of classical pseudo-differential operators.
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Lemma 2. 3
a) Let L, & G‘P{E:’ (50 Y} j=1, 2, then:

LieL€0oP(" ™ @)
where Ly » L, = L + R. L is a paradifferential operator of order (m, - m,) . whose symbol is
2oy gy =, B skiaml Lpe
i el <™’

and K i3 a paradifferential operator of ordr (m, 4+ m,— p) .
b) LetLEOP(Q, (D ), then L™ € OP (D" (D) ), and
ety = ' Lapq |
rHlal=c?
c) LetL;€EOP(; (D). j=1.2 p>1. thn

(L, LY € 0P ™™ @)
and its principal symbol is
Omptm=t (L L)) = {00 L), 0u, (LY )

Now, for a function [ & E:{Q) . we have a paradifferential operator L . Of

course we may define a non smooth pseudo-differential operator I (x, D) by classical
method. The relations between I oand [ (z, 1) are the following:

Lemma 2. 4

a) Let L€ >, (@) has compact support in z, and p=m . L is the paradifferentiol
operator corresponding to [ . Then for all 0 >0, L —1I(z, IV iz a confinuous operator from
H o L,

b) Let i &€ 8T ythen L — [ (z, D) 1z a regularizing operator of order infinity. This implies
for all 5, 8 € R the operator L — 1 (x, D) is a confinuous mapping from H* to H*

Let us consider the following non-linear partial differential equation of order m :

Fz, o owwn % .0 pse= E EJ“-: (2, % o U ) a3
Wk o | ==
+A}¢ {1‘, ﬂp EEmng IHFH, -u-::l |ﬁ|"._'-."i=¢. _— ':I' {2- 3}

where 4, and 4, are € functions. We may assume p (k) < k in the preceding equation,
at the same time denote p (k) = — oo if 4, depends only on z . Let:

d == m&x(l:u, ﬂ;i'i)

Then we have d = k,=m if (2. 3) is a fully nonlinear equation: and d = m — % if
(2. 3) is a quasi-linear eguation: and d = — co if (2. 3) is a linear eguation.
Lemma 2. 5. Let u € O, (£2) be a real function, p > max{k, p (k) }
Suppose!
PG = D) T(a u@, ) G 2. 4)
T ke _

Then p € >, ) .

pt-m—u
The fundamental relation between paradifferential operator and non-linear partial

differential equations is the following:

Theorem 2. 6. Let u € CL. () N H (&), p>max{k, p(B) }, s >0, be a real
solution of equation (2.3). P is the paradifferential operator whose symbol is defined by
(2. 4). Then there exists a function £ € CE7* (@) [ HiT* =™ (2) |, such that:

Pu=—7F (2. 5
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The proof of theorem 2. § is the modification of theorem 5. 3 in (2], Here we only
point out the difference in their proofs,

We first recall the “dyadic decomposition® of spaces H'and C°. Let K =1 be a
constant, p & N Denote:

C,={SER; K '22< |&| < K2'+")

and denote C_, =B (0, B) = {£ € R*; || <R} , Then:

Proposition 2. 7. Let a € R \N |, then the following conditions are equinalent:

g) v & C(R") ;

+za

b) There exists a decomposition u = u_, + Eﬂ,,satisfigtsmpp E,C{Z’,aﬂ& Il w, || oo
p==8
O
e i
c) There exists a decomposition u — Zu,, satisfies supp u C” B (0, K'2") , and
pu==Q
| %, || e 027
-
d) There extsts a decomposition u = Eu,. u, & O and for all L € N*, there exists

p=10
B, >0, such that || D'u, || oo << B2~ 1202
For Sobolev spaces, we have similar results as follows:
Proposition 2, 8. Let s = 0, then the following condition are equivalent:
a) u e H' (R" :

by u=u_, + Eu,, satisfies supp EFCC,; and there exists (b,) € I*, such that
Iy e <py2

e) w= > u, satisfies supp u,C B0, K'2") ; and there exists (5,) € 1*, such that
I, Il <3,27

i) u=fu,,u,€ﬂ'“; and for all A € N*, there exisis (by,) €1*, such that

p==i
” Dlﬂ, ” o Ebk"g—r&r—lill :

The proofs of the two preceding propositions are based on the so-called dyadic
decomposition of » which is sub-ordinate to the phase space of {C,} . This decomposition
is the basic starting point for the theory of paradifferential operator. We will not prove
thern here. Similar to (2], the proof of theotem 2. § can be easily deduced from the
following:

Proposition 2. 9. Letu = (u,, ..., u) € COF NH. p.¢>>0; and F E CZ (D X R™ .
Then:

F 2 ty v u) — > Taru, € O% (| H'* (2. 6)
rrme i TP
tlere
— ‘--_:l?u
Deari= Z (E a,,}zr (2. 7)
pzh'q g —4
(a) and (u,) are the decomposifions safisfiing condition b) of the proposition 2.7 and 2. 8
respectively.

