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Abstract. In this paper, we investigate the superconvergence property and the L∞-error
estimates of mixed finite element methods for a semilinear elliptic control problem
with an integral constraint. The state and co-state are approximated by the order one
Raviart-Thomas mixed finite element space and the control variable is approximated
by piecewise constant functions or piecewise linear functions. We derive some super-
convergence results for the control variable and the state variables when the control is
approximated by piecewise constant functions. Moreover, we derive L∞-error estimates
for both the control variable and the state variables when the control is discretized by
piecewise linear functions. Finally, some numerical examples are given to demonstrate
the theoretical results.
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1. Introduction

The finite element approximation plays an important role in the numerical treatment
of optimal control problems. There have been extensive studies in convergence and su-
perconvergence of finite element approximations for optimal control problems, (see, e.g.,
[1, 6, 11–15, 20–24]). A systematic introduction of finite element methods for PDEs and
optimal control problems can be found in, (e.g., [8, 17]). Note that all the above papers
aim at the standard finite element methods for optimal controls.
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Compared with standard finite element methods, the mixed finite methods have many
advantages. When the objective functional contains gradient of the state variable, we will
firstly choose the mixed finite element methods. We have done some works on priori error
estimates and superconvergence properties of mixed finite elements for optimal control
problems [3–5]. In [4], we used the postprocessing projection operator, which was de-
fined by Meyer and Rösch (see [20]) to prove a quadratic superconvergence of the control
by mixed finite element methods. Recently, we derived error estimates and superconver-
gence of mixed methods for convex optimal control problems in [5]. But in that paper,

the convergence order is h
3
2 since the analysis was restricted by the low regularity of the

control.
The goal of this paper is to derive the superconvergence property and the L∞-error

estimates of mixed finite element approximation for a semilinear elliptic control problem
with an integral constraint. Firstly, when the control is approximated by piecewise constant
functions, we derive the superconvergence property between average L2 projection and

the approximation of the control variable, the convergence order is h2 instead of h
3
2 in [5],

which is caused by the different admissible set. Then, after solving a fully discretized
optimal control problem, a control û is calculated by the projection of the adjoint state zh

in a postprocessing step. Although the approximation of the discretized solution is only
of order h, we will show that this postprocessing step improves the convergence order
to h2. We also derive the L∞-error estimates for both the control variable and the state
variables when the control variable is discretized by piecewise linear functions. Finally,
we present two numerical experiments to demonstrate the practical side of the theoretical
results about superconvergence and L∞-error estimates.

We consider the following semilinear optimal control problems for the state variables
ppp, y, and the control u with an integral constraint:

min
u∈Uad

�

1

2
‖ppp− pppd‖

2 +
1

2
‖y − yd‖

2 +
ν

2
‖u‖2
�

(1.1)

subject to the state equation

−div(A(x)grady) +φ(y) = u, x ∈ Ω, (1.2)

which can be written in the form of the first order system

divppp+φ(y) = u, ppp = −A(x)grady, x ∈ Ω, (1.3)

and the boundary condition

y = 0, x ∈ ∂Ω, (1.4)

where Ω is a bounded domain in R2. Uad denotes the admissible set of the control variable,
defined by

Uad =

¨

u ∈ L∞(Ω) :

∫

Ω

ud x ≥ 0

«

. (1.5)
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We assume that the function φ(·) ∈W 2,∞(−R,R)∩H3(−R,R) for any R> 0, φ′(y) ∈ L2(Ω)

for any y ∈ H1(Ω), and φ′ ≥ 0. Moreover, we assume that yd ∈ H1(Ω) and pppd ∈ (H
2(Ω))2.

ν is a fixed positive number. The coefficient A(x) = (ai j(x)) is a symmetric matrix function
with ai j(x) ∈W 1,∞(Ω), which satisfies the ellipticity condition

c∗|ξ|
2 ≤

2
∑

i, j=1

ai j(x)ξiξ j , ∀ (ξ, x) ∈ R2 × Ω̄, c∗ > 0.

