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Abstract. Aiming at the isoparametric bilinear finite volume element scheme, we ini-
tially derive an asymptotic expansion and a high accuracy combination formula of the
derivatives in the sense of pointwise by employing the energy-embedded method on
uniform grids. Furthermore, we prove that the approximate derivatives are convergent
of order two. Finally, numerical examples verify the theoretical results.

AMS subject classifications: 65M10, 65M08, 41A60

Key words: Isoparametric bilinear finite volume element scheme, asymptotic expansion, high ac-
curacy combination formula, superconvergence.

1. Introduction

Finite volume (FV) method has been one of the most commonly used numerical meth-
ods for solving partial differential equations due to its many attractive properties, such as
preserving local conservation of certain physical quantities (mass, energy) and so on. The
finite volume element (FVE) method is one important member of FV method. In 1982,
Li and Zhu presented a generalized difference scheme [1], and proved the error estimate
in H! norm on quadrilateral grids. The trial and test spaces are, respectively, chosen as
bilinear finite element space and piecewise constant space. It is so-called the isoparametric
bilinear finite volume element scheme. In 1993, Schmidt and Kiel constructed two types of
box (diagonal box, center box) schemes [2], and obtained the saturated convergent order
in H! norm and the superconvergent result on parallelogram grids based on the analysis of
the eigenvalue problem for any partition element. Later, Porsching and Chou proposed a
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"Covolume Method" [3,4] which is actually a FVE method and widely applied in computa-
tional fluid dynamic problems. Simultaneously, some symmetric FVE schemes [5, 6], high
order FVE schemes [7-9] and new FVE schemes for three dimensional problems [10,11]
were presented by some researches.

For the isoparametric bilinear finite volume element scheme, its optimal L? error es-
timate [12] is got more behind that on H' estimate. Recently, Li and Lv proved the op-
timal L? error results [13-15] for this scheme. Although the superconvergence for the
finite element methods is abundantly studied [16-18], there are only some researches on
superconvergence about the isoparametric bilinear finite volume element [1,15,19, 20].
Furthermore, they are almost in the sense of average instead of pointwise. It urges us to
study the superconvergence in the sense of pointwise.

In present paper, the innovative idea of our work is that we derive an asymptotic expan-
sion for the isoparametric bilinear finite volume element solution. The derivation includes
the achievement of the integral formula for the bilinear functional A(u — u;,v), the in-
troduction of a proper auxiliary variational problem, and the employment of the discrete
Green function and the energy-embedded method. Furthermore, we derive a high accu-
racy combination formula of the derivatives in the sense of pointwise on uniform grids for
the first time, and prove that the approximate derivatives are convergent of order two.
Numerical examples confirm the theoretical results.

The remainder of this paper is organized as follows. In Section 2, we introduce the
isoparametric bilinear finite volume element scheme and some convergent results. In Sec-
tion 3, we derive the asymptotic expansion for our finite volume element solution. In
Section 4, we present a high accuracy combination formula of the approximate deriva-
tives in the sense of pointwise on uniform grids and the corresponding superconvergence.
Finally, we display numerical experiments to support our conclusions.

2. The isoparametric bilinear finite volume element scheme

We consider the following model problem

{ ~V-(kVu)=f, x€Q,

2.1
u=0, x€ 0N, (2.1)

where Q c R? is a convex polygonal domain with boundary 9, f(x) € L2(Q) and x(x) €
Ccl(9) satisfies
K(X) Z KOJ

and k| is a positive constant.

Let Q, = {E;, 1 < i < M} be the quadrilateral partition of Q (see Fig. 1(a)), and
9 ={P;, = (xil,xiz), 1 <i < N} be the set of partition nodes in €, where M and N are,
respectively, the numbers of elements and nodes. Denote Q, = {bp,1 <i < N} as the dual
partition of Q, where bj, is the dual element (also called control volume) about node P;
(see Fig. 1(b)). In this paper, we always assume that €, and Q; are all quasi-uniform, i.e.,

C1h2 S SE S Czhz, E e Qh and C1h2 S Spi S Czhz, bPi (S Q;kl,
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Figure 1: (a) Quadrilateral partition £;,. (b) Dual element b,,. (c) Transformation 4.

