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Abstract. In this paper, we propose a regularized version of the generalized NCP-
function proposed by Hu, Huang and Chen [J. Comput. Appl. Math., 230 (2009),
pp. 69–82]. Based on this regularized function, we propose a semismooth Newton
method for solving nonlinear complementarity problems, where a non-monotone line
search scheme is used. In particular, we show that the proposed non-monotone method
is globally and locally superlinearly convergent under suitable assumptions. We test the
proposed method by solving the test problems from MCPLIB. Numerical experiments
indicate that this algorithm has better numerical performance in the case of p = 5 and
θ ∈ [0.25,075] than other cases.
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1. Introduction

The nonlinear complementarity problem (NCP for short) is to find a point x ∈ ℜn such
that

x ≥ 0, f (x)≥ 0, x T f (x) = 0, (1.1)

where f :ℜn→ℜn is a continuously differentiable mapping with f := ( f1, f2, · · · , fn)
T . If

f is a P0-function, i.e.,

max
1≤i≤n xi 6=yi

(x i − yi)( fi(x)− fi(y)) ≥ 0
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holds for all x , y ∈ ℜn and x 6= y, then we call (1.1) the P0-NCP. The NCP has various
applications in operation research, economics, and engineering (see, for example, [1–4]).
Various methods for solving the NCP have been proposed in the literature (see, for example,
[5–18]). In all the mentioned methods, the so-called NCP-function, i.e., φ(a, b) = 0 if and
only if a ≥ 0, b ≥ 0, ab = 0, plays an important role.

Recently, a family of new NCP-functions was proposed in [19], which is defined by

ωθ p(a, b) := p
p

θ(|a|p + |b|p) + (1− θ)|a− b|p − a− b, (1.2)

where p ∈ (1,+∞),θ ∈ (0,1], and (a, b) ∈ ℜ2. When θ = 1, the function ωθ p reduces
to the function in [20, 21], and when θ = 1 and p = 2, the function ωθ p reduces to the
Fischer-Burmeister function [10]. It was showed in [19, Propositions 2.1 and 2.3] that
the function ωθ p(·, ·) is an NCP function and a semismooth function in ℜ2. Moreover, it
is known that ω2

θ p
(·, ·) is continuously differentiable and strongly semismooth in ℜ2 (see,

e.g., [19, Proposition 2.5]).
In this paper, by using the symmetrically perturbed technique proposed in [22,23], we

give a regularized version of the generalized NCP-function (1.2), which is defined by

φθ p(µ, a, b)

=
p
p

θ(|µa+ b|p + |a+µb|p) + (1− θ)|µa+ b− (a+µb)|p − ((µa+ b) + (a+µb))

=
p
p

θ(|µa+ b|p + |a+µb|p) + (1− θ)|(1−µ)(a− b)|p − (1+µ)(a+ b), (1.3)

where (µ, a, b) ∈ ℜ+ ×ℜ×ℜ; and θ ∈ [0,1] and p ∈ (1,+∞) are two given parameters.
It is obvious that φθ p(0, ·, ·) is an NCP function. For all z := (µ, x) ∈ ℜ+ ×ℜ

n, we define

Hθ p(z) :=

�

µ

Φθ p(z)

�

Ψθ p(z) := ‖Hθ p(z)‖
2 = µ2+ ‖Φθ p(z)‖

2, (1.4)

where

Φθ p(z) :=









φθ p(µ, x1, f1(x))
...

φθ p(µ, xn, fn(x))









. (1.5)

It is easy to see that z := (µ, x) is a solution of Hθ p(z) = 0 if and only if µ = 0 and x

solves the NCP (1.1). We will show that the function Hθ p(z) defined in (1.4) is coercive
with respect to z. Such a property can improve the global convergence of the semismooth
Newton method (see [24, 25]; also see [26] for comparisons about the conditions of the
global convergence). It should be noted that the function Hθ p(z) defined in (1.4) is not
coercive with respect to z if the function φθ p(·, ·, ·) in the definition of Hθ p(·) is replaced
by the function ωθ p(·, ·) given in (1.2).

Many numerical methods based on the NCP-function (or the smoothed NCP-function)
have not only good convergence, but also good numerical results, such as the semismooth
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Newton method and smoothing Newton algorithm. Generally, the theoretical analysis of
these methods was given based the method with a monotone line search; while numerical
experiments were done based on the method with a non-monotone line search in order
to improve the numerical results (see, for example, [18,23–25]). Recently, the theoretical
analysis of non-monotone smoothing Newton algorithms were given in [14] for the NCP
(1.1) and in [27] for system of equalities and inequalities.

In this paper, based on the new function φθ p(·, ·, ·) defined by (1.3), we propose a
semismooth Newton method with a non-monotone line search for solving Hθ p(z) = 0. We
show that the method is globally and locally superlinearly (quadratically) convergent un-
der suitable assumptions. We test the proposed method through solving the test problems
from MCPLIB [28]. Numerical experiments indicate that this method has better numerical
performance in the case of p = 5 and θ ∈ [0.25,075] than other cases. It should be noted
that the case of p = 5 and θ ∈ [0.25,075] is not contained in those known cases given in
the literature (for example, [10,20,21]). In addition, in order to see that how the regular-

ized parameter µ would affect the numerical performance when θ and p are fixed, we also
do some numerical experiments by changing the value of µ0. The numerical results show
that the proposed method has worse numerical performance in the case of µ0 = 0 than the
other cases, which demonstrates that the regularized technique used in this paper is useful
for the numerical computation of the method.

The rest of this paper is organized as follows. In Section 2, we discuss some properties
of the new function. In Section 3, we give a non-monotone semismooth Newton method
for the NCP. The global and local superlinear (quadratic) convergence of the method are
discussed in Section 4. Numerical results are reported in Section 5. The conclusions are
given in Section 6.