The plan of this paper is as follows. In Section 2, we construct the mixed finite element
approximation scheme for the optimal control problem (1.1)-(1.4) and give its equivalent
optimality conditions. The main results of this paper are stated in Section 3 and Section 4.
In Section 3, when the control variable is discretized by piecewise constant functions, we
derive the superconvergence properties between the average L2 projection and the approx-
imation, as well as between the postprocessing solution and the exact control solution. In
Section 4, we will study the L∞-error estimates for optimal control problem when the con-
trol variable is approximated by piecewise linear functions. In Section 5, we present two
numerical examples to demonstrate our theoretical results. In the last section, we briefly
summarize the results obtained and some possible future extensions.

In this paper, we adopt the standard notation W m,p(Ω) for Sobolev spaces on Ω with a
norm ‖ · ‖m,p given by

‖v‖pm,p =
∑

|α|≤m

‖Dαv‖p
Lp(Ω)

,

a semi-norm | · |m,p given by

|v|pm,p =
∑

|α|=m

‖Dαv‖p
Lp(Ω)

.

We set W
m,p

0 (Ω) = {v ∈ W m,p(Ω) : v|∂Ω = 0}. For p = 2, we denote Hm(Ω) = W m,2(Ω),

Hm
0 (Ω) = W

m,2
0 (Ω), and ‖ · ‖m = ‖ · ‖m,2, ‖ · ‖ = ‖ · ‖0,2. In addition C denotes a general

positive constant independent of h, where h is the spatial mesh-size for the control and
state discretization.

2. Mixed methods of optimal control problems

In this section we shall construct mixed finite element approximation scheme of the
control problem (1.1)-(1.4). For sake of simplicity, we assume that the domain Ω is a
convex polygon. Now, we introduce the co-state elliptic equation

−div(A(x)(gradz + ppp− pppd)) +φ
′(y)z = y − yd , x ∈ Ω, (2.1)

which can be written in the form of the first order system

divqqq+φ′(y)z = y − yd , qqq = −A(x)(gradz + ppp− pppd), x ∈ Ω, (2.2)
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and the boundary condition

z = 0, x ∈ ∂Ω. (2.3)

Let

VVV = H(div;Ω) =
¦

vvv ∈ (L2(Ω))2, divvvv ∈ L2(Ω)
©

, W = L2(Ω). (2.4)

We recast (1.1)-(1.4) as the following weak form: find (ppp, y,u) ∈ VVV ×W × Uad such
that

min
u∈Uad

�

1

2
‖ppp− pppd‖

2 +
1

2
‖y − yd‖

2 +
ν

2
‖u‖2
�

, (2.5)

(A−1ppp, vvv)− (y, divvvv) = 0, ∀ vvv ∈ VVV , (2.6)

(divppp, w) + (φ(y), w) = (u, w), ∀ w ∈W. (2.7)

It follows from [17] that the optimal control problem (2.5)-(2.7) has a solution (ppp, y,u),
and that a triplet (ppp, y,u) is the solution of (2.5)-(2.7) if there is a co-state (qqq, z) ∈ VVV ×W

such that (ppp, y,qqq, z,u) satisfies the following optimality conditions:

(A−1ppp, vvv)− (y, divvvv) = 0, ∀ vvv ∈ VVV , (2.8)

(divppp, w) + (φ(y), w) = (u, w), ∀ w ∈W, (2.9)

(A−1qqq, vvv)− (z, divvvv) = −(ppp− pppd , vvv), ∀ vvv ∈ VVV , (2.10)

(divqqq, w) + (φ′(y)z, w) = (y − yd , w), ∀ w ∈W, (2.11)

(νu+ z, ũ− u)≥ 0, ∀ ũ ∈ Uad , (2.12)

where (·, ·) is the inner product of L2(Ω).
In [7], the expression of the control variable is given. Here, we adopt the same method

to derive the following operator

u = (max{0, z̄} − z)/ν , (2.13)

where z̄ =
∫

Ω
z/
∫

Ω
1 denotes the integral average on Ω of the function z.

