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Abstract. In this paper, we propose the Laguerre spectral method for high order prob-

lems with mixed inhomogeneous boundary conditions. It is also available for approx-

imated solutions growing fast at infinity. The spectral accuracy is proved. Numerical

results demonstrate its high effectiveness.

AMS subject classifications: 65L60, 65M70

Key words: Laguerre spectral method, high order problems with mixed inhomogeneous boundary

conditions.

1. Introduction

The spectral method possesses high accuracy, and so plays an important role in numer-

ical solutions of differential and integral equations, see [2–4, 7–9, 18] and the references

therein. During the past two decades, more and more attentions were paid to problems

defined on various unbounded domains. The Laguerre spectral method has been used

widely for differential equations defined on the half line and the related unbounded do-

mains, as well as certain exterior problems, see [10–12,14,15,17,19,20] and the references

therein. But, there are still two unsettled problems. Firstly, in the existing work, we usually

reformed original problems by some variable transformations, and then solved the alterna-

tive formulations by using the Laguerre approximation. Thus, those spectral schemes seem

available essentially for approximated solutions decaying to zero at infinity. However, in

many cases, the solutions do not tend to zero at infinity, such as the kink-like solitons, the

heteroclinic solutions in biology, the solutions of Harry-Dym equation and some nonlinear
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dynamical systems. Next, since the existing results on the Laguerre approximation are

not optimal, the error estimates of numerical solutions are not very precise. On the other

hand, we considered second order problems mostly. Whereas, in some practical cases,

such as the stream function form of the Navier-Stokes equations, we have to deal with

high order problems. Recently, Guo, Sun and Zhang [13] proposed the generalized La-

guerre quasi-orthogonal approximation, which leads to the probability of producing new

Laguerre spectral method suitable also for high order problems with solutions growing

fast at infinity, and deriving better error estimates of numerical solutions. We refer to the

review paper of Guo, Zhang and Sun [16].

In this paper, we investigate the new Laguerre spectral method for high order problems

with mixed inhomogeneous boundary conditions. The next section is for preliminaries.

In Section 3, we consider two fourth order problems with various boundary conditions.

We design the spectral schemes and prove their spectral accuracy. They are also suitable

for high order problems with solutions growing fast at infinity. Moreover, we provide

the Laguerre spectral method with exact imposition of boundary conditions. In Section

4, we present some numerical results demonstrating the high effectiveness of suggested

algorithms. The final section is for concluding remarks.

2. Preliminaries

Let Λ = {x |0 < x < ∞} and χ(x) be certain a weight function. For integer r ≥ 0,

we define the weighted Sobolev space H r
χ(Λ) in the usual way, with the inner product

(·, ·)r,χ,Λ, the semi-norm | · |r,χ,Λ and the norm ‖ · ‖r,χ,Λ. In particular, the inner product

and the norm of L2
χ(Λ) are denoted by (·, ·)χ,Λ and ‖ · ‖χ,Λ, respectively. For simplicity, we

denote dkv/d x k by ∂ k
x v. For integer r ≥ 1,

0H r
χ(Λ) =
�

v ∈ H r
χ(Λ)|∂ k

x v(0) = 0, 0≤ k ≤ r − 1
	

.

We omit the subscript χ in notations whenever χ(x)≡ 1.

The scaled generalized Laguerre polynomials of degree l ≥ 0 were given in [17], as

L
(α,β)

l
(x) =

1

l!
x−αeβ x∂ l

x(x
l+αe−β x ), α > −1, β > 0, l ≥ 0.

In this work, we shall use the specific base functions L (−m,β)

l
(x) with integer m ≥ 1,

namely (see [13]),

L (−m,β)

l
(x) = xmL

(m,β)

l−m
(x), l ≥ m. (2.1)

Let ω−m,β(x) = x−me−β x . By (4.8) of [13], we have

∫

Λ

L (−m,β)

l
(x)L (−m,β)

l ′ (x)ω−m,β(x)d x = η
(−m,β)

l
δl ,l ′, (2.2)
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where δl ,l ′ is the Kronecker symbol, and

η
(−m,β)

l
=

1

l!
βm−1Γ(l +m+ 1), l ≥ m. (2.3)

The set of all L (−m,β)

l
(x) is complete in L2

ω−m,β
(Λ). Hence, for any v ∈ L2

ω−m,β
(Λ), we have

v(x) =

∞
∑

l=m

v̂
(−m,β)

l
L (−m,β)

l
(x) (2.4)

with

v̂
(−m,β)

l
=

1

η
(−m,β)

l

∫

Λ

v(x)L (−m,β)

l
(x)ω−m,β(x)d x . (2.5)

For integer r ≥ 0, we introduce the following space

H r
ω−m,β ,A(Λ) =
�

v|v is measurable on Λ and ‖v‖H r
ω−m,β ,A(Λ)

<∞	

equipped with the semi-norm and the norm as

|v|H r
ω−m,β ,A(Λ)

= ‖∂ r
x v‖ω−m+r,β ,Λ, ‖v‖H r

ω−m,β ,A(Λ)
=

� r
∑

k=0

|v|2
Hk
ω−m,β ,A(Λ)

�
1

2

.