Throughout this paper, K := {1,2, · · · } and I = {1,2, · · · , n}; |J | denotes the cardinal-
ity of an index set J ; ℜn denotes the space of n-dimensional real column vectors and ℜn

+

(respectively, ℜn
++) denotes the non-negative (respectively, positive) orthant in ℜn; the su-

perscript T denotes transpose; and the sign(·) denotes sign function. We use vec{ui : i ∈ I }
to denote the vector u, and use diag{ui : i ∈ I } to denote the diagonal matrix whose i-th
diagonal element is ui. For any two vectors x ∈ ℜl and s ∈ ℜr , where l and r are any two
positive integers, we write (x T , sT )T as (x , s) for simplicity. If {αk} and {βk} are two se-
quences in ℜ with αk,βk > 0 for all k ∈K , αk = O(βk) means lim supk→+∞αk/βk < +∞;
and αk = o(βk) means lim supk→+∞αk/βk = 0. For a matrix A∈ ℜm×n, and two index sets
α⊆ {1, · · · , m} and β ⊆ {1, · · · , m}, Aαβ denotes a submatrix of A with Aαβ ∈ ℜ

|α|×|β | . For
any (µ, x) ∈ ℜ×ℜn, we always use the following notation unless stated otherwise:

z := (µ, x), zk := (µk, x k), ∀ k ∈K , zk
i := (µk, x k

i ), ∀ k ∈K , i ∈ I .

For any fixed θ ∈ [0,1] and p ∈ (1,+∞), and any (µ, a, b) ∈ ℜ+×ℜ×ℜ, we denote

hθ p(µ, a, b) := p
p

θ(|µa+ b|p + |a+µb|p) + (1− θ)|(1−µ)(a− b)|p,

h(µ, a, b) :=θ
�

a|µa+ b|p−1sign(µa+ b) + b|a+µb|p−1sign(a+µb)
�

− (1− θ)(a− b)|(1−µ)(a− b)|p−1sign((1−µ)(a− b)).
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2. Preliminaries

In this section, we give some basic concepts and preliminary results which will be used
in our analysis.

A matrix M ∈ ℜn×n is called a P0-matrix if, for every x ∈ ℜn with x 6= 0, there is an
index i0 = i0(x) with x i0

6= 0 and x i0
[M x]i0 ≥ 0; and a P-matrix if, for every x ∈ ℜn with

x 6= 0, it holds that maxi x i[M x]i > 0.
The concept of semismoothness plays an important role in the analysis on local fast

convergence of some Newton-type methods. Such a concept was originally introduced by
Mifflin [29] for functionals and was extended to vector valued functions in [30] by Qi and
Sun. A function f :ℜn→ℜn is said to be semismooth (or strongly semismooth) at x ∈ ℜn

if it is directionally differentiable at x and V d− f ′(x ; d) = o(‖d‖) (or= O(‖d‖2)) holds for
any d → 0 and V ∈ ∂ f (x + d), where ∂ f (x) denotes the Clarke’s generalized Jacobian of
f at x [31].

By the definition of φθ p, similar to the proof of [19, Proposition 2.3], we can obtain
the following lemma.

Lemma 2.1. Let (µ, a, b) ∈ ℜ3 and φθ p be defined by (1.3). Then the function φ2
θ p
(·, ·, ·) is

continuously differentiable in ℜ3; and the function φθ p(·, ·, ·) is strongly semismooth in ℜ3.

Next, we give the expression of the generalized Jacobian of the function Hθ p.

Proposition 2.1. Suppose that f is a continuously differentiable P0-function. Given θ ∈
[0,1], p ∈ (1,+∞), let ∂ Hθ p(z) denote the Jacobian matrix of Hθ p defined by (1.4), then

for any z = (µ, x) ∈ ℜ+ ×ℜ
n, we have

(∂ Hθ p(z))
T ⊆

�

1 vθ p(z)
T

0 Eθ p(z)

�

,

where

vθ p(z) :=vec

¨

h(µ, x i, fi(x))

hθ p(µ, x i, fi(x))
p−1 − (x i + fi(x)) : i ∈ I

«

, (2.1a)

Eθ p(z) :=θµA(z) + θB(z) + (1− θ)(1−µ)C(z)− (1+µ)I

+∇ f (x)[θA(z)+ θµB(z)− (1− θ)(1−µ)C(z)− (1+µ)I], (2.1b)

where I denotes the n× n identity matrix and A(z), B(z), C(z) are possibly multi-valued n× n

diagonal matrices with the i-th diagonal elements given by

Aii(z) :=
|µx i + fi(x)|

p−1si gn(µx i + fi(x))

hθ p(µ, x i, fi(x))
p−1 , (2.2a)

Bii(z) :=
|x i +µ fi(x)|

p−1si gn(x i +µ fi(x))

hθ p(µ, x i, fi(x))
p−1 , (2.2b)

Cii(z) :=
|(1−µ)(x i − fi(x))|

p−1si gn((1−µ)(x i − fi(x)))

hθ p(µ, x i, fi(x))
p−1 (2.2c)
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if (x i, fi(x)) 6= (0,0); and by

Aii(z) := ζi, Bii(z) := ηi , Cii(z) := ξi (2.3)

for any (ζi ,ηi ,ξi) such that |ζi| ≤ 1, |ηi| ≤ 1, |ξi| ≤ 1, and

θ(|ζi |
p/(p−1) + |ηi|

p/(p−1)) + (1− θ)|ξi|
p/(p−1) ≤ 1 (2.4)

if (x i, fi(x)) = (0,0).

Proof. For any z := (µ, x) ∈ ℜ+ ×ℜ
n, it follows from [31, Proposition 2.6.2(e)] that

∂ Hθ p(z)
T ⊆ ∂ Hθ p,1(z)× ∂ Hθ p,2(z)× · · · × ∂ Hθ p,n+1(z), (2.5)

where the right-hand side denotes a set of matrices whose j-th column belongs to ∂ Hθ p, j(z),
and Hθ p, j(z) is the j-th component function. Firstly, from a direct computation, we ob-
tain that ∂ Hθ p,1(z) = (1,0,0, · · · , 0)T ∈ ℜ1+n. Secondly, for j ∈ {2,3, · · · , n + 1}, let
i = j−1, if (x i, fi(x)) 6= (0,0), by a direct computation, we obtain that the first component
of ∂ Hθ p,i(z) is

h1(µ, x i, fi(x))

hθ p(µ, x i, fi(x))
p−1
− (x i + fi(x));

and the last n components of ∂ Hθ p,i(z) are

�

θ |µx i + fi(x)|
p−1si gn(µx i + fi(x))(µei +∇ fi(x))

+θ |x i +µ fi(x)|
p−1si gn(x i +µ fi(x))(ei +µ∇ fi(x))

+(1− θ)(1−µ)|(1−µ)(x i − fi(x))|
p−1si gn((1−µ)(x i − fi(x)))(ei −∇ fi(x))