Proof: Without losing generatily, we first assume that F has compact support in x .
this implies F € C™ (R*™™) . Secondly let Upgy =T j=1, o, m, and %%:rj e HT=,
a

Then the problem above can be reduced to the case when F is independent of x . On the
89




other hand, we may assume m = 1 simply. Because of ¥ € ¢, and p >0 ; we have by
b) of proposition 2. 7:

9
lim [ — 234, |l o =0

r—-rl

4
Hence we suppose 5, u = Z u,, then .

p=—1

+oz
Fa =F@Ea + D {F(Sm —F 8w )

For any N,, we have 8y u € H™* ;hence we also have F (8, u) € HT™ . Now

F (9, — F({8u) =u, fi‘“ (8.u -+ tu,) di
Lo}
This implies
Fluy — T,. wtt=F {H,_.nuj = E ui,{ JIF' (Sou + tu) dt — Sq_ﬁg (F (u)) }
1]

g5,
It remains to prove that:

g = Eﬂi’: EH‘T{ J-lFr {SIH—F-EH_!}EE'_“SE_NI:'{F {t.l:l}l}'

FE=N, =N,
belongs to O% [ H***. By d) of proposition 2. 7 and 2. 8, it needs only to prove that
{a,) satisfy the estimates in d). Thus by b) . we have at once
| u, | ce= 2%, g=1, 2
I, |l 28,27 by €1
Because suppa,,{: C,. hence for all a € N*, we have
| D%, || oo << G210
| Dou, Il 2= 8,,27 0010, ) €
On the other hand, using the method in (4], since u € €%, p >0, we can prove that
the estimate:

I ﬂ"{ J.‘F’ (S,u -+ tu) dt — s,y (F' (u)) } | =< C g-teleb
L]

hold for all @ € N". Summing up the preceding process, we have obtained for all a e
Nt

| Da, || oo < €277 100

|| Dﬂ“g ” ng 5;?2—1{:+p—h!:' ,:g:“:, c !
Using proposition 2. 7 and 2. 8, we have proved that g € C¥ [ H**#, This means that
the proposition 2. 8 is proved.

In order to prove the theorem 2. 6, let us consider the equation (2.3). Set u;=

3w in (2. 6). where u is a real solution of equation (2. 3) satisfying the conditions of
theorem 2. 6. Using proposition 2. 9 and method in(2], we can get

S Tarafu € CXF () N HIF (@) @. 8
Ifl=E—p %8
Denote now

Fa_5  Tul
g1 >u—p T8

Then P’ is a linear operator, whose symbol is denoted by

otP) = 2, g—:{ig)‘=pf=, 2

18l = =p
then we may define a paradifferential operator P by symbol p(z, &) . Because p -

_ Z:ﬂ.—u* andm>=d, p—d>>0U, we can get from the theorem 2. 1 of (2] that F —
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P is a (p— 2d) - regulatizing operator. From u € O, (@) N Hi. (&) and (2. 8). we
can obtain at once

Pu€ OF -8 oh [N HiZ*~5
Hence the theorem 2. 6 is proved.

The difference between theorem 2.6 and Bony's theorem is that for
g0, p==0, the algebra studied by us is 4. [ Hj,.. This means we can establish the
energy inequality on £,

For simplicity, we will replace C* () (m € N) by Zygmund class ™ (£2) , which
are the sets of functions that satisfy the equivalent conditions in proposition 2. 7. Thus
the assumption above, we may denote the Holder spaces in general by ceriy, p>=0.

9. Proofs of Theorem 1.2 and Theorem 3
Let us prove theorem 1. 2 now. We know 4 = 2 for equation (1.1).Letu € Ci..
p==4 be a real solution of equation (1. 1) . Similar to (1. 2), we have

2
p @ & = sz ) 2@ 8+ pld) € 25, (&
and the corresponding paradifferential operator

P=>,38,6,+ G+ P, (3. 1)
ke

where G, € OP () _ (@ )GE=1 . ® . Go€ oP ()’ (@ ), are defined by g,
in ¢1. 5) . Since u € Of,, () = CL, (&) ( H:. (&) , so we have from theorem Z. B
Pu=g € Cf, (&) [ Hi. (&) {3.:2)

which is a linear equation. Now we can establish its energy estimates as handling linear
equation.