Moreover, for 1≤ m ≤ r,

0H r
ω−m,β ,A(Λ) =
�

v|v ∈ H r
ω−m,β ,A(Λ) and ∂ k

x v(0) = 0, for 0≤ k ≤ r − 1
	

,

Br
m,β(Λ) = 0Hm

ω−m,β ,A(Λ)∩H r
ω−m,β ,A(Λ).

For integers 1≤ m≤ N ,

Q
(−m,β)
N (Λ) = span

�L (−m,β)
m (x),L (−m,β)

m+1 (x), · · · ,L (−m,β)
N (x)
	

.

The projection 0Pm
N ,−m,β ,Λ

: 0Hm
ω−m,β ,A(Λ)→ Q

(−m,β)
N (Λ) is defined by

(∂ m
x (0Pm

N ,−m,β ,Λ
v − v),∂ m

x φ)ω0,β ,Λ = 0, ∀φ ∈Q
(−m,β)
N (Λ). (2.6)

In numerical analysis of the new Laguerre spectral method, we need the Laguerre

quasi-orthogonal approximation. To do this, let

vb,m(x) =

m−1
∑

j=0

∂ j
x v(0)

x j

j!
. (2.7)
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For any v ∈ Hm
ω−m,β ,A(Λ), we set ṽ(x) = v(x)− vb,m(x). Since ṽ ∈ 0Hm

ω−m,β ,A(Λ), we define

the Laguerre quasi-orthogonal projection as

Pm
N ,−m,β v(x) = 0Pm

N ,−m,β ṽ(x)+ vb,m(x) ∈ PN (Λ). (2.8)

Obviously,

∂ k
x Pm

N ,−m,β v(0) = ∂ k
x v(0), for 0≤ k ≤ m− 1.

According to Theorem 4.4 of [13], we assert that if v ∈ Hm
ω−m,β ,A(Λ), ∂

r
x v ∈ L2

ω−m+r,β
(Λ),

integers 1≤ m≤min(r, N), 0≤ k ≤ r ≤ N + 1 and m≤ k, then



∂ k
x (P

m
N ,−m,β v− v)




ω−m+k,β
≤ c(βN)

k−r

2 ‖∂ r
x v‖ω−m+r,β

. (2.9)

Hereafter, we denote by c a generic positive constant independent of any function and N .

It is noted that Everitt, Littlejohn and Wellman [6] also considered the orthogonal

approximation using the base functions (2.1) with β = 1, without error estimation.

3. New Laguerre spectral method for high order problems

This section is devoted to the new Laguerre spectral method for high order problems

defined on the half line.

3.1. Some preparations

As examples, we shall consider fourth order problems with Dirichlet or mixed Dirichlet-

Neumann boundary conditions. Let λ > 0. For simplicity of statements, we introduce the

bilinear form

Aλ(u, v) = a1,λ(u, v) + a2(u, v), ∀u, v ∈ H2
ω0,β
(Λ), (3.1)

with

a1,λ(u, v) =

∫

Λ

∂ 2
x u(x)∂ 2

x v(x)e−β x d x +λ

∫

Λ

u(x)v(x)e−β xd x , (3.2a)

a2(u, v) = −2β

∫

Λ

∂ 2
x u(x)∂x v(x)e−β x d x + β2

∫

Λ

∂ 2
x u(x)v(x)e−β xd x . (3.2b)

The space H1
ω0,β
(Λ) can be regarded as the interpolation between the spaces H2

ω0,β
(Λ)

and L2
ω0,β
(Λ). Accordingly, there exists a positive constant dβ such that ‖∂x v‖2ω0,β

≤
dβ
�‖∂ 2

x v‖2ω0,β
+ ‖v‖2ω0,β

�

.
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It is clear that

|Aλ(u, v)| ≤3

2
‖∂ 2

x u‖2ω0,β
+

1

2
‖∂ 2

x v‖2ω0,β
+ β2‖∂x v‖2ω0,β

+
λ

2
‖u‖2ω0,β

+
1

2
(λ+ β4)‖v‖2ω0,β

≤3

2
‖∂ 2

x u‖2ω0,β
+
�1

2
+ β2dβ

�

‖∂ 2
x v‖2ω0,β

+
λ

2
‖u‖2ω0,β

+
1

2
(λ+ 2β2dβ + β

4)‖v‖2ω0,β
, ∀u, v ∈ H2

ω0,β
(Λ). (3.3)

Next, for any v ∈ H2
ω0,β
(Λ), we have

p
x∂ k

x v(x)e−
β

2
x → 0 as x →∞, k = 0,1,2.