Let T h denote a regular triangulation of the polygonal domain Ω, hT denotes the diam-
eter of T and h= max hT . Let VVV h×Wh ⊂ VVV ×W denotes the order k = 1 Raviart-Thomas
mixed finite element space [10,25], namely,

∀ T ∈ Th, VVV (T ) = PPP1(T )⊕ span(x P1(T )), W (T ) = P1(T ),

where P1(T ) denote polynomials of total degree at most 1, PPP1(T ) = (P1(T ))
2, x = (x1, x2)

which is treated as a vector, and

VVV h := {vvvh ∈ VVV : ∀ T ∈ Th, vvvh|T ∈ VVV (T )}, (2.14)

Wh := {wh ∈W : ∀ T ∈ Th, wh|T ∈W (T )}. (2.15)
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And the approximated space of control is given by

Uh :=

�

ũh ∈ Uad : ∀ T ∈ Th, ũh|T = constant

�

, (2.16)

or

Uh :=

�

ũh ∈ Uad : ∀ T ∈ Th, ũh|T ∈W (T )

�

. (2.17)

Before the mixed finite element scheme is given, we introduce two operators. Firstly,
we define the standard L2(Ω)-projection [10] Ph : W →Wh, which satisfies: for any φ ∈W

(Phφ −φ, wh) = 0, ∀ wh ∈Wh, (2.18)

‖φ − Phφ‖0,ρ ≤ Chr‖φ‖r,ρ , 1≤ ρ ≤∞, ∀ φ ∈W r,ρ(Ω), r = 1,2. (2.19)

Next, recall the Fortin projection (see [2] and [10]) Πh : VVV → VVV h, which satisfies: for
any qqq ∈ VVV

(div(Πhqqq− qqq), wh) = 0, ∀ wh ∈Wh, (2.20)

‖qqq−Πhqqq‖0 ≤ Chr‖qqq‖r , ∀ qqq ∈ (H r(Ω))2, r = 1,2, (2.21)

‖div(qqq−Πhqqq)‖0 ≤ Chr‖divqqq‖r , ∀ divqqq ∈ H r(Ω), r = 1,2. (2.22)

We have the commuting diagram property

div ◦Πh = Ph ◦ div : VVV →Wh and div(I −Πh)VVV ⊥Wh, (2.23)

where and after, I denotes identity operator.
Furthermore, we also define the standard L2-orthogonal projection Qh : Uad → Uh,

which satisfies: for any u ∈ Uad

(u−Qhu,uh) = 0, ∀ uh ∈ Uh. (2.24)

We have the approximation property:

‖u−Qhu‖−s,r ≤ Ch1+s|φ|1,r , s = 0,1, ∀ u ∈W 1,r(Ω). (2.25)

Then the mixed finite element discretization of (2.5)-(2.7) is as follows: find (ppph, yh,uh) ∈
VVV h×Wh× Uh such that

min
uh∈Uh

�

1

2
‖ppph− pppd‖

2 +
1

2
‖yh − yd‖

2 +
ν

2
‖uh‖

2

�

(2.26)

(A−1ppph, vvvh)− (yh, divvvvh) = 0, ∀ vvvh ∈ VVV h, (2.27)

(divppph, wh) + (φ(yh), wh) = (uh, wh), ∀ wh ∈Wh. (2.28)
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The optimal control problem (2.26)-(2.28) again has a solution (ppph, yh,uh), and that a
triplet (ppph, yh,uh) is the solution of (2.26)-(2.28) if there is a co-state (qqqh, zh) ∈ VVV h ×Wh

such that (ppph, yh,qqqh, zh,uh) satisfies the following optimality conditions:

(A−1ppph, vvvh)− (yh, divvvvh) = 0, ∀ vvvh ∈ VVV h, (2.29)