�

× hθ p(µ, x i, fi(x))
1−p − (1+µ)(ei +∇ fi(x))

=
�

hθ p(µ, x i, fi(x))
1−p{θµ|µx i + fi(x)|

p−1si gn(µx i + fi(x))

+ θ |x i +µ fi(x)|
p−1si gn(x i +µ fi(x))

+(1− θ)(1−µ)|(1−µ)(x i − fi(x))|
p−1si gn((1−µ)(x i − fi(x)))}− (1+µ)

�

ei

+
�

hθ p(µ, x i, fi(x))
1−p{θ |µx i + fi(x)|

p−1si gn(µx i + fi(x))

+ θµ|x i +µ fi(x)|
p−1si gn(x i +µ fi(x))

−(1− θ)(1−µ)|(1−µ)(x i − fi(x))|
p−1si gn((1−µ)(x i − fi(x)))}− (1+µ)

�

∇ fi(x),

where ei ∈ ℜ
n denotes the vector of the i-th component is 1 and the other components are

zeros. Hence (2.1) holds, where

A(z) = diag{Aii(z)}, B(z) = diag{Bii(z)}, C(z) = diag{Cii(z)}

with every Aii(z), Bii(z), Cii(z) being given by (2.2). In addition, if (x i, fi(x)) = (0,0), then
it is easy to obtain that (2.1) holds, where

A(z) = diag{Aii(z)}, B(z) = diag{Bii(z)}, C(z) = diag{Cii(z)}
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with every Aii(z), Bii(z), Cii(z) being given by (2.3) for any (ζi ,ηi ,ξi) satisfying |ζi| ≤ 1,
|ηi| ≤ 1, |ξi| ≤ 1, and

θ(|ζi |
p/(p−1) + |ηi|

p/(p−1)) + (1− θ)|ξi|
p/(p−1) ≤ 1.

The proof is complete. �

Proposition 2.2. Suppose that f is a continuously differentiable P0-function. Given θ ∈
[0,1] and p ∈ (1,+∞). Let Eθ p(z) be defined by (2.1) where z = (µ, x), then for any µ > 0,

−Eθ p(z) is a P-matrix.

Proof. Since f is a continuously differentiable P0-function, it follows that ∇ f (x) is a P0-
matrix, i.e., for any x ∈ ℜn\{0}, there exists an i0 ∈ {i : x i 6= 0} such that

x i0
(∇ f (x)T x)i0 ≥ 0.

In the following, we show that for the same index i0, the inequality

x i0
(−Eθ p(z)

T x)
i0
> 0

holds for any µ > 0. From the definition of Eθ p(z), we obtain that

x i0
(Eθ p(z)

T x)
i0

= (θµAi0 i0
+ θBi0 i0

+ (1− θ)(1−µ)Ci0i0
− (1+µ))x2

i0

+ [θAi0 i0
+ θµBi0 i0

− (1− θ)(1−µ)Ci0i0
− (1+µ)]x i0

(∇ f (x)T x)i0 , (2.6)

where

Ai0i0
:= Ai0 i0

(z) =
|a|p−1sign(a)

d p−1
, Bi0 i0

:= Bi0 i0
(z) =

|b|p−1sign(b)

d p−1
,

Ci0i0
:= Ci0 i0

(z) =
|c|p−1sign(c)

d p−1 , a = µx i0
+ fi0

(x), b = x i0
+µ fi0

(x),

c = (1−µ)(x i0
− fi0

(x)), d = hθ p(µ, x i0
, fi0
(x)) = [θ |a|p + θ |b|p + (1− θ)|c|p]

1
p .

It follows that

|θµAi0 i0
+ θBi0 i0

+ (1− θ )(1−µ)Ci0i0
|

≤θµ|a|p−1+ θ |b|p−1 + (1− θ )|1−µ||c|p−1 × d1−p

=µθ
1
p (θ

p−1
p |a|p−1) + θ

1
p (θ

p−1
p |b|p−1) + |1−µ|(1− θ )

1
p ((1− θ )

p−1
p |c|p−1)× d1−p

≤
�

(µθ
1
p )

p

+ (θ
1
p )

p

+ (|1−µ|(1− θ )
1
p )

p
�

1
p
�

(θ
p−1

p |a|p−1)

p

p−1
+ (θ

p−1
p |b|p−1)

p

p−1

+ ((1− θ )
p−1

p |c|p−1)

p

p−1
�

p−1
p

× d1−p

=

�

µpθ + θ + |1−µ|p(1− θ )
�

1
p

×
�

θ |a|p + θ |b|p + (1− θ )|c|p
�

p−1
p

×
�

θ |a|p + θ |b|p + (1− θ )|c|p
�

1−p

p

=

�

µpθ + θ + |1−µ|p(1− θ )
� 1

p

.
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where the first inequality follows from the triangle inequality; and the second inequality
follows from the well-known Hölder inequality. For µ > 0, it is easy to show that

g(θ) :=
�

µpθ + θ + |1−µ|p(1− θ)
�

1
p

is a monotonically increasing function. Then for any θ ∈ [0,1],

g(θ)≤ g(1) = (1+µp)
1
p < 1+µ.

Thus,
θµAi0 i0

+ θBi0 i0
+ (1− θ)(1−µ)Ci0i0

− (1+µ)< 0.

Similarly,
θAi0 i0

+ θµBi0 i0
− (1− θ)(1−µ)Ci0i0

− (1+µ)< 0.

These, together with the fact that x i0
(∇ f (x)T x)i0 ≥ 0, imply that x i0

(Eθ p(z)
T x)

i0
< 0 for

any µ > 0. Therefore, for any µ > 0, −Eθ p(z) is a P-matrix. �

From Propositions 2.1 and 2.2, the following result can be easily obtained.

Corollary 2.1. Suppose that f is a continuously differentiable P0-function. Given θ ∈ [0,1]
and p ∈ (1,+∞). Then, for any z = (µ, x) ∈ ℜ × ℜn with µ > 0, all V ∈ ∂ Hθ p(z) are

nonsingular.

If µ = 0, then the result obtained above does not hold in general. In the following, we
give a condition for which all generalized Jacobians of Hθ p at a solution of the NCP are
nonsingular.