Thus,

β2

∫

Λ

∂ 2
x v(x)v(x)e−β xd x =− β2

∫

Λ

(∂x v(x))2e−β x d x + β3

∫

Λ

∂x v(x)v(x)e−β xd x

− β2∂x v(0)v(0). (3.4)

With the aid of (3.4), we verify that

−2β

∫

Λ

∂ 2
x v(x)∂x v(x)e−β x d x =− β2

∫

Λ

(∂x v(x))2e−β x d x + β(∂x v(0))2

=β2

∫

Λ

∂ 2
x v(x)v(x)e−β xd x − β3

∫

Λ

∂x v(x)v(x)e−β xd x

+ β(∂x v(0))2+ β2∂x v(0)v(0)

=β2

∫

Λ

∂ 2
x v(x)v(x)e−β xd x − 1

2
β4

∫

Λ

v2(x)e−β x d x

+ β(∂x v(0))2+
1

2
β3(v(0))2+β2∂x v(0)v(0). (3.5)

Inserting (3.5) into (3.2b), we obtain

a2(v, v) =2β2

∫

Λ

∂ 2
x v(x)v(x)e−β xd x − 1

2
β4

∫

Λ

v2(x)e−β x d x

+ β(∂x v(0))2+
1

2
β3(v(0))2+ β2∂x v(0)v(0)

≥− 1

2

∫

Λ

(∂ 2
x v(x))2e−β x d x − 5

2
β4

∫

Λ

v2(x)e−β x d x

+
1

4
β(∂x v(0))2+

1

6
β3(v(0))2. (3.6)



Laguerre Spectral Method for High Order Problems 525

Thereby, for any v ∈ H2
ω0,β
(Λ),

1

2
‖∂ 2

x v‖2ω0,β
+
�

λ− 5

2
β4
�

‖v‖2ω0,β
+

1

4
β(∂x v(0))2+

1

6
β3(v(0))2

≤Aλ(v, v)≤ 3

2
‖∂ 2

x v‖2ω0,β
+
�

λ+
3

2
β4
�

‖v‖2ω0,β
+

5

4
β(∂x v(0))2+

3

2
β3(v(0))2. (3.7)

On the other hand, if u, v ∈ H2
ω0,β
(Λ) and ∂ 3

x u(x)v(x)e−β x → 0 as x →∞, then

∫

Λ

∂ 4
x u(x)v(x)e−β xd x

=−
∫

Λ

∂ 3
x u(x)∂x v(x)e−β x d x + β

∫

Λ

∂ 3
x u(x)v(x)e−β xd x − ∂ 3

x u(0)v(0)

=

∫

Λ

∂ 2
x u(x)∂ 2

x v(x)e−β x d x − 2β

∫

Λ

∂ 2
x u(x)∂x v(x)e−β x d x

+ β2

∫

Λ

∂ 2
x u(x)v(x)e−β xd x − ∂ 3

x u(0)v(0)+ ∂ 2
x u(0)∂x v(0)− β∂ 2

x u(0)v(0). (3.8)

Furthermore, let W (Λ), W (Λ) ê H2
ω0,β
(Λ). We set WN (Λ) = W (Λ) ∩ PN (Λ) and

W N (Λ) =W (Λ)∩PN (Λ). We define the operator ∗P2
N ,λ

: W (Λ)→WN (Λ), by

Aλ(∗P2
N ,λv − v,φ) = 0, ∀φ ∈W N (Λ). (3.9)

The above operator possesses a nice property stated below.

Proposition 3.1. Let v ∈W (Λ), w ∈WN (Λ) and λ > 5β4/2. If ∗P2
N ,λ

v −w ∈W N (Λ), then

Aλ(v− ∗P2
N ,λv, v − ∗P2

N ,λv)≤Aλ(v−w, v −w). (3.10)

Proof. A direct calculation shows

Aλ(v−w, v −w) =Aλ(v − ∗P2
N ,λv, v− ∗P2

N ,λv)+Aλ(∗P2
N ,λv −w, ∗P2

N ,λv −w)

+ 2Aλ(v− ∗P2
N ,λv, ∗P2

N ,λv−w).

Thanks to (3.9), we have

Aλ(v− ∗P2
N ,λv, ∗P2

N ,λv −w) = 0.

Due to λ > 5β4/2, (3.7) implies

Aλ(∗P2
N ,λv −w, ∗P2

N ,λv −w) ≥ 0.

Then, the desired result (3.10) follows from the previous statements. �
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3.2. Dirichlet problem of high order equation

We first consider the following simple model problem,

¨

∂ 4
x U(x)+λU(x) = f (x), x ∈ Λ,

∂x U(0) = b, U(0) = a,
(3.11)

where f ∈ L2
ω0,β
(Λ), a, b and λ > 0 are given constants. The solution U(x) might tend to

infinity as x goes to ∞. We assume that x
1

2 e−
β

2
x∂ k

x U(x)→ 0, as x →∞, 0 ≤ k ≤ 2, and

x−
1

2 e−
β

2
x∂ 3

x U(x)→ 0, as x →∞. Let

H̃2
ω0,β
(Λ) = H2

ω0,β
(Λ)∩ �v|x− 1

2 e−
β

2
x∂ 3

x v(x)→ 0, as x →∞	,
V (Λ) =
�

v|v ∈ H̃2
ω0,β
(Λ) and ∂x v(0) = b, v(0) = a

	

, V (Λ) = 0H2
ω0,β
(Λ).