where Sg and Sp. are, respectively, the areas of element E and dual element bp, .
We introduce an invertible bilinear transformation 1) which maps E onto convex ele-
ment E (see Fig. 1(c))

xl :x% +A1)2'1 +A2)A('2 +A3)A('1.>A('2, (2 2)
Xy = X} + By Xy + ByXy + B3%1 %y, '
where (xi,xé), [ =1,2,3,4 are four nodal coordinates of element E, and
2 1 1 1 2, .3
Ay = X7 — Xy, Azzxf—xl, A3=x1—x1+x1—xf,
2 1 Y . | _ 1 2, .3_ .4
By = x5 — x5, By = x5 — x5, By = x; — x5 + x5 — x5.
Especially, for a rectangle partition, the transformation (2.2) becomes
X]_:X%'i‘)?]_hl, (2 3)
X9 = X% + )’azhz, '

where h]_ :A]_, h2 = Bz.
Let Vz and Vj,, respectively, be the trial and test function spaces

Vg ={vel*Q): V|bpi = constant, bp € Q;},

and
Vi = {up € C(Q) :uplp =Pr o', Pp € Py, E € Q,uplaq =0},
where &, ; is the set of bilinear functions on E, and Py o 1,[:51 is the composite function of

Pz and ;"
We introduce two interpolation operators in the following. The first one is IT* : V}, — V3,

V(Pi)) Xe bPl-:

v ev, 2.4
0, otherwise, v €V (2.4

Mv(x) = {
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and the second one is IT : H) () N H3(Q) — Vj,

N

My = Zuiqbi, u e H Q) NH(Q), (2.5)
i=1

where u; = u(P;), and ¢, is the Lagrange interpolation basis function about node P;.
In the following, we also denote ITu as u; for the sake of convenience.

Lemma 2.1 (see [15]). Ifu eHl(Q)nHZ(Q), then
lu—Tulg S CR* ™ul,, m=0,1, |u—IT"uly < Chlul;.

The isoparametric bilinear finite volume element solution u;, € V4, of problem (2.1)
satisfies

Alup,v) =(f,IT"), VYvey, (2.6)

where

Aluy,v) = — f K—H*vds = Z A(u, v)
bp, €y, 9bp,

Eeﬂh
4
)
A(u,v) :—ZJ K—uH*vds, (2.7a)
E abpnE 90
(F,Iv)= >, fl'[*vdx. (2.7b)
bpeﬂ

We define the discrete H' semi-norm on space Vj, as follows

(Z|W|1hE)2, weV, (2.8)

where |W|1 hE= = (Wy — w1)? + (w3 —wy)? + (wy —w3)? + (wg —wy)%, w; =w(P).

Lemma 2.2 (see [15]). The semi-norm |w|yy is equivalent with |wl,, i.e., there exist two
positive constants f31, B, independent of the mesh size h, such that

< Balwlip, YweW,.
The following results (see [1,14,15]) hold.
Lemma 2.3. The bilinear functional A(-,-) defined by (2.7a) satisfies
Alup,up) 2 lupl?,  Alug, vi) S luglvaly,  Yup, vy € V. 2.9

Lemma 2.4. Let u € Hcl)(Q) N H3(Q) and u;, € Vj, be the solutions of problems (2.1) and
(2.6), respectively. Then we have

llu—uplly S hluly, Il —upllo S H?|lulls. (2.10)

For convenience, we shall derive an asymptotic expansion for the finite volume element
solution u;, and prove the corresponding superconvergence on uniform rectangle grids
whose step sizes along both x; and x, directions are all equal to h.
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3. Asymptotic expansion

To obtain the asymptotic expansion, we firstly display some lemmas.

Lemma 3.1 (see [21]). Assume that i is the bilinear interpolation function of il on E, and
u; = 2?21 i, ¢, where ¢, is the Lagrange basis function about node P, (see Fig. 2(b)). We
have
(1) If a € 2,(E), then
221 2~ 2~

~ ~ u/s ~
a—i;=— (3 le(xl 1)+@x2(x2—1)).

(2) If i € P5(E), then
10% 1 2%

0 —i; =%;(%; — 1)(68 3 X1+ zmﬁﬁq)
+ Xo(%y — 1)(1 o Xo+ = 1_o% X, +C2),
60x 3 20x% 1832%
where C,, C, are constants:
C,= 13_211 , Cy= 18_211 .
2 855% £1=1,2,=0 2 83?% #,=0,%,=1

We will consider the estimate for A(u — u;, v), (v € V) in the following.