Let z∗ = (µ∗, x∗) ∈ ℜ+ ×ℜ
n be a solution of Hθ p(z

∗) = 0. Then, µ∗ = 0 and x∗ is a
solution of (1.1). Associated to the solution x∗, we define three index sets:

ᾱ := {i|x∗i > 0}, β̄ := {i|x∗i = fi(x
∗) = 0}, γ̄ := {i| fi(x

∗)> 0}. (2.7)

We say that the solution x∗ is R-regular if∇ fᾱᾱ(x
∗) is nonsingular and the Schur-complement

of ∇ fᾱᾱ(x
∗) in

M =

�

∇ fᾱᾱ(x
∗) ∇ fᾱβ̄(x

∗)

∇ fβ̄ᾱ(x
∗) ∇ fβ̄ β̄ (x

∗)

�

(2.8)

is a P-matrix.

Proposition 2.3. Suppose that z∗ = (µ∗, x∗) ∈ ℜ+×ℜ
n is a solution of Hθ p(z

∗) = 0, and x∗

is an R-regular solution of the NCP, then all V ∈ ∂ Hθ p(z
∗) are nonsingular.

Proof. From Proposition 2.1, it can be seen that for any V ∈ ∂ Hθ p(z
∗), there exists a

W (z∗) := (vθ p(z
∗), Eθ p(z

∗)) ∈ ℜn ×ℜn×n such that

V =

�

1 0
vθ p(z

∗) Eθ p(z
∗)

�

, (2.9)
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where

Eθ p(z
∗) = θB(z∗) + (1− θ)C(z∗)− I +∇ f (x∗)[θA(z∗)− (1− θ)C(z∗)− I], (2.10)

with µ∗ = 0 and A(z∗), B(z∗), C(z∗) being characterized as in Proposition 2.1. By the
definition of V , it is easy to see that nonsingularity of V is equivalent to nonsingularity of
Eθ p(z

∗). With the expression of∇ f (x∗), Eθ p(z
∗) can be written in the following partitioned

form:

Eθ p(z
∗) =









(θ − 2)∇ fᾱᾱ ∇ fᾱβ̄

�

θAβ̄ β̄ − (1− θ)Cβ̄β̄ − Iβ̄ β̄

�

0ᾱγ̄
(θ − 2)∇ fβ̄ ᾱ

�

θBβ̄ β̄ + (1− θ)Cβ̄ β̄ − Iβ̄ β̄

�

+ δθβ̄ 0β̄ γ̄
(θ − 2)∇ fγ̄ᾱ ∇ fγ̄β̄

�

θAβ̄ β̄ − (1− θ)Cβ̄ β̄ − Iβ̄ β̄

�

(θ − 2)Iγ̄γ̄









.

where

Aβ̄ β̄ := Aβ̄ β̄(z
∗), Bβ̄ β̄ := Bβ̄ β̄ (z

∗), Cβ̄ β̄ := Cβ̄ β̄(z
∗),

δθ β̄ =∇ fβ̄ β̄

�

θAβ̄ β̄ − (1− θ)Cβ̄ β̄ − Iβ̄ β̄

�

.

Thus, Eθ p(z
∗) is nonsingular if and only if the matrix

U =

�

(θ − 2)∇ fᾱᾱ ∇ fᾱβ̄

�

θAβ̄ β̄ − (1− θ)Cβ̄ β̄ − Iβ̄ β̄

�

(θ − 2)∇ fβ̄ᾱ

�

θBβ̄ β̄ + (1− θ)Cβ̄ β̄ − Iβ̄ β̄

�

+ δθ β̄

�

(2.11)

is nonsingular; which is equivalent to that if the zero vector is the unique solution of the
system of equations

U y = U

�

yᾱ
yβ̄

�

= 0. (2.12)

It is easy to see that this system can be rewritten as

(θ − 2)∇ fᾱᾱ yᾱ +∇ fᾱβ̄

�

θAβ̄ β̄ − (1− θ)Cβ̄ β̄ − Iβ̄ β̄

�

yβ̄ = 0, (2.13a)

(θ − 2)∇ fβ̄ᾱ yᾱ +
��

θBβ̄ β̄ + (1− θ)Cβ̄ β̄ − Iβ̄ β̄

�

+ δθ β̄
�

yβ̄ = 0. (2.13b)

Suppose that x∗ is an R-regular solution of the NCP, then∇ fᾱᾱ is nonsingular. Thus, solving
the first equation with respect to yᾱ and substituting it into the second equation, we have

yᾱ =−((θ − 2)∇ fᾱᾱ)
−1∇ fᾱβ̄

�

θAβ̄ β̄ − (1− θ)Cβ̄ β̄ − Iβ̄β̄

�

yβ̄ , (2.14a)
�

∇ fβ̄ β̄ −∇ fβ̄ ᾱ∇ f −1
ᾱᾱ ∇ fᾱβ̄

��

Iβ̄β̄ − θAβ̄ β̄ + (1− θ)Cβ̄ β̄
�

yβ̄

=
�

θBβ̄β̄ + (1− θ)Cβ̄ β̄ − Iβ̄β̄

�

yβ̄ , (2.14b)

where ∇ fβ̄ β̄ − ∇ fβ̄ ᾱ∇ f −1
ᾱᾱ ∇ fᾱβ̄ is the Schur-complement of ∇ fᾱᾱ in the matrix M defined by

Eq. (2.8). Consequently, it is a P-matrix by the R-regularity assumption. Furthermore, showing
the nonsingularity of U is equivalent to showing that the unique solution of the second equation
of (2.14a) is the zero vector. We proceed by contradiction. Suppose that there exists a solution
yβ̄ 6= 0, and consider the two cases:
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(a) Suppose that
�

Iβ̄ β̄ − θAβ̄ β̄ + (1− θ)Cβ̄ β̄
�

yβ̄ = 0. Define Î = {i|yβ̄ i
6= 0}. Then for any

i ∈ Î , 1− θAii + (1− θ)Cii = 0. We assume that θBii + (1− θ)Cii − 1 = 0 for the same index i.
Then, it follows that θ(Aii + Bii) = 2, this is a contradiction with |Aii | ≤ 1, |Bii | ≤ 1 and

θ(|Aii |
p/(p−1) + |Bii |

p/(p−1)) + (1− θ)|Cii |
p/(p−1) ≤ 1

from Proposition 2.1. So, θBii + (1− θ)Cii − 1 6= 0, and hence,
�

θBβ̄ β̄ + (1− θ)Cβ̄β̄ − Iβ̄ β̄

�

yβ̄ 6= 0.