Multiplying (3.11) by v(x)e−β x ∈ V (Λ) and integrating the resulting equation by parts, we

use (3.8) to derive a weak formulation of (3.11). It is to look for U ∈ V (Λ) such that

Aλ(U , v) = ( f , v)ω0,β
, ∀v ∈ V (Λ). (3.12)

If λ > 5β4/2, then by (3.3), (3.7) and the Lax-Milgram lemma, the problem (3.12) admits

a unique solution.

Remark 3.1. The condition of λ > 5β4/2 plays an important role for the existence and

uniqueness of solution of (3.12), as well as for ensuring the convergence of the related

spectral method. However, it is only a sufficient condition. On the other hand, for any fixed

β , we may take a positive parameter γ < β−1 4
p

2λ/5, and make the following variable

transformation,

y = γx , V (y) = U
� y

γ

�

, F(y) = γ−4 f
� y

γ

�

.

Then, the original problem (3.11) is changed to











∂ 4
y

V (y) + λ∗V (y) = F(y), λ∗ =
λ

γ4
, y ∈ Λ,

∂y V (0) =
b

γ
, V (0) = a.

In this case, λ∗ > 5β4/2.

We now define the finite-dimensional spaces:

VN (Λ) = V (Λ)∩PN (Λ), V N (Λ) = V (Λ)∩PN (Λ).

The spectral method for solving (3.12), is to seek uN ∈ VN (Λ) such that

Aλ(uN ,φ) = ( f ,φ)ω0,β
, ∀φ ∈ V N (Λ). (3.13)
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For checking the existence of solutions of (3.13), it suffices to prove the uniqueness of

solution. Assume that u
(1)
N (x) and u

(2)
N (x) are solutions of (3.13), and ũN (x) = u

(1)
N (x)−

u
(2)
N (x) ∈ V N (Λ). Then

Aλ(ũN ,φ) = 0, ∀φ ∈ V N (Λ).

Putting φ = ũN ∈ V N (Λ) in the above equation and using (3.7), we obtain

1

2
‖∂ 2

x ũN‖2ω0,β
+
�

λ− 5

2
β4
�

‖ũN‖2ω0,β
≤Aλ(ũN , ũN ) = 0.

If λ > 5β4/2, then ũN (x)≡ 0. This means the uniqueness of solution of (3.13).

We now estimate the error of numerical solution. For this purpose, we introduce the

auxiliary operator P
2

N ,λ : V (Λ)→ VN (Λ), defined by

Aλ
�

P
2

N ,λv− v,φ
�

= 0, ∀φ ∈ V N (Λ). (3.14)

We have from (3.12) and (3.14) that

Aλ
�

P
2

N ,λU ,φ
�

= ( f ,φ)ω0,β
, ∀φ ∈ V N (Λ). (3.15)

Subtracting (3.15) from (3.13), yields

Aλ
�

uN − P
2

N ,λU ,φ
�

= 0, ∀φ ∈ V N (Λ). (3.16)

Taking φ = uN − P
2

N ,λU ∈ V N (Λ) in (3.16), we obtain

Aλ
�

uN − P
2

N ,λU ,uN − P
2

N ,λU
�

= 0.

Using (3.7) again, we assert that uN = P
2

N ,λU . Furthermore, for any v ∈ 0H1
ω0,β
(Λ) (see

Lemma 2.2 of [17]),

‖v‖2ω0,β
≤ 4

β2
‖∂x v‖2ω0,β

. (3.17)

Clearly, ∂ k
x (U(0)− uN (0)) = 0 for k = 0,1. Thereby,

‖∂ k
x (U − uN )‖2ω0,β

≤
� 2

β

�4−2k‖∂ 2
x (U − P

2

N ,λU)‖2ω0,β
, k = 0,1,2. (3.18)

We next estimate the right side of (3.18). Let P2
N ,−2,β

U be the Laguerre quasi-orthogonal

projection defined by (2.8) with µ = m = 2, v = U , ∂x v(0) = b and v(0) = a. Obviously,

P2
N ,−2,β

U ∈ VN (Λ). Moreover, U−P2
N ,−2,β

U ∈ V (Λ) and P
2

N ,λU−P2
N ,−2,β

U ∈ V N (Λ). There-

fore, we could use the result of Proposition 3.1, with

W (Λ) = V (Λ), W (Λ) = V (Λ), WN (Λ) = VN (Λ), W N (Λ) = V N (Λ),

v = U , w = P2
N ,−2,βU , ∗P2

N ,λU = P
2

N ,λU .
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More precisely, we use (3.7), (3.10) and (3.18) to derive that

1

2
‖∂ 2

x (U − P
2

N ,λU)‖2ω0,β
+
�

λ− 5

2
β4
�

‖U − P
2

N ,λU‖2ω0,β

≤Aλ(U − P
2

N ,λU , U − P
2

N ,λU)

≤Aλ(U − P2
N ,−2,βU , U − P2

N ,−2,βU)