Lemma 3.2. Assume that k € C1(Q), u € HB(Q)OHS(Q), and u;y is the interpolation function
defined by (2.5). Then, for any x = (x,,x,) € E, we have

f (k(x) — k(x%)) S )d Xy S h3|u|3’E, [=1,3, (3.1a)
oM, dx
0 ( ur) 3
(K(x) —k(X")————dx;| Shlulsp, [=2,4, (3.1b)
OM, X2
where x° = (x?, x2) is the center of E (see Fig. 2(a)).
H - P3 1 H.[S By
D4 D3 B4 B3
DI | D2 B 1 e
Pl o~ : -
M1 Pz Fy 2 o

(a) {h)
Figure 2: (a) Eand D, 1<1<4. (b) Eand D, 1 <1 <4.
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Proof. We first prove (3.1a). Let F(u) be a linear functional as follows

F(u) = f (k(x) — K(xo))dez, [=1,3.
O—IVIZ) 3x1
By (2.3),
F = F@) = | e - x@n 28 gs,
o, 9%

where X = (X1, %,), 8 = (22, 29) (see Fig. 2(b)).
One can easily see that the following inequality holds.

k(%) — k(x°)| < Ch, %€E.
The above inequality and the trace theorem imply that
‘ o(a—1y)
ax

X1

dxy S Ch”ﬁ”z,ﬁ N Ch”ﬁ”g,ﬁ"-

|F(a)l SChJ_)

o,

Hence, F(i1) is a boundary linear functional in H3(E).
From Lemma 3.1, for any i € 2,(E), we have

a(aja,) o

Then, by (3.2), we can obtain
F(d)=0.
Combing (3.3) with (3.4), and using the Bramble-Hilbert lemma, we have
|F(@)| S Chlilsg-
By the above inequality, the scaling technique and (3.2),

IF(w| S Ch|a|3,E S Ch3|u|3,E~

413

3.2)

3.3)

(3.4)

Then, we can obtain (3.1a). Similarly, we can prove that (3.1b) holds. This completes the

proof of Lemma 3.2.

We define two linear functionals

B(u,v)lg =(vo —v1) _}a(l; 1 )de+(V3—v4)J —8(u u) dx,
M,0
+ (s —v1) _)3(1; )dx1+(v3—v2)f —3(u—u1) dx,
M,0 X2

O

(3.5)
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and

h? d3u d3u av 23u d3u av
H(u,v)|p = —— ( +2 ) +( 42 ) dx.  (3.6)

24 ox3 0x10x2/9x;  \ox3  9x29xy/ 0x,
By (2.3),
B(u,v)lp = B(@,M)|g, H(w,v)lg=H(@,7)lg, (3.7)
where
1
L o 2 (ot —1iy) 3(u—u) .
B(i1,V)|g :(VZ_Vl)J 7% d X dX2+(V3—V4)J : o ,dx
0 X1 %= 1 7=1
1
29(a—1 Yow—1
+(y— 1) (aA I)A dx1+(v3—v2) ( ’)A dx; (3.8)
0 2 *2= 1 X2=3

a9 — 1 a3 ) % N I a3 ) % N 9 it (3.9
(i, M)|g=—— . (8fci’+ 8)?18X§)59?1+( + A) X (3.9

Lemma 3.3. If il € #5(E) and v € 2, 1(E), then B(1, )|z = H(@, )|

Proof If it € 5(E), then, from Lemma 3.1, we have

o(— i) 1% 1 3%
—8)?1 - = _gafcf + 53)?18)?3)(2()(2 -1), (3.10a)
d(at — ) 1% 1 3%

0%, |n=1  240%3 +§afcfaf<2x1(x1_1)' (3-106)

Substituting (3.10a) and (3.10b) into (3.8), and noting that the third order derivatives of
i are all constants, we have

B(a ‘7)|E:_i(33ﬁ+2 i )[(Vz 1)+ (73— V4]
’ 48\0x3  O0%0%3
_i(33ﬁ+2 o’a )[(v — )+ (95 = 95)] (3.11)
48\0x3 " Toxlox,/ -t VTR EL '

Since v € 2, 1 (E), we have 7 = Z?zl ,¢;. Then we can obtain

ov 1. o

E 8_5€‘1dxldx2 == E [(Vl - V2) + (V3 - V4):| 5 (3.123)
av S o
_dxldXZ = - [(V4 - Vl) + (V3 - Vz):| . (312]3)

g 9%



Superconvergence and Asymptotic Expansions for Bilinear Finite Volume Element Approximation 415

Hence, combining (3.10a), (3.10b), (3.12), (3.8) with (3.11), we have

A, 9|y = — — [(53a+2 o' )av+(a3a+2 o )a?}di
E

24 %3 Ox0%2/ 9% \ox] 0%%0%,/ 9%,
This completes the proof of Lemma 3.3. O

Lemma 3.4. If ? € &, ;(E) and 0 € H*(E), then

1B(@, 7)Igl < 191y 5 gl g, (3.13a)
<

|H@, Mgl S 9z l10ll4 5, (3.13b)
where M?M7 =V =012+ (D3 = 0)* + (04 = 93)> + (71 — 94)% ¥ = 9(Py), i = 1,2,3,4.