Proposition 3. 1. Let P be the operalor (3. 1) and (a, ) =0. Then for every
comnpact subset K C @ and s € R, there exists a constant C =0, such thai for any v &
Oy (KD and o =0 , we have

=

SHiepl i+ leellig=0cil Po [ R (S

- |
Befare proving :he proposition, we first give a lemma in (7)., which is a result about
convex functions.

Lemma 3. 2. If (a,(x)) =0 for  any E 2, and a, (@) € CL, (80, p=2.Then
ﬁww&rymmﬂm&aﬁf{{:Q. there exists o constant M, which is dependent on K and the
upper bound of second order derivatives of a;, on K only, such that for all v € O (K and 1 =<
a <= n , the follmping estimale:

| > 2m@,
; S

L}

a2
i-‘” E akj ':-I:l -u-kn!'rlj.:

E, d.oge=|

o Bl

holds. On the other hand, for all (z. &) & 2 X R, we have
| Doy @& | < 20, @) D o &

. ] B, les]l
The proof of proposition 3. 1.
We will prove proposition 3. 1 in three steps:

a) We first estimate 2 | Gy || § where G, = ETma ;. By lemma 3. 2, for any »
b= fm=1

& C7 (K) . we have:
| 28 !ii ¢S adwd

i B, jo=l

Hence
a1



S e Dye || 3<C 25 @mdwen 3

=1 B, g1

Because a,; € ¢4, (@), p=4: from lemma 2. 4, for any o> 0, the mappings

gs{x, DY — G,: H"—=L* and Z G — E 3,8,,3;: H*— L*are all continuous. This

=1 &, i=1

implies that:
S'epllie{> G 9 + lell}

je=i f=1
On the other hand, G\ € {}P{E;_a{m ) with real coefficients. Hence we can get at

OILCE

S G, 3 <l Py, 0 |+ o]l 2} (3. 3)
J=1
Thus
Stlepllisatl @ o |+ [2]2 (3. 4)
Jumi
F ]
b) Let us estimate 2, |G| iand || G || —1. Since G.oi = LeE~ ' and T =
je=nd=1

E"&E—*G’g: where o (E") = (14 |&]|)". a pseudo-differential operator; T is a
paradifferential operator of order zero; I, is a second order paradifferential operator

whose symbol is Z %iﬁr_:ﬂ (#5, - Hence we only need to estimate the commutator
b eyt

[P, E*] by using lemma 3. 2. just as we do in a). We have the following
Proposition 3. 3. There erist pseudo-differential operators E\€ 87, and B, €

OP (D _ (&), such that

=
(P, B} = > EW,+E, (3. 5)
gel
Using this proposition, we can get immediately
S lepli<cot| e, o |+ | (B'Po, B |+ 2l 2) (3. 6)

F=1
At the same time similar estimate holds as well for || G || -1 -

¢) Let E,be a properly supported pseudo-differential operator. By proposition 3. 3.
we have

Stleplid 16wl iy
je=1

-1
<c{SIGEv |+ 1GEr 23+ o]

i
Je=1
=<cl| (PEp, En) |+ | (E°PEp, EEp) |+ || o]l lea)
<c{|Pe || it ull CP. BOo| i+ C || ol vl
<c{| Pl +u>) lGellit+cw ||zl s
J=1

Taking u = 0 sifficiently small, the above estimate will imply the proposition 3. 1.

By proposition 3. 1, proposition 3.3 and lemma 2. 4, if operator P satisfies the
condition of theorem 1.2, and 0 <Z¢<Te : then for any v E0F(K) andt & R', the
estimate
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lollte<<cilPeli+lleol (3.7
holds (where constant € depends only on K and ¢ ). By density theorem we know that
the estimate (3. 7) is still hold for any » € HE (K.

Finally using the so-called localizing and regularizing technigue, we can prove:

Proposition 3. 4. Under the assumptions of theorem 1.2, let P be the paradifferential
operator (3. 1), ond u E H, (&) be a solubwon of equation (1. 1). For any compact subset K
of &, suppose p € Cy (&) . and gp =1 om K . Then there exist @, . P, € Cg (&), fe
H oy (82) , and constants e =0 . C (K, &) >0, such that

H P “. L_gg{ “ p Pu " e ” R “ :+ " f“ :}' 3. 8)

where & depends only on K .

From this proposition, we can at once deduce the theorem 1. 2 as follows: Since u
c O, () = Ch (&) [ Hi, () , so we first have u c H'. (@) .By (3.2) we have
Pu & HE,. (8 C Hi,. (&) . Thus from (3. 8) we can deduce u € H* (K) . Where ¢
independs on s . Secondly let 5= 4 -4 e, we can also deduce u € H'** (K) . Repeating
the process above, we finally ChRin U T R C O R where K is an arbitrary
compact subset of & . The proof of theorem 1. 2 is completed.