≤3

2
‖∂ 2

x (U − P2
N ,−2,βU)‖2ω0,β

+
�

λ+
3

2
β4
�

‖U − P2
N ,−2,βU‖2ω0,β

≤
�3

2
+

16

β4

�

λ+
3

2
β4
��

‖∂ 2
x (U − P2

N ,−2,βU)‖2ω0,β
. (3.19)

If ∂ 2
x U ∈ L2

ω0,β
(Λ) and ∂ r

x U ∈ L2
ω−2+r,β

(Λ), then we use (2.9) and (3.19) to find that for

2≤ r ≤ N + 1,

‖∂ 2
x (U − P

2

N ,λU)‖2ω0,β
≤ c
�

1+
λ

β4

�

(βN)2−r‖∂ r
x U‖2ω−2+r,β

. (3.20)

This, along with (3.18), gives

‖∂ k
x (U − uN )‖2ω0,β

≤ c
� 2

β

�4−2k�

1+
λ

β4

�

(βN)2−r‖∂ r
x U‖2ω−2+r,β

, k = 0,1,2. (3.21)

Theorem 3.1. If U ∈ H̃2
ω0,β
(Λ), ∂ r

x U ∈ L2
ω−2+r,β

(Λ), λ > 5β4/2, and integers 2≤ r ≤ N + 1,

then

‖U − uN‖2H2
ω0,β
(Λ)
≤ c
�

1+
1

β4

��

1+
λ

β4

�

(βN)2−r‖∂ r
x U‖2ω−2+r,β

. (3.22)

3.3. Mixed boundary value problem of high order equation

The Laguerre quasi-orthogonal approximation plays an important role in the Laguerre

spectral method for mixed inhomogeneous boundary value problems of high order, as well

as domain decomposition spectral method. As an example, we consider the following

model problem,

¨

∂ 4
x U(x)+λU(x) = f (x), x ∈ Λ,

∂ 2
x U(0) = b, U(0) = a.

(3.23)

We also suppose that x
1

2 e−
β

2
x∂ k

x U(x)→ 0, as x →∞, 0 ≤ k ≤ 2, and x−
1

2 e−
β

2
x∂ 3

x U(x)→
0, as x →∞. This problem is similar to steady beam equation and steady extended Fisher-

Kolmogorov equation (cf. [5]). Let

V (Λ) =
�

v|v ∈ H̃2
ω0,β
(Λ) and v(0) = a

	

,

V (Λ) =
�

v|v ∈ H2
ω0,β
(Λ) and v(0) = 0

	

.
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The bilinear form Aλ(u, v) is the same as in (3.1). By using (3.8), we derive the weak

formulation of (3.23). It is to look for U ∈ V (Λ) such that

Aλ(U , v) + b∂x v(0) = ( f , v)ω0,β
, ∀v ∈ V (Λ). (3.24)

If λ > 5β4/2, then by (3.3), (3.7) and the Lax-Milgram lemma, Problem (3.24) admits a

unique solution. But, the condition λ > 5β4/2 is not essential, as mentioned in Remark

3.1.

In order to design the spectral method for (3.24), we define the finite-dimensional

spaces

VN (Λ) = V (Λ)∩PN (Λ), V N (Λ) = V (Λ)∩PN (Λ).

The spectral method for solving (3.24), is to seek uN ∈ VN (Λ) such that

Aλ(uN ,φ) + b∂xφ(0) = ( f ,φ)ω0,β
, ∀φ ∈ V N (Λ). (3.25)

For the existence of solutions of (3.25), it suffices to check the uniqueness of solution.

Assume that u
(1)
N (x) and u

(2)
N (x) are solutions of (3.25) and ũN (x) = u

(1)
N (x)− u

(2)
N (x) ∈

V N (Λ). Then

Aλ(ũN ,φ) = 0, ∀φ ∈ V N (Λ). (3.26)

Putting φ = ũN in (3.26) and using (3.7), we obtain

1

2
‖∂ 2

x ũN‖2ω0,β
+
�

λ− 5

2
β4
�

‖ũN‖2ω0,β
+ β(∂x ũN (0))

2 ≤Aλ(ũN , ũN ) = 0.

Thus, if λ > 5β4/2, then ũN (x) ≡ 0. This implies the existence and the uniqueness of

solution of (3.25).

We now turn to deal with the convergence of (3.25). We introduce the operator P
2

N ,λ :

V (Λ)→ VN (Λ), defined by

Aλ
�

P
2

N ,λv− v,φ
�

= 0, ∀φ ∈ V N (Λ). (3.27)

We have from (3.24) and (3.27) that

Aλ
�

P
2

N ,λU ,φ
�

+ b∂xφ(0) = ( f ,φ)ω0,β
, ∀φ ∈ V N (Λ). (3.28)

Subtracting (3.28) from (3.25), yields

Aλ
�

uN − P
2

N ,λU ,φ
�

= 0, ∀φ ∈ V N (Λ). (3.29)

Taking φ = uN − P
2

N ,λU ∈ V N (Λ) in (3.29), we obtain

Aλ
�

uN − P
2

N ,λU ,uN − P
2

N ,λU
�

= 0.
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Using (3.7) again, we find that uN = P
2

N ,λU .