(divppph, wh) + (φ(yh), wh) = (uh, wh), ∀ wh ∈Wh, (2.30)

(A−1qqqh, vvvh)− (zh, divvvvh) = −(ppph− pppd , vvvh), ∀ vvvh ∈ VVV h, (2.31)

(divqqqh, wh) + (φ
′(yh)zh, wh) = (yh− yd , wh), ∀ wh ∈Wh, (2.32)

(νuh+ zh, ũh− uh)≥ 0, ∀ ũh ∈ Uh. (2.33)

For the variational inequality (2.33) we have the following conclusion.

Lemma 2.1. Assume that zh is known in the variational inequality (2.33). The solution of

the variational inequality (2.33) is

uh = Qh

�

−
zh

ν
+max

�

0,
zh

ν

��

, zh =

∫

Ω
zh
∫

Ω
1

, (2.34)

where the control variable is discretized by piecewise constant functions. When the control

variable is approximated by piecewise linear functions, we have

uh = −
zh

ν
+max

�

0,
zh

ν

�

. (2.35)

Proof. Here we only give the proof of (2.34). The proof is divided into two steps. We
will prove uh ∈ Uh at the first step, and then prove uh is the solution of the variational
inequality at the second step.Step 1. For any v ∈ Uad , we have

∫

Ω

(Qhv − v)ψ= 0, ∀ ψ ∈ Uh. (2.36)Sine φ ≡ 1 ∈ Uh suh that
∫

Ω

�

Qh

�

−
zh

ν
+max

�

0,
zh

ν

��

−
�

−
zh

ν
+max

�

0,
zh

ν

���

= 0, (2.37)hene
∫

Ω

uh =

∫

Ω

�

−
zh

ν
+max

�

0,
zh

ν

��

= −

∫

Ω

zh

ν
+

∫

Ω

max

�

0,
zh

ν

�

≥ 0. (2.38)Thus uh ∈ Uh.
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∫

Ω

(uh+ zh/ν)(vh− uh)

=

∫

Ω

�

Qh

�

−
zh

ν
+max

�

0,
zh

ν

��

−
�

−
zh

ν
+max

�

0,
zh

ν

��

+max

�

0,
zh

ν

��

(vh− uh)

=

∫

Ω

max

�

0,
zh

ν

�

(vh− uh). (2.39)We see that if zh ≤ 0 then
∫

Ω

(νuh+ zh)(vh− uh) = 0, (2.40)and that if zh ≥ 0 then
∫

Ω

(νuh+ zh)(vh− uh)≥ 0, (2.41)as
∫

Ω

uh =

∫

Ω

(−
zh

ν
+max{0,

zh

ν
}= 0 and ∫

Ω

vh ≥ 0.Therefore it is shown that uh is the solution of the variational inequality (2.33). �
In the rest of the paper, we shall use some intermediate variables. For any control func-

tion ũ ∈ Uad , we first define the state solution (ppp(ũ), y(ũ),qqq(ũ), z(ũ))∈ (VVV×W )2 associated
with ũ that satisfies

(A−1ppp(ũ), vvv)− (y(ũ), divvvv) = 0, ∀ vvv ∈ VVV , (2.42)

(divppp(ũ), w) + (φ(y(ũ)), w) = (ũ, w), ∀ w ∈W, (2.43)

(A−1qqq(ũ), vvv)− (z(ũ), divvvv) = −(ppp(ũ)− pppd , vvv), ∀ vvv ∈ VVV , (2.44)

(divqqq(ũ), w) + (φ′(y(ũ))z(ũ), w) = (y(ũ)− yd , w), ∀ w ∈W. (2.45)

Then, we define the discrete state solution (ppph(ũ), yh(ũ),qqqh(ũ), zh(ũ))∈ (VVV h×Wh)
2 as-

sociated with ũ that satisfies

(A−1ppph(ũ), vvvh)− (yh(ũ), divvvvh) = 0, ∀ vvvh ∈ VVV h, (2.46)