This and the assumption lead to a contradiction to the second equation of (2.14a).
(b) Suppose that

�

Iβ̄β̄ − θAβ̄ β̄ + (1− θ)Cβ̄ β̄
�

yβ̄ 6= 0. Since for any i ∈ I , |Aii | ≤ 1, |Bii | ≤
1, |Cii | ≤ 1, 1− θAii + (1− θ)Cii and θBii + (1− θ)Cii − 1 which are both nonzero (if any) have
opposite signs. Thus,

�

�

Iβ̄β̄ − θAβ̄ β̄ + (1− θ)Cβ̄ β̄
�

yβ̄

�

i

�

�

∇ fβ̄ β̄ −∇ fβ̄ ᾱ∇ f −1
ᾱᾱ ∇ fᾱβ̄

�

�

Iβ̄ β̄ − θAβ̄ β̄ + (1− θ)Cβ̄ β̄
�

yβ̄

�

i

≤ 0. (2.15)

Since ∇ fβ̄ β̄ −∇ fβ̄ ᾱ∇ f −1
ᾱᾱ ∇ fᾱβ̄ is a P-matrix, we have

�

Iβ̄β̄ − θAβ̄ β̄ + (1− θ)Cβ̄β̄
�

yβ̄ = 0,

which is a contradiction to the assumption. Therefore, the proof is complete. �

The following result is about the coerciveness of Hθ p(·), which will be used in our analysis on
the convergence of the algorithm.

Proposition 2.4. Suppose that f is a continuously differentiable P0-function. For any sequence {zk}
satisfying that ‖zk‖ → +∞ as k → +∞ and µk ∈ [µ̂, µ̃], where µ̂ and µ̃ are positive scalars with

µ̂ < µ̃, it follows that ‖Hθ p(z
k)‖ →+∞ as k→+∞.

Proof. By the definition of Hθ p(·), we only need to prove that limk→+∞ ‖Φθ p(z
k)‖ = +∞. Suppose

that the proposition is not true, then there exists a sequence {(µk, xk)} such that

0< µ̂ ≤ µk ≤ µ̃, ‖Φθ p(z
k)‖ ≤ c, ‖xk‖ →+∞, (2.16)

where c > 0 is certain constant. Since the sequence {xk} is unbounded, the index set N := {i ∈
{1, · · · , n} : {xk

i
} is unbounded} is nonempty. Without loss of generality, we can assume that

{|xk
i
|} →+∞ for any i ∈ N . Let the sequence { x̂k} be defined by

x̂k
i
= 0 if i ∈ N and x̂k

i
= xk

i
if i 6∈ N . (2.17)

Then, { x̂k} is obviously bounded. Noting that f is a P0-function, we have

0≤ max
1≤i≤n x k

i 6= x̂ k
i

(xk
i
− x̂k

i
)[ fi(x

k)− fi( x̂
k)] = xk

i0
[ fi0
(xk)− fi0

( x̂k)], (2.18)

where i0 ∈ N is one of the indices for which maxi∈N xk
i
[ fi(x

k) − fi( x̂
k)] is attained, and i0 is

assumed, without loss of generality, to be independent of k. Noting that i0 ∈ N , it follows that
|xk

i0
| →+∞ as k→+∞. We now consider the following two cases:
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Case 1 Suppose that xk
i0
→ +∞ as k→ +∞. Since { fi0

( x̂k)} is bounded by the continuity of fi0
and

{ x̂k} is bounded, it follows from (2.18) that { fi0
(xk)} is bounded below. Since 0< µ̂ < µk <

µ̃, we have µk xk
i0
+ fi0

(xk) → +∞ and xk
i0
+ µk fi0

(xk) → +∞. Hence, by [19, Proposition

2.4] and (1.5), we get ‖Φθ p(z
k)‖→ +∞ as k→+∞.

Case 2 Suppose that xk
i0
→ −∞ as k → +∞. Since fi0

( x̂k) is bounded, it follows from (2.18) that

fi0
(xk) ≤ fi0

( x̂k) for a sufficiently large number k ∈ K . Since 0 < µ̂ < µk < µ̃, we have
µk xk

i0
+ fi0

(xk)→−∞ and xk
i0
+µk fi0

(xk)→−∞. Hence, by [19, Proposition 2.4] and (1.5),

we get ‖Φθ p(z
k)‖→+∞ as k→+∞.

In either case, we obtain ‖Φθ p(z
k)‖ →+∞ as k→+∞, which is a contradiction to the boundedness

of {Ψθ p(z
k)}. This completes the proof. �

Assumption 2.1. The solution set S = {x ∈ ℜn : x ≥ 0, f (x) ≥ 0, x T f (x) = 0} of the NCP (1.1) is

nonempty and bounded.

3. A Semismooth Newton Method

In this section, we propose a semismooth Newton method for solving Hθ p(z) = 0, and give
some basic results.

Algorithm 3.1. (A semismooth Newton method with a non-monotone line search)

Step 0 Given any p ∈ (1,+∞), and choose δ ∈ (0,1),σ ∈ (0,1/2),θ ∈ [0,1], t ∈ [1/2,1], and a

positive integer M. Let z0 := (µ0, x0) ∈ ℜ++ ×ℜ
n be an arbitrary vector. Choose γ ∈ (0,1)

such that γµ0 < 1. Set e0 := (1,0, · · · , 0) ∈ ℜ1+n, C0 := Ψθ p(z
0), βθ p(z

−1) := γ, and

Q0 := 1. Choose η0 ∈ [0,1] and a sufficiently small positive number ǫ. Set m0 := 1 and

k := 0.

Step 1 If Ψθ p(z
k) = 0, stop. Otherwise, let

βθ p(z
k) :=min{γ,γΨθ p(z

k)t ,βθ p(z
k−1)}. (3.1)

Step 2 Compute ∆zk := (∆µk,∆xk) ∈ ℜ×ℜn by

V∆zk =−Hθ p(z
k) +µ0βθ p(z

k)e0, (3.2)

where V ∈ ∂ Hθ p(z
k).