We now use Proposition 3.1, with

W (Λ) = V (Λ), W (Λ) = V (Λ), WN (Λ) = VN (Λ), W N (Λ) = V N (Λ),

v = U , w = P2
N ,−2,βU , ∗P2

N ,λU = P
2

N ,λU .

Therefore, we use (3.7) and (3.10) to deduce that

1

2
‖∂ 2

x (U − P
2

N ,λU)‖2ω0,β
+
�

λ− 5

2
β4
�

‖U − P
2

N ,λU‖2ω0,β
+

1

4
β(∂x(U − P

2

N ,λU)(0))2

≤Aλ(U − P
2

N ,λU , U − P
2

N ,λU)≤Aλ(U − P2
N ,−2,βU , U − P2

N ,−2,βU)

≤3

2
‖∂ 2

x (U − P2
N ,−2,βU)‖2ω0,β

+
�

λ+
3

2
β4
�

‖U − P2
N ,−2,βU‖2ω0,β

+
5

4
β(∂x(U − P2

N ,−2,βU)(0))2. (3.30)

According to the construction of P2
N ,−2,β

U , we have ∂ k
x (U − P2

N ,−2,β
U)(0) = 0, k = 0,1.

Thus, thanks to (3.17), the inequality (3.30) reads

1

2
‖∂ 2

x (U − P
2

N ,λU)‖2ω0,β
+
�

λ− 5

2
β4
�

‖U − P
2

N ,λU‖2ω0,β

≤c
�

1+
λ

β4

�

‖∂ 2
x (U − P2

N ,−2,βU)‖2ω0,β
. (3.31)

Since uN = P
2

N ,λU , the following conclusion comes from a combination of (3.31) and (2.9).

Theorem 3.2. If U ∈ H̃2
ω0,β
(Λ), ∂ r

x U ∈ L2
ω−2+r,β

(Λ), λ > 5β4/2, and integers 2≤ r ≤ N + 1,

then

‖U − uN‖2H2
ω0,β
(Λ)
≤ c
�

1+
1

β4

��

1+
λ

β4

�

(βN)2−r‖∂ r
x U‖2ω−2+r,β

. (3.32)

Remark 3.2. In the early work, we often reformed original problems, and then solved

them by using the usual generalized Laguerre approximation. Thus, they are essentially

available for solutions decaying to zero as x increases, see, e.g., [10–12,17]. But our new

approach is also efficient for solutions growing up at infinity. This merit is confirmed by

the numerical experiments in the next section. In fact, the spectral method proposed in

the above is a Petrov-Galerkin spectral method.

We could also design the Laguerre spectral method for problem (3.23) with exact im-

position of boundary conditions. In this case, let V (Λ), V (Λ) and Aλ(u, v) be the same as

before. We set

VN (Λ) = V (Λ)∩PN (Λ)∩
�

v|∂ 2
x v(0) = b
	

,

V N (Λ) = V (Λ)∩PN (Λ)∩
�

v|∂ 2
x v(0) = 0
	

.
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The spectral method for solving (3.24), is to seek uN ∈ VN (Λ) such that

Aλ(uN ,φ) + b∂xφ(0) = ( f ,φ)ω0,β
, ∀φ ∈ V N (Λ). (3.33)

For the convergence analysis, we introduce the operator P
2

N ,λ : V (Λ)→ VN (Λ), defined by

Aλ(P2

N ,λv− v,φ) = 0, ∀φ ∈ V N (Λ).

An argument similar to the derivations of (3.27)-(3.29), leads to uN = P
2

N ,λU . Conse-

quently, ‖∂ k
x (U − uN )‖2ω0,β

= ‖∂ k
x (U − P

2

N ,λU)‖2ω0,β
, k = 0,1,2.

Let P3
N ,−3,β

U be the Laguerre quasi-orthogonal projection given by (2.8) with µ = m=

3, v = U , ∂ 2
x v(0) = b and v(0) = a. Clearly, P3

N ,−3,β
U ∈ VN (Λ) and P

2

N ,λU − P3
N ,−3,β

U ∈
V N (Λ). Therefore, we could use Proposition 3.1 with

W (Λ) = V (Λ), W (Λ) = V (Λ), WN (Λ) = VN (Λ), W N (Λ) = V N (Λ),

v = U , w = P3
N ,−3,βU , ∗P2

N ,λU = P
2

N ,λU .

In other words, we follow the same line as in the derivation of (3.19) to reach that

1

2
‖∂ 2

x
(U − P

2

N ,λ
U)‖2

ω0,β
+
�

λ− 5

2
β4
�

‖U − P
2

N ,λ
U‖2
ω0,β
+

1

4
β
�

∂x (U − P
2

N ,λ
U)(0)
�2

≤3

2
‖∂ 2

x
(U − P3

N ,−3,βU)‖2ω0,β
+
�

λ+
3

2
β4
�

‖U − P3
N ,−3,βU‖2ω0,β

+
5

4
β(∂x(U − P3

N ,−3,βU)(0))2.