Proof. Using the trace theorem, the embedded theorem and

1
o%u 024 2
(L [(9?}[)2 " (82161’122)2} df‘) S lily g,

for a =0 or 1/2, we can obtain

1
3 a(a—a,) . H(’)(u—ul)
X 7=1 ~ ox, e
i+ | | 821” ax) <l (3.14)
u axlaxZ ~ u2,E' '
Similarly, we have
1
Ja+§a(a_al) d;| < 2l 0, (3.15)
—_— X1/ Sl g, a=0,—. .
. 0%y lx=1 >E 2
By (3.8), (3.14) and (3.15),
|B(@,9)Iz| S 191y 5zl (3.16)

In the same way, using (3.9) and noticing that |?|; g = [V| j g, we have

- 0V N2 av N2 :
712,915 S ( “(a—xl) +(3%) )dx) @l S 1715611l p-
E

This completes the proof of Lemma 3.4. O
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Lemma 3.5. If v €V}, and u € H*(Q)NH(R), then
B(u,v)lp = H(u,v)lg + O(h*)V |y pluls e
Proof. By (3.7),
[B(w, )l — H(u, v)|g| = [B(@, )]z — A@, 7)lg].
Combining Lemma 3.3 with Lemma 3.4, and using the Bramble-Hilbert lemma, the scaling
technique and |v|, g = 7|, , z, we can obtain
[B(2, )1z — A@, 9| S 191y 5 platly e S P11y pgluly -

This completes the proof of Lemma 3.5. O

Now, we consider the estimate on A(u — u;, v)|z.

8(u uy) 8(u u[)
Aw—upv)lp=(va=v1) | oy ———dxp+(v3=vy) | Kk————dx,
M;0 X1 X1
o(u— ou—u
+(va=v) [ x (3 )dxl"‘(Vs—Vz)f u dxq
M,0 X2 X2
=k(x*)B(u, V)| +R(u,v), (3.17)
where denote S« as the difference x(x) — x(x°), and
d(u—uy) a(u - UI)
R(u,v)=(vy —v1) Ok —————dx;+(v3—v4) |__ Ox——F——dx,
mo 9 9x1
J(u— d(u—u
+(V4_V1) 5 ( )d +(V3_V2)J u Xl'
M,0 9%, 9x3
By Lemma 3.2,
IR(u,v)| S K3|v|; nEelulsg < h3|V|1,h,E”u”4,E- (3.18)

When « € C1(Q), from Lemma 3.5, we have
k(x)B(u,v)lp =x(x)Hu,v)|g + ﬁ(h3)|V|1,h,E||U||4,E
=H,(w,v)|g+ 0|y pellully e, (3.19)

where

H._(uw.v) h? () (83u+2 23%u )81/
WWIE="0og | 1 ox}  O0x10x3/ 0x;

d3u d%u ov
+(55+2 )=— |dx (3.20)
ox; 8x18x2 dx,

By (3.17), (3.18) and (3.19),
A(u —up,v)lg =He(u,v)|g + 0(h3)|v|1,h,E||u||4,E~ (3.21)
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Lemma 3.6. Assume that u is the solution of (2.1) and u € H*(Q) N Hé(ﬂ), then
h2
Alu—u;,v)= ﬂf qIT*vdx + 0(h3)||u||4|v|1, Vv eV, (3.22)
Q

where A(u, v) is defined by (2.7a), and

) 0 ( (33u+2 23u ))+ 0 ( (33u+2 23u )) (3.23)
X)= K K . .
1 dxq ﬁxf axlﬁxg dx, ﬁxg 8x13x2
Proof. Taking the sum of two sides of (3.21) about element E, we have
A —up,v) ==Y H(w,v)lg+ 0 Y llullyglv]ig. (3.24)
E E

For the second term in (3.24), using the Cauchy inequality, we can obtain

2 ol < (Z”u"4E) (ZH 2)" = luldvls. (3.25)