Step 3 Let αk be the maximum of the values 1,δ,δ2, · · · such that

Ψθ p(z
k +αk∆zk)≤ Ck − 2σ(1− γµ0)αkΨθ p(z

k). (3.3)

Step 4 Set zk+1 := zk +αk∆zk, and mk :=min{k, M}. If
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mk−1
∑

i=1

ηk−iΨθ p(z
k−i)≤ Σmk−1

i=1 ηk−iΨθ p(z
k),or, Ψθ p(z

k) < ǫ, (3.4)

we set ηk := 0; otherwise, we choose ηk ∈ (0,1]. Set

Ck :=
ηk

∑mk−1
i=1 ηk−iΨθ p(z

k−i) +Ψθ p(z
k)

Qk

. (3.5)

where Qk := 1+ηk

∑mk−1
i=1 ηk−i , and k := k+ 1, Go to step 1.

In Algorithm 3.1, a non-monotone line search scheme is adopted. Such a non-monotone line
search scheme were originally introduced by Hu, Huang, and Wang [14] in a smoothing Newton
algorithm for the NCP; and by Hu, Huang, and Lu [32] in a descent algorithm for unconstrained
optimization. It is easy to see that Ck is a convex combination of Ψθ p(z

0),Ψθ p(z
1), · · · ,Ψθ p(z

k).
The choice of ηk controls the degree of the non-monotonicity. If ηk = 0 for all k ∈ K , then the
line search reduces to the usual monotone Armijo line search. It should be noted that Algorithm
3.1 is a non-monotone semismooth Newton method, which is different from those non-monotone
algorithms mentioned above.

Lemma 3.1. Suppose that f is a continuously differentiable P0-function and the sequence {zk} is

generated by Algorithm 3.1. Then the following results hold.

(a) For all k ∈ K , Ψθ p(z
k)≤ Ck.

(b) The sequence {βθ p(z
k)} is monotonically decreasing.

(c) Let N := {(µ, x) ∈ ℜ++ ×ℜ
n : βθ p(z)µ0 ≤ µ0}. Then zk ∈ N for any k ∈ K and 0 < µk+1 ≤

µk.

(d) Algorithm 3.1 is well-defined.

Proof. (a) By Step 0, we know that C0 := Ψθ p(z
0). In the following, we assume that k > 0. When

mk−1
∑

i=1

ηk−iΨθ p(z
k−i)≤

mk−1
∑

i=1

ηk−iΨθ p(z
k)

or Ψθ p(z
k)< ǫ, we have ηk := 0, and hence, Ck := Ψθ p(z

k) by (3.5). Otherwise, i.e., when

mk−1
∑

i=1

ηk−iΨθ p(z
k−i)>

mk−1
∑

i=1

ηk−iΨθ p(z
k),

by(3.5), we have that

Ck =

ηk

mk−1
∑

i=1
ηk−iΨθ p(z

k−i) +Ψθ p(z
k)

Qk

>

ηk

mk−1
∑

i=1
ηk−iΨθ p(z

k) +Ψθ p(z
k)

Qk

=

(ηk

mk−1
∑

i=1
ηk−i + 1)Ψθ p(z

k)

Qk

=Ψθ p(z
k). (3.6)
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Then, Ψθ p(z
k)≤ Ck holds for any k ∈K .

(b) From the definition of βθ p in (3.1), the result (b) is obviously satisfied.
(c) When k = 0,

µ0βθ p(z
0) = µ0 min{γ,γΨθ p(z

0)t ,βθ p(z
−1)} ≤ µ0βθ p(z

−1) = µ0γ < µ0,

i.e., z0 ∈ N holds. Without lose of generality, suppose that zk ∈ N . Then,

µ0βθ p(z
k+1)−µk+1 = µ0βθ p(z

k+1)− (µk +αk∆µk)

= µ0βθ p(z
k+1)− [(1−αk)µk +αkµ0βθ p(z

k)]

≤ µ0βθ p(z
k+1)− [(1−αk)µ0βθ p(z

k) +αkµ0βθ p(z
k)]

= µ0[βθ p(z
k+1)−βθ p(z

k)]≤ 0. (3.7)

That is, zk+1 ∈ N . Therefore, zk ∈ N holds for all k ∈ K .
Next, we show that 0 < µk+1 ≤ µk for any k ∈ K . Obviously, µ0 > 0. We assume that µk > 0.

From the first equation in (3.2), we have ∆µk =−µk +µ0βθ p(z
k). Thus,

µk+1 = µk +αk∆µk = (1−αk)µk +αkµ0βθ p(z
k)> 0, (3.8a)

µk+1 = (1−αk)µk +αkµ0βθ p(z
k)≤ (1−αk)µk +αkµk = µk. (3.8b)

Thus, the results in (c) hold.
(d) Firstly, from (c) we know that µk > 0 for all k ∈ K . Thus, it follows form Corollary 2.1 that

the system of equations (3.2) is solvable. Secondly, we show that Step 3 is well defined. For any
z ∈ ℜ++ ×ℜ

n, we denote ϕθ p(z) := ‖Φθ p(z)‖
2. For any zk ∈ ℜ++ ×ℜ

n with µk > 0 and k ∈ K ,
there exists a Wk ∈ ∂ ϕθ p(z

k) such that

(∇ϕθ p(z
k))T△zk = 2(Φθ p(z

k))T Wk△zk

=−2(Φθ p(z
k))TΦθ p(z

k) =−2ϕθ p(z
k). (3.9)

Since t ∈ [1/2,1], we can show that βθ p(z
k)≤ γΨθ p(z

k)1/2. Thus, using µk+α∆µk = (1−α)µk+

αµ0βθ p(z
k), we have

(µk +α∆µk)
2 = (1−α)2µ2

k
+ 2(1−α)αµ0µkβθ p(z

k) + µ2
0βθ p(z

k)2α2

≤ (1−α)2µ2
k
+ 2αµ0µkγΨθ p(z

k)1/2 +O(α2)

≤ (1−α)2µ2
k
+ 2αµ0γ‖Hθ p(z

k)‖Ψθ p(z
k)1/2 +O(α2)

= (1−α)2µ2
k
+ 2αµ0γΨθ p(z

k) +O(α2). (3.10)

Define h(α) = ϕθ p(z
k +α∆zk)−ϕθ p(z

k)−α(∇ϕθ p(z
k))T∆zk. Since ϕθ p(·) is continuously differ-

entiable at any zk ∈ ℜn+1, we have h(α) = o(α), and hence,

‖Φθ p(z
k +α∆zk)‖2

= ϕθ p(z
k +α∆zk)

= ϕθ p(z
k) +α(∇ϕθ p(z

k))T∆zk + h(α)