Since ∂ k
x (U − P3

N ,−3,β
U)(0) = 0, k = 0,1,2, we use (3.17) to obtain

1

2
‖∂ 2

x (U − P
2

N ,λU)‖2ω0,β
+
�

λ− 5

2
β4
�

‖U − P
2

N ,λU‖2ω0,β

≤c
�

1+
λ

β4

�

‖∂ 2
x (U − P3

N ,−3,βU)‖2ω0,β
. (3.34)

Furthermore, by virtue of (2.9) with k = 3, we observe that for 3≤ r ≤ N + 1,

‖∂ 2
x (U − P3

N ,−3,βU)‖2ω0,β
≤ c

β2
‖∂ 3

x (U − P3
N ,−3,βU)‖2ω0,β

≤ c

β2
(βN)3−r‖∂ r

x U‖2ω−3+r,β
. (3.35)

Since uN = P
2

N ,λU , a combination of (3.34), (3.35) and the embedding inequality, leads to

that if λ > 5β4/2 and integers 3≤ r ≤ N + 1, then

‖U − uN‖2H2
ω0,β
(Λ)
≤ c

β2

�

1+
λ

β4

�

(βN)3−r‖∂ r
x U‖2ω−3+r,β

.

Remark 3.3. Auteri, Parolini and Quartapelle [1] considered the Legendre spectral method

with essential imposition of Neumann condition for second order problems defined on

bounded domains.
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4. Numerical results

We present some numerical results to illustrate the high efficiency of spectral schemes

proposed in the last section.

4.1. Dirichlet boundary value problem

Let ξ
(0,β)
G,N , j

(0 ≤ j ≤ N) be the zeros of the polynomial L
(0,β)
N+1 (x), which are arranged in

ascending order. Meanwhile, ω
(0,β)
G,N , j

(0 ≤ j ≤ N) stand for the corresponding Christoffel

numbers such that

∫

Λ

φ(x)ω0,β(x)d x =

N
∑

j=0

φ
�

ξ
(0,β)

G,N , j

�

ω
(0,β)

G,N , j
, ∀φ ∈ P2N+1(Λ).

The discrete inner product (u, v)N ,0,β is defined by

(u, v)N ,0,β =

N
∑

j=0

u
�

ξ
(0,β)

G,N , j

�

v
�

ξ
(0,β)

G,N , j

�

ω
(0,β)

G,N , j
.

We solve problem (3.12) with λ= 210, by the scheme:

Aλ(uN ,φ) = ( f ,φ)N ,0,β , ∀φ ∈ V N (Λ). (4.1)

Let

φl(x) =
β2

l(l − 1)
L (−2,β)

l
(x) = L

(0,β)

l−2
(x)− 2L

(0,β)

l−1
(x)+ L

(0,β)

l
(x), 2≤ l ≤ N .

Clearly, φl(x) ∈ V N (Λ). In actual computation, we expand the numerical solution as

uN (x) =

N
∑

l=2

ûN ,lφl(x)+ bx + a ∈ VN (Λ).

Inserting the above expression into (4.1) with φ = φk, we obtain

N
∑

l=2

(ak,l − 2β bk,l + β
2dk,l +λgk,l)ûN ,l = Fk, 2≤ k ≤ N , (4.2)

where

ak,l = (∂
2
x
φl ,∂

2
x
φk)ω0,β

=

¨

β3, l = k,

0, otherwise,
bk,l = (∂

2
x
φl ,∂xφk)ω0,β

=







β2, l = k,

−β2, l = k+ 1,

0, otherwise,
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dk,l = (∂
2
x
φl ,φk)ω0,β

=







β , l = k, k+ 2,

−2β , l = k+ 1,

0, otherwise,

gk,l = (φl ,φk)ω0,β
=































6

β
, l = k,

− 4

β
, l = k± 1,

1

β
, l = k± 2,

0, otherwise,

Fk = ( f ,φk)N ,0,β − bλ(x ,φk)ω0,β
− aλ(1,φk)ω0,β

.

Next, we set

A= (ak,l)2≤k,l≤N , B = (bk,l)2≤k,l≤N , D = (dk,l)2≤k,l≤N ,

G = (gk,l)2≤k,l≤N , u = (ûN ,2, ûN ,3, · · · , ûN ,N )
T , F= (F2, F3, · · · , FN )

T .

Then, the system (4.2) becomes

(A− 2βB+ β2D+λG)u = F. (4.3)

The numerical errors are measured by the discrete norm EN = ‖U − uN‖N ,0,β .

We first take the test function U(x) = e−x sinx , which oscillates and decays exponen-

tially as x increases. In Fig. 1, we plot the values of log10 EN with β = 1,2,3, vs. the mode

N . Clearly, the errors decay very fast as N increases. This fact agrees the analysis well.

Indeed, the parameters λ = 210 and β = 1,2,3 fulfill the condition ensuring the conver-

gence as imposed in Proposition 3.1. It is also shown that a suitable choice of parameter β

leads to more accurate numerical results.