For the first term in (3.24), using (3.20), the Green formula and noticing the fact that
VS Vh, V|5Q =0,

we have

=D Ho(w,v)lg
E
h? 23u 23u av 23u 23u av
=—— +2 + +2 d
24;JEK[(8)(§ ﬁxlaxg)axl (8)(:25 3x18x2)3x2} *
h? |:(83u+2 23u )8v+(83u+2 23u )8v:|d
= —_ — K X
ox3  0x10x2/0x;  \oxi < 9x39xy/ 0x,
h? ) 23u 23u ) 23u 23u
=— +2 + +2 d
24 Q{ﬁxl (K(ﬁxf 8x13x§)) dx;y (K(axg 5X23X2))}V *
h2
24

qux (3.26)

Combining (3.24), (3.25) with (3.26), we have

h? h?
Alu—u;,v)= ﬂf qIT*vdx + gf q(v — I*v)dx + (h®)||ull4|v];.
Q Q

From the Holder inequality and Lemma 2.1, we can obtain

2

24 Q(V—H*V)dx<h2||q||o||v—H*VIlo O(h*)|ulylvl;.
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Hence,

hZ
Alu=w,v)= J qI*vdx + (k) ullylv],.
Q

This completes the proof of Lemma 3.6. O

Now, we shall begin to derive the asymptotic expansion.
The discrete Green function g; €V, satisfies

A(vp, g1) =vp(2), V€V (3.27)
Lemma 3.7 (see [16,17]). The discrete Green function g, € Vy in (3.27) satisfies that
gnl1 S |Inh|z, g €V (3.28)
Lemma 3.8. If w € H%(Q), then, for any 0 < € < 1, we have
W —=willo,eo S R [IWll2,
where w; is defined by (2.5).

Ifue HY(Q)n Hé(Q), then we can introduce an auxiliary problem

—V-(kVw)=q, x€9,
{ (VW) =g (3.29)
Wlaﬂ = O)
where q is defined by (3.23).
From the regularity of solution for problem (3.29), we have
Iwlly < llgllo < luls- (3.30)
The weak solution of problem (3.29) w € H2(Q) N H, () satisfies
Alw,v)=(q,IT"v), Vve Hé(Q). (3.31)

Assume that wy, € V; is the isoparametric bilinear finite volume element solution of
problem (3.29). Then we have

Alwp, v = (¢, TV, Wl ew,. (3.32)
Setting v = v, € V}, in (3.31), and subtracting (3.32) from (3.31), we have
A(w —wy, vW=0, Whe V- (3.33)
Lemma 3.9. Ifu€ H*(Q)N Hé(ﬂ), then for any 0 < € < 1, we have

lw = whllo,eo S O ~)|ulys.
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Proof. Using the embedded inequality, the triangle inequality, the interpolation theory
and Theorem 2.4, we have
1
llw; — Wh||o,oo Slinh|z{[wp —wplly

SInhlz(lwy —wlly + 1w —wylly) S [InhlZRlwlly.  (3.34)
By Lemma 3.8,
W = willoeo < B Il (3.35)
Combining (3.34), (3.35) with (3.30), we have

W = whllo,co <llw = willo,eo + W1 = Whllo,e

— 1 —
Shlwlly + [ Inklzhllwlly $ R Fful,.

This completes the proof of Lemma 3.9. O

From Lemma 3.6 and (3.32), the following result holds.

Lemma 3.10. Assume that u € H*(Q) N Hy() is the solution of (2.1), uy, wy € Vi, respec-
tively, are solutions of (2.6) and (3.32), and u; € V}, is the interpolation function of u. Then
we have

h2
A(uh —u; — ﬂwh,") = o()|ull4lv];, Vv eV, (3.36)
Theorem 3.1. Under the hypotheses of Lemma 3.10, we have
2

h
(up —up)(2) = ow(z) + o>~ )|lully, (3.37)

where z is an inner node and 0 < € < 1 is an arbitrary constant.

Proof. From (3.27), Lemma 3.10 and Lemma 3.7, we have
2 2

(uh —u; — Z_4Wh) (2) :A(uh L %Wh’gi)

1
=0(h*)|lullylgly = O(h°|Inh]2)lull,.

By Lemma 3.9,

h2
(w, —u)(z) = 7 w(z)+ o>~ ulls.