(divppph(ũ), wh)+ (φ(yh(ũ)), wh) = (ũ, wh), ∀ wh ∈Wh, (2.47)

(A−1qqqh(ũ), vvvh)− (zh(ũ), divvvvh) = −(ppph(ũ)− pppd , vvvh), ∀ vvvh ∈ VVV h, (2.48)

(divqqqh(ũ), wh) + (φ
′(yh(ũ))zh(ũ), wh) = (yh(ũ)− yd , wh), ∀wh ∈Wh. (2.49)

Thus, as we defined, the exact solution and its approximation can be written in the
following way:

(ppp, y,qqq, z) = (ppp(u), y(u),qqq(u), z(u)),

(ppph, yh,qqqh, zh) = (ppph(uh), yh(uh),qqqh(uh), zh(uh)).
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3. Superconvergence and postprocessing

In this section, we will give a detailed superconvergence analysis. In the rest of the
section, the control variable is discretized by piecewise constant functions. Firstly, we
recall the following convergence results which are very important for our following work,
similar results have been proved in [9].

Lemma 3.1. Let (ppp(ũ), y(ũ),qqq(ũ), z(ũ)) ∈ (VVV×W )2 and (ppph(ũ), yh(ũ),qqqh(ũ), zh(ũ)) ∈ (VVV h×
Wh)

2 be the solutions of (2.42)-(2.45) and (2.46)-(2.49) respectively. If the intermediate

solutions satisfy

ppp(ũ), qqq(ũ) ∈ (H2(Ω))2,

then we have

‖y(ũ)− yh(ũ)‖+ ‖ppp(ũ)− ppph(ũ)‖ ≤ Ch2, (3.1)

‖z(ũ)− zh(ũ)‖+ ‖qqq(ũ)− qqqh(ũ)‖ ≤ Ch2, (3.2)

‖div(ppp(ũ)− ppph(ũ))‖+ ‖div(qqq(ũ)− qqqh(ũ))‖ ≤ Ch. (3.3)

By modifying the proof of Theorem 4.3 in [9], we have

Lemma 3.2. Let u be the solution of (2.8)-(2.12) and uh be the solution of (2.29)-(2.33),
respectively. Assume that ppp, qqq ∈ (H2(Ω))2 and u ∈ H1(Ω). Then, we have

‖u− uh‖ ≤ Ch. (3.4)

Lemma 3.3. Let (ppp(Qhu), y(Qhu),qqq(Qhu), z(Qhu)) and (ppp(u), y(u),qqq(u), z(u)) be the solu-

tions of (2.42)-(2.45) with ũ = Qhu and ũ = u, respectively. Assume that u ∈ H1(Ω). Then

we have

‖y(u)− y(Qhu)‖+ ‖ppp(u)− ppp(Qhu)‖ ≤ Ch2, (3.5)

‖z(u)− z(Qhu)‖+ ‖qqq(u)− qqq(Qhu)‖ ≤ Ch2. (3.6)

Proof. First, we choose ũ= Qhu and ũ = u in (2.42)-(2.45) respectively, then we obtain
the following error equations

(A−1(ppp(Qhu)− ppp(u)), vvv)− (y(Qhu)− y(u), divvvv) = 0, (3.7)

(div(ppp(Qhu)− ppp(u)), w) + (φ(y(Qhu))−φ(y(u)), w) = (Qhu− u, w), (3.8)

(A−1(qqq(Qhu)− qqq(u)), vvv)− (z(Qhu)− z(u), divvvv) = −(ppp(Qhu)− ppp(u), vvv), (3.9)

(div(qqq(Qhu)− qqq(u)), w) + (φ′(y(Qhu))z(Qhu)−φ′(y(u))z(u), w)