Far the proof of proposition 3. 4. we only point out the regularizing operator
which we will use here is:

T, = @, (z) (1 — 4] g () (3. 9)
where @, € CF (&), and @, (z) =1 on suppg . Since T, is still a paradifferential
aperator; and for general convolution regular, the commutator is loss convenient then Ty

Following the proof of theorem 1.2, for theroem 1.3, we just need to prove the
subelliptic estimate of its linearized operator. We have the following:
Proposition 3. 5. Let I, be the |linearized operator (1.2), satisfies

Ea”-.:x:..;i;ig 0 ; and the assumptions of theorem 1. 3 hold. Then for every compact subsel
B of=l

K0, there erist constants C (K) =0, e (K) >0, such that for all v € C7 (K) , we

hawve:
lellzc{ll Zz |l o+ o |l &} (3. 10
Proof: Since p —=p+ 3 .50 fora c N°, |a|=p.we have ¥. E 21{5’} . Similar
to the estimates in 77, we can get the estimate for the commutator g, (x, IN :

S llgate, Do i =0 | Lo |l 2+ 213 (3.11)

[al=Cp
where » & €% (K) and ¢ is at least equal to 1/47. The proof of the estimate (3. 11) is
similar to that of the estumate in (7], except for g, we have only first order derivatives
in z here. Thus we have to make several technical maodifications for commutators and
conjugate operations.
Under the assumptions of theorem 1.3, E g (x, D) » g, (z. D) is an elliptic

la|=r
pseudo-differential operator, hence for 0 <—e=C1, there exists & ~ (), such that for all v

e €7 (K) . we have:
foli<e{>) g Dolliit e 3} (3.12)
jol=p
This is the Garding inequality. From the estimates (3. 11) and (3. 12), we obtain at
once (3. 10).
Now let L, be the principal part of I, then L,is a nonnegative operator. From the
estimate (3. 10). we can get:
[ o]l Ja=C{ Lo, » + [Iv I 5
<¢{Zv. » + lv 3
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Theorem 1. 3 is proved.

4. Global Hypoellipticity

Actually, the conditions of theorem 1. 3 give the local hypoellipticity of linearized
operators. In this section, we will consider the case where the conditions of theorem 1. 3
cannot be satisfied on some subset az in [7). Thus we can obtain the so-called global
hypoellipticity.

Let N be an (n — 1) -dimension submanifold in £ . Thus N can be expressed
locally as the zero set of a smooth function @ (z) on &2 ; i.e. {@(x) =0} . satisfying
grade (x) = 0. Let M (CC N be a compact subset in £, then we have:

Theorem 4. 1. Tet u € Cf, (8 . p>max{4. p+ 3}, be a real solution of equation
(1. 1), If the conditions of theorem 1.3 hold on S\M , and for x € M, the linearized
operator (1. 2) salfisfies:

D6y (@) 3, () e (@) + ] 3 ay () 3L ) + Dby () 3, (=) I =0

B, fuml B, o=l =

(4. 1)
Thus u & &7 (8 .

In the following. we only sketch the proof of theorem 4. 1. without lossing
generlity, we can assume by Heine-Borel theorem, N = {@(z) = 0}, grad o () 30 .
After a O™ transformation of variable, we have N = {z, =0,z € R}, z= (. =) .
This transformation will preserve the conditions of theorem 1.3 which is invariant.
Under the preceding transformation, (4.1) becomes: 4,30 or 5,70 in a
neighborhood of N. Now let N,={s€ 2;|=.| <8}, B is a constant to be
determined. We hawve:

Propositon 4. 2. Under the assumplions of theorem 4. 1, there exist constants C >0, u
= 0 such that for all v € OF (N ) |, we have:

ol :ggn Lo |2 +C o2, (4. 2)

where v s sufficiently large, C and f are independent of ¢ ; and p will be infinity if §—0.

In general, we call the estimate (4.2) the global hypoelliptic estimate. It is
obvious that the estimate (4. 2) is weaker than (1. 4). On the other hand, from the
estimates (4. 2) and (3. 10), where (3.10) holds only on @\M ; we can deduce the
following estimate;

o st Pol 2+ ol 2

for all » & €7 (K) . This implies that theroem 4. 1 holds.
On the other hand, if M = {=z,} is an isolated point, then the condition (4. 1)
becomes:

D) (o) + |ty |) =0

Jr=1
At the same time, in the proof of theorem 4. 1, we know that if ¥ = {@{x) =0},
then the condition that M is a compact subset in £ can be dropped. Of course for
equation {1. 8}, we also have several similar results, which are omitted here.
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