According to Remark 3.2, our new method is also available for solutions growing up

at infinity. We now take the test function U(x) = (x2 + 1)(sinx + 1), which oscillates and

grows up as x goes to infinity. In Fig. 2, we plot the values of log10 EN with different N

and β . They coincide with the prediction.
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Figure 1: Numerial errors of (4.1), Example1. 10 15 20 25 30 35
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Figure 2: Numerial errors of (4.1), Example2.
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4.2. Mixed boundary value problem

We now solve problem (3.24) with λ= 210, by the following scheme:

Aλ(uN ,φ) + b∂xφ(0) = ( f ,φ)N ,0,β , ∀φ ∈ V N (Λ). (4.4)

Let

φl(x) =
β

l
L (−1,β)

l
(x) = L

(0,β)

l−1
(x)− L

(0,β)

l
(x), 1≤ l ≤ N .

Clearly, φl(x) ∈ V N (Λ). In actual computation, we expand the numerical solution as

uN (x) =

N
∑

l=1

ûN ,lφl(x)+ a ∈ VN (Λ).

Inserting the above expression into (4.4) with φ = φk, we obtain

N
∑

l=1

(ak,l − 2β bk,l + β
2dk,l +λgk,l)ûN ,l = Fk, 1≤ k ≤ N ,

where

ak,l = (∂
2
x φl ,∂

2
x φk)ω0,β

, bk,l = (∂
2
x φl ,∂xφk)ω0,β

,

dk,l = (∂
2
x φl ,φk)ω0,β

, gk,l = (φl ,φk)ω0,β
,

Fk = ( f ,φk)ω0,β
− bβ − aλ(1,φk)ω0,β

.

Next, we set

A= (ak,l)1≤k,l≤N , B = (bk,l)1≤k,l≤N , D = (dk,l)1≤k,l≤N ,

G = (gk,l)1≤k,l≤N , u = (ûN ,1, ûN ,2, · · · , ûN ,N )
T , F = (F1, F2, · · · , FN )

T .

Then, we derive a compact matrix form which is similar to (4.3).

We first take the test function U(x) = e−x sinx . In Fig. 3, we plot the values of log10 EN

with β = 1,2,3, vs. the mode N . Evidently, the errors decay very fast as N increases. Also,

a suitable choice of parameter β leads to more accurate numerical results.

We next take the test function U(x) = (x2+ 1)(sinx + 1). In Fig. 4, we plot the values

of log10 EN with different N and β . They coincide with the analysis again. In particular,

our new method works well for test functions growing up as x increases.

Remark 4.1. We may change inhomogeneous boundary conditions to homogeneous bound-

ary conditions, by using variable transformations. But for nonlinear problems, the resulting

differential equations usually lose some properties, such as certain conservations, which

play important role in theoretical analysis and actual computations. Thus, it seems better

to use our new method directly. On the other hand, in domain decomposition spectral

method, certain derivatives of numerical solutions should match properly on the com-

mon boundaries of adjacent subdomains. In this case, we also need the Laguerre quasi-

orthogonal approximations used in this work.
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Figure 3: Numerial errors of (4.4), Example1. 10 15 20 25 30 35
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Figure 4: Numerial errors of (4.4), Example2.
Remark 4.2. We see from the numerical results that for fixed λ > 5β4/2, a suitable choice

of parameter β may raise the numerical accuracy. However, so far, there is no theoretical

result on the best choice of β . Generally speaking, it seems reasonable to take certain β so

that the asymptotic behaviors of numerical solutions are similar to those of exact solutions.

But, for fixed λ, we could not take too big β . To show this, we use the scheme (4.1) with

different parameter β = 1,2,6 to solve (3.12) with λ= 50. Clearly, λ > 5β4/2 for β = 1,2,

while this condition does not hold for β = 6. We take the test function U(x) = e−x sinx

and the mode N = 30. The global weighted errors of numerical solutions with β = 1,2 are

3.44E− 7 and 1.04E− 11, respectively. Whereas, the global weighted errors of numerical

solutions with β = 6 is 3.81E− 5.

5. Concluding remarks

In this paper, we proposed the new Laguerre spectral method for high order prob-

lems defined on the half line, with mixed inhomogeneous boundary conditions. The pre-

cise analysis indicated the spectral accuracy of numerical solutions. The numerical results

showed their high accuracy and confirm the analysis well. The suggested algorithms also

work well, even if the approximated solutions grow up at infinity. In fact, in the exist-

ing work, we usually used the variable transformation like U(x , t) = e−γx W (x , t), γ > 0,

and then solved the alternative problem with the unknown function W (x , t) by using the

Laguerre approximation. Thus, those spectral schemes seem available essentially for ap-

proximated solution U(x , t) decaying to zero at infinity. However, in this work, we directly

evaluated U(x , t), which could grow rapidly. Although we only considered two model

problems, the main idea and strategy of this work provide an efficient framework for a

large class of spectral method for unbounded domains, as well as other high order meth-

ods for high order problems.
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