= (y(Qhu)− y(u), w), (3.10)

for any vvv ∈ VVV and w ∈W .
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Setting vvv = ppp(Qhu)− ppp(u) and w = y(Qhu)− y(u) in (3.7) and (3.8) respectively and
adding the two resulting equations yield

(A−1(ppp(Qhu)− ppp(u)), ppp(Qhu)− ppp(u))

+ (φ(y(Qhu))−φ(y(u)), y(Qhu)− y(u))

= (Qhu− u, y(Qhu)− y(u)). (3.11)

Then, we estimate the right hand side of (3.11). Note that ppp(Qhu)−ppp(u) = −Agrad(y(Qhu)−
y(u)). By (2.25) and poincare’ inequality, we have

(Qhu− u, y(Qhu)− y(u))≤ C‖Qhu− u‖−1‖y(Qhu)− y(u))‖1
≤ Ch2|u|1‖ppp(Qhu)− ppp(u)‖. (3.12)

It follows from the assumptions on A and φ, (3.11) and (3.12) that

‖ppp(Qhu)− ppp(u)‖ ≤ Ch2. (3.13)

By the Poincare’s inequality, we have

‖y(Qhu)− y(u)‖ ≤ C‖ppp(Qhu)− ppp(u)‖ ≤ Ch2. (3.14)

Similarly, letting vvv = qqq(Qhu)−qqq(u) and w = z(Qhu)− z(u) in (3.9) and (3.10), respec-
tively, we have

(A−1(qqq(Qhu)− qqq(u)),qqq(Qhu)− qqq(u))

+ (φ′(y(Qhu))z(Qhu)−φ′(y(u))z(u), z(Qhu)− z(u))

=(y(Qhu)− y(u), z(Qhu)− z(u))− (ppp(Qhu)− ppp(u),qqq(Qhu)− qqq(u)), (3.15)

which gives

(A−1(qqq(Qhu)− qqq(u)),qqq(Qhu)− qqq(u)) + (φ′(y(Qhu))(z(Qhu)− z(u)), z(Qhu)− z(u))

=(y(Qhu)− y(u), z(Qhu)− z(u))− (ppp(Qhu)− ppp(u),qqq(Qhu)− qqq(u))

+ (z(u)(φ′(y(Qhu))−φ′(y(u))), z(Qhu)− z(u)). (3.16)

Note that

−Agrad(z(Qhu)− z(u)) = qqq(Qhu)− qqq(u) + A(ppp(Qhu)− ppp(u)). (3.17)

It follows from the Poincare’s inequality, (3.14) and (3.17) that

(y(Qhu)− y(u), z(Qhu)− z(u))

≤‖y(Qhu)− y(u)‖ · ‖z(Qhu)− z(u)‖

≤Ch2(‖qqq(Qhu)− qqq(u)‖+ ‖ppp(Qhu)− ppp(u)‖)

≤Ch4 + Ch2‖qqq(Qhu)− qqq(u)‖. (3.18)
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For the second term on the right side of (3.16), by (3.13) we derive

(ppp(Qhu)− ppp(u),qqq(Qhu)− qqq(u))≤ Ch2‖qqq(Qhu)− qqq(u)‖. (3.19)

Using the assumption on φ, (3.14) and (3.17), we get

(z(u)(φ′(y(Qhu))−φ′(y(u))), z(Qhu)− z(u))

≤C‖z(u)‖0,4‖φ
′(y(Qhu))−φ′(y(u))‖ · ‖z(Qhu)− z(u)‖0,4

≤C‖z(u)‖1‖φ‖2,∞‖y(Qhu)− y(u)‖ · ‖z(Qhu)− z(u)‖1
≤Ch2(‖qqq(Qhu)− qqq(u)‖+ ‖ppp(Qhu)− ppp(u)‖)

≤Ch4 + Ch2‖qqq(Qhu)− qqq(u)‖, (3.20)

where we have used the embedding ‖v‖0,4 ≤ C‖v‖1. Then using (3.16), (3.18)-(3.20) and
the assumptions on φ and A, we find that