= ϕθ p(z
k)− 2αϕθ p(z

k) + o(α) (b y (3.9))

= (1− 2α)ϕθ p(z
k) + o(α)≤ (1− 2α)Ψθ p(z

k) + o(α). (3.11)
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Therefore, we obtain

Ψθ p(z
k +α∆zk) = (µk +α∆µk)

2 + ‖Φθ p(z
k +α∆zk)‖2

≤ (1−α)2µ2
k
+ 2αµ0γΨθ p(z

k) +O(α2) + (1− 2α)Ψθ p(z
k) + o(α)

≤ Ψθ p(z
k)− 2(1− γµ0)αΨθ p(z

k) + o(α)

≤ Ck − 2(1− γµ0)αΨθ p(z
k) + o(α), (3.12)

where the last inequality holds from the result (a). The above inequality implies that there exists
ᾱ ∈ (0,1] such that

Ψθ p(z
k + α̂∆zk) ≤ Ck − 2σ(1− γµ0)α̂Ψθ p(z

k)

for all α̂ ∈ [0, ᾱ], which implies that Step 3 is well defined. Therefore, Algorithm 3.1 is well
defined. �

4. Convergence of Algorithm 3.1

In this section, we will consider the global and local superlinear convergence of Algorithm 3.1.

Lemma 4.1. Suppose that f is a P0-function and Assumption 2.1 holds. Suppose that {µk} and {νk}
are two infinite sequences such that for each k ∈K , µk > 0,νk ≥ 0 satisfying

lim
k→+∞

µk = 0 and lim
k→+∞

νk = 0. (4.1)

For each k ∈ K , let xk ∈ ℜn satisfying

n
∑

i=1

φ2
θ p
(µk, xk

i
, fi(x

k))≤ νk. (4.2)

Then {xk} remains bounded and every accumulation point of {xk} is a solution of the NCP (1.1).

Proof. The proof is similar to the one in [33, Theorem 5.4]. We omit its proof. �

Lemma 4.2. Let Hθ p(·) and βθ p(·) be defined by (1.4) and (3.1), respectively. {zk} is the infinite

iteration sequence generated by Algorithm 3.1. Then

lim
k→+∞

βθ p(z
k) = 0 and lim

k→+∞
Ψθ p(z

k) = 0. (4.3)

Proof. By Lemma 3.1 (b)(c), we obtain that sequences {βθ p(z
k)} and {µk} are monotonically

decreasing and zk ∈ N for all k ∈ K . It is not difficult to see that both {µk} and {βθ p(z
k)} are

convergent. We denote their limit points by µ∗ and β∗θ p
, respectively. Then we have µ∗ ≥ β

∗
θ p
≥ 0.

Suppose that β∗
θ p
6= 0, then µ∗ ≥ β

∗
θ p
> 0. Since

0< βθ p(z
∗)µ0 ≤ βθ p(z

k+1)µ0 ≤ βθ p(z
k)µ0 ≤ µk ≤ µk−1 ≤ · · · ≤ µ0, (4.4)

by the definition of βθ p(·), we can obtain that the sequence {Ψθ p(z
k)} is bounded. Thus, by Proposi-

tion 2.4, we obtain that the sequence {zk} must be bounded. Without loss of generality, we assume
that limk→∞ zk = z∗ := (µ∗, x∗). Then,

lim
k→+∞

Ψθ p(z
k) = Ψθ p(z

∗)> 0 and lim
k→+∞

βθ p(z
k) = βθ p(z

∗)> 0. (4.5)

Let αk be the step-length at the k-th step iteration. We consider the following two cases.
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Case 1 Suppose that αk ≥ d > 0 for all k, where d is a constant. Then, by combining

Ψθ p(z
k +αk∆zk)≤Ck − 2σ(1− γµ0)αkΨθ p(z

k) + o(α)

≤Ck − 2σ(1− γµ0)dΨθ p(z
k) + o(α) (4.6)

with the fact that limsupk→+∞ Ck =Ψθ p(z
∗) by (3.5), we have

Ψθ p(z
∗)≤Ψθ p(z

∗)− 2σ(1− γµ0)dΨθ p(z
∗), (4.7)

i.e., 1≤ 1−2σ(1−γµ0)d, which contradicts the fact that d ∈ (0,1], 2σ ∈ (0,1), and γµ0 < 1.

Case 2 Suppose that limk→+∞ αk = 0. Then, the stepsize α̂k := αk/δ does not satisfy the line search
criterion (3.3) for any sufficiently large k, i.e.

Ψθ p(z
k + α̂k∆zk)>Ck − 2σ(1− γµ0)α̂kΨθ p(z

k)

≥[1− 2σ(1− γµ0)α̂k]Ψθ p(z
k). (4.8)

Hence [Ψθ p(z
k + α̂k∆zk)−Ψθ p(z

k)]/α̂k >−2σ(1− γµ0)Ψθ p(z
k). Furthermore,

−2σ(1− γµ0)Ψθ p(z
∗)≤2Hθ p(z

∗)T V∆z∗

=2Hθ p(z
∗)T[−Hθ p(z

∗) +µ0βθ p(z
∗)e0]

=− 2Hθ p(z
∗)T Hθ p(z

∗) + 2µ0βθ p(z
∗)Hθ p(z

∗)T e0

≤2(−1+ γµ0)Ψθ p(z
∗), (4.9)

where in the second step we have used Eq. (3.2) and in the last step we have used Eq. (3.1).
By Ψθ p(z

∗) > 0 and γµ0 < 1, we have −2σ(1− γµ0) ≤ −2(1− γµ0) which implies σ ≥ 1.
This contradicts the fact that σ ∈ (0,1/2).

By combining Case 1 with Case 2, we obtain βθ p(z
∗) = 0, i.e., the first result of the lemma

holds. This, together with the definition of the function βθ p(·), implies that there exists a subse-
quence {zkn} such that the sequence {Ψθ p(z

kn)} converges to zero. Thus, by (3.4) given in Algorithm
3.1, we know that ηk = 0 for all sufficiently large k. Thus, Ψθ p(z

k+1) ≤ Ψθ p(z
k) for all sufficiently

large k. Therefore, the sequence {Ψθ p(z
k)} converges to zero, i.e., the second result of the lemma

holds. �

Combining Lemmas 4.1 and 4.2, we obtain the global convergence of Algorithm 3.1.