This completes the proof of Theorem 3.1. O
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4. Superconvergence

We choose any inner node P(xi, xé) whose four neighboring nodes are P; (xi, xé —h),
Pz(x§ +h, xé), P3(x§,x£ +h), P4(xi —h, x;) (see Fig. 3). Let ufl =uu(P), (1=1,2,3,4) and
define

2_ .1 4_ .3

—h . U, —uy —h . U, —uy
3 u(P) ==t T, u(P):= (4.1)

to be the average partial derivative values at point P along x; and x, directions,respectively.
Then we define the discrete average gradient operator

Vyu(P) = @s w30 W(P), and [Vyu(P)| = (@ u(P)?+ @, u(P)D)3.  (42)

Similar to the proof of Lemma 3.8 or that in [22], we can prove that the following
result holds true.

Pz

Pl F2

F4
Figure 3: The four nodes and elements neighboring P.

Lemma 4.1. Assume that u € H*(Q) N Hcl)(Q) is the solution of (2.1), then, for any inner
node P(x},x5;), we have

[Va(u—up)(P)l = 0(h*llulls. (4.3)

Lemma 4.2. Assume that u € H*(Q) N Hé(ﬂ) is the solution of (2.1) and uy € Vj, is the
isoparametric bilinear finite volume element solution. Then we have

Vi —up)(P)| = 0(h*~)|lulls, 4.4
where . s L
Vilup —u)(P) = (3xl(uh —uy)(P), %(uh - UI)(P))-
Proof. By Theorem 3.1,

_ h?_
Vy(up —up)(P) = 2—4Vhw(P) +0(h* )|lulls. (4.5)

Noting the fact H2(Q2) < C'7¢(Q) when w € H?(Q2), and using (3.30), we can obtain

Sh™clwllz SR uls.

7w = |22

2h
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In the same way, we have
—h e
3% w(P)| < h*uly.
Hence,
[Vaw(P)| = 0(h™)ul,. (4.6)

Substituting (4.6) into (4.5), one can easily see that (4.4) holds. This completes the proof
of Lemma 4.2. O

From Lemmas 4.1 and 4.2, and noting
|(Vhu — Vu)(P)| < h?[uls,
one can obtain the following superconvergence result.

Theorem 4.1. Assume that u € H*(Q) N Hé(Q) is the solution of problem (2.1) and u;, € V;,
is solution of (2.6). Then, for any inner node P and any constant 0 < € < 1, we have

|(Vhup = V(P = 0 (h*~)ull,- (4.7)

5. Numerical experiment
Example 5.1. We consider the problem (2.1) and take
0=(0,1?, kX)) =1+x;+xy f(x)=4n?sin(nx;)sin(mx,).

Let Q" be an uniform quadrilateral partition, N; and N, be, respectively, the partition
numbers along x; and x, axis directions. The scheme (2.6) is employed. We display
some results on four typical inner points P;(0.125,0.125), P,(0.625,0.125), P5(0.75,0.25),
P,(0.25,0.75) in Tables 1 and 2, where ¢! = [(8,,u— . 1, )(P)], €l = [(8,,u— 2%, w)(P,
(1 <i < 4) are, respectively, the errors of partial derivatives about variables x; and x, at
point P;, and 7 is the rate.

From Tables 1 and 2, one can see that the approximations are convergent of order two
about the partial derivatives. It confirms the result in Theorem 4.1.

Table 1: Numerical results about P, P,.

P;(0.125,0.125) P,(0.625,0.125)
N; X N, e’f Y e’zl Y e}ll Y eg Y
8x16  2.4le3 2.37e-2 2.80e-5 6.59%-2

16 x32 7.04e-4 3.42 5.8%-3 4.02 | 3.78¢e-6 7.41 1.72e-2 3.83
32x64 1.82e-4 3.87 1.47e-3 4.01 | 7.46e-7 5.06 4.29e-3 4.01
64 x 128 4.59e-5 3.97 3.67e-4 4.01 | 1.51e-7 494 1.07e-3 4.01
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Table 2: Numerical results about P;, P,.
P;(0.75,0.25) P,(0.25,0.75)
N; X N, e}ll Y e’; Y e’; Y eg Y
8x16 7.74e-3 4.37e-2 1.21e-2 3.75e-2

16 x32 1.92e-3 4.03 1.08e-2 4.05 | 3.06e-3 3.95 9.28e-3 4.04
32x64 4.79e-4 4.01 2.69-3 4.01 | 7.68e-4 398 232-3 4.00
64 x 128 1.19e-4 4.02 6.72e-4 4.01 | 1.92e-4 4.00 5.77e-4 4.02
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