Theorem 4.1. Suppose that f is a continuously differentiable P0-function and the sequence {(µk, xk)}
is generated by Algorithm 3.1. If Assumption 2.1 is satisfied, then the infinite iteration sequence

{(µk, xk)} is bounded and every accumulation point (µ∗, x∗) of the sequence satisfies that µ∗ = 0 and

x∗ is a solution of the NCP (1.1).

Now, we investigate the local superlinear (quadratic) convergence of Algorithm 3.1. By the
definition of βθ p(·) in (3.1), we have that βθ p(z

k) ≤ γΨθ p(z
k)t for all k ∈ K . By a similar way as

the one in [25, Theorem 5.1], we obtain the superlinear (quadratic) convergence of Algorithm 3.1
as follows.

Theorem 4.2. Assume that f is a continuously differentiable P0-function and Assumption 2.1 is satis-

fied. Let t = 1. Suppose that z∗ := (µ∗, x∗) ∈ ℜ+×ℜ
n is an accumulation point of the infinte sequence
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{zk} generated by Algorithm 3.1 and all V ∈ ∂ Hθ p(z
∗) are nonsingular. Then the whole sequence {zk}

converges to z∗ with

‖zk+1 − zk‖= o(‖zk − z∗‖), µk+1 = o(µk). (4.10)

Furthermore, if ∇ f is locally Lipschitz continuous around x∗, then

‖zk+1 − zk‖ = O(‖zk − z∗‖2), µk+1 = O(µ2
k
). (4.11)

By Proposition 2.3, if the assumption that all V ∈ ∂ Hθ p(z
∗) are nonsingular is replaced by that

the NCP is R-regular at x∗, then all conclusions of Theorem 4.2 hold.

5. Numerical Results

In this section, we implement Algorithm 3.1 for solving complementarity problems from MC-
PLIB [28] by the codes in Matlab. All experiments were done at an PC with CPU of 2.8 GHz
and RAM of 2.00GB. In our computational experiments, the parameters used in the algorithm are
chosen as follows:

σ = 10−4, γ= 0.02, δ = 0.5, t = 0.75, µ0 = 0.1, M = 5, ǫ = 10−6.

And if (3.4) holds, set ηk = 0; otherwise, set ηk = 0.85. The starting points x0 are taken according
to those given in [28] and we use ‖Hθ p(z

k)‖ ≤ 10−6 as the stopping rule. We test all most problems
in MCPLIB [28] to see the numerical behavior of Algorithm 3.1 on three specific values of p, i.e.,
p=1.1, 2, 5; and five specific values of θ , i.e., θ = 0,0.25,0.5,0.75,1.

To compare the performance profile of the cases: p = 1.1, p = 2, p = 5 with respect to the
iterative number, we give some numerical analysis based on the performance profile proposed
in [34]. Now, we give a brief introduction of this method. Let S := {p = 1.1, p = 2, p = 5}, the
schemes to be compared; B be the set of the 225 problems from MCPLIB; and tb,s be the number
of iterations needed to solve problem b by scheme s. Then, we compute

ρs(τ) :=
1

225
size

�

b ∈ B : rb,s ≤ τ
�

,
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e pro�le for test problems in MCPLIB with the s
hemes: θ = 0, θ = 0.25, θ =

0.5, θ = 0.75, θ = 1.
where rb,s :=

t b,s

min{t b,s:s∈S }
. ρs(τ) is the probability for scheme s ∈ S that a performance ratio rb,s is

within a factor τ ∈ ℜ of the possible ratio, and it is the distribution function for the performance
ratio rb,s. The analysis results are mapped in Fig. 1. It was pointed out in [34] that schemes with
large probability ρs(τ) are to be preferred. From Fig. 1, we can see that Algorithm 3.1 works better
for the scheme of p = 5 than the schemes of p = 1.1 and p = 2.

Then, we also compare the performance profile of the cases: θ = 0, θ = 0.25, θ = 0.5, θ =
0.75, θ = 1 when p = 5. The analysis results are mapped in Fig. 2. From Fig. 2, we can see that
Algorithm 3.1 in the case of θ ∈ [0.25,0.75] is comparable to the cases of θ = 0 and θ = 1.

From the above numerical results, we see that the proposed method has better numerical per-
formance in the case of p = 5 and θ ∈ [0.25,075] than other cases.

In addition, it is easy to see that the regularized parameter µ introduced in φθ p defined by (1.3)
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plays an important role in the proof of the global convergence of Algorithm 3.1. A natural question
is How the parameter µ affect the implementation of Algorithm 3.1 depends on the initial value of µ,

that is µ0. In the following, we give the performance profile of the testings of Algorithm 3.1 for the
same problems as above through choosing the parameter µ0 in the cases of µ0 = 0, µ0 = 10−5, and
µ0 = 0.1, respectively, where for the case of p = 5 and θ = 0.5, the numerical results are mapped
to Fig. 3; and for the case of p = 5 and θ = 0, 0.5, 1.0, the numerical results are mapped to Fig. 4.
From Figs. 3 and 4, we can get that Algorithm 3.1 works best for the case of µ0 = 0.1 and worst for
the case of µ0 = 0. This demonstrates that it is helpful for the numerical computation to introduce
the regularized parameter µ into the NCP function ωθ p defined by (1.2). We have also tested some
other cases, and find that if µ0 is too large, the number of iterations becomes large as µk converges
to zero. Thus, from the view of computation, it is not suitable for Algorithm 3.1 to choose large µ0.

6. Conclusions

Based on a symmetrically perturbed function of the generalized NCP-function in [19], we pro-
posed a regularized semismooth Newton method with a non-monotone line search for solving the
P0-NCP. We showed that the proposed method is globally and locally superlinearly (quadratically)
convergent under suitable assumptions. We also reported some numerical results, which demon-
strate the proposed method is effective for solving the problems from MCPLIB. Numerical experi-
ments indicate that the proposed method has better numerical performance in the case of p = 5
and θ ∈ [0.25,075] than other cases; while the case of p = 5 and θ ∈ [0.25,075] is not contained
in those known cases given in literature. In addition, the method has better numerical performance
in the case of µ0 = 0.1 than the other cases. Thus, it is valuable to investigate the symmetrically
perturbed function φθ p defined by (1.3) and the semismooth Newton method for the P0-NCP. It is
interesting whether the function φθ p can be extended to the case of symmetric cones or not; and
by which some methods can be designed to solving the symmetric cone complementarity problem.
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