‖qqq(Qhu)− qqq(u)‖ ≤ Ch2. (3.21)

Using (3.13), (3.17), (3.21) and the Poincare’s inequality gives

‖z(Qhu)− z(u)‖ ≤ C(‖qqq(Qhu)− qqq(u)‖+ ‖ppp(Qhu)− ppp(u)‖)≤ Ch2. (3.22)

Therefore Lemma 3.3 is derived by using (3.13)-(3.14) and (3.21)-(3.22). �

Let (ppp(u), y(u)) be the solutions of (2.5)-(2.7) and J(·) : L2(Ω)→ R be a G-differential
convex functional near the solution u which satisfies the following form:

J(u) =
1

2
‖ppp− pppd‖

2 +
1

2
‖y − yd‖

2 +
ν

2
‖u‖2. (3.23)

Then we can find that

(J ′(u), v) = (νu+ z, v), (3.24)

(J ′(uh), v) = (νuh+ z(uh), v), (3.25)

(J ′(Qhu), v) = (νQhu+ z(Qhu), v). (3.26)

In many applications, J(·) is uniform convex near the solution u. The convexity of J(·)
is closely related to the second order sufficient conditions of the control problem, which
are assumed in many studies on numerical methods of the problem. Then, there exists a
constant c > 0, independent of h, such that

(J ′(Qhu)− J ′(uh),Qhu− uh) ≥ c‖Qhu− uh‖
2, (3.27)

where u and uh are solutions of (2.8)-(2.12) and (2.29)-(2.33) respectively, Qhu is the
orthogonal projection of u which is defined in (2.24). We shall assume the above inequality
throughout this paper.
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Lemma 3.4. Let u be the solution of (2.8)-(2.12) and uh be the solution of (2.29)-(2.33),
respectively. Assume that ppp(uh), qqq(uh) ∈ (H

1(Ω))2 and u ∈ H1(Ω). Then, we have

‖Qhu− uh‖ ≤ Ch2. (3.28)

Proof. We choose ũ = uh in (2.12) and ũh = Qhu in (2.33) to get the following two
inequalities:

(νu+ z,uh− u)≥ 0, (3.29)

(νuh+ zh,Qhu− uh)≥ 0. (3.30)

Note that uh−u= uh−Qhu+Qhu−u. Adding the two inequalities (3.29) and (3.30) gives

(νuh+ zh− νu− z,Qhu− uh) + (νu+ z,Qhu− u)≥ 0. (3.31)

Thus, by (3.27) and (3.31), we find that

c‖Qhu− uh‖
2

≤(J ′(Qhu)− J ′(uh),Qhu− uh)

=ν(Qhu− uh,Qhu− uh) + (z(Qhu)− z(uh),Qhu− uh)

=ν(Qhu− u,Qhu− uh) + ν(u− uh,Qhu− uh) + (z(Qhu)− z(uh),Qhu− uh)

≤(zh− z,Qhu− uh) + (νu+ z,Qhu− u) + (z(Qhu)− z(uh),Qhu− uh)

=(zh− z(uh),Qhu− uh)+ (νu+ z,Qhu− u) + (z(Qhu)− z(u),Qhu− uh). (3.32)

By Lemma 3.1 and Lemma 3.3, we find that

(zh− z(uh),Qhu− uh)≤ Ch4+
c

4
‖Qhu− uh‖

2, (3.33)

(z(Qhu)− z(u),Qhu− uh)≤ Ch4 +
c

4
‖Qhu− uh‖

2. (3.34)

From (2.13), we know that

νu+ z =max{0, z̄}= const. (3.35)

Thus, we have

(νu+ z,Qhu− u) = (νu+ z)

∫

Ω

(Qhu− u) = 0. (3.36)

Combining (3.32), (3.33), (3.34) with (3.36), we derive (3.28).

Similar to Lemma 3.3, by Lemma 3.4, we can prove the following estimate.

Lemma 3.5. Let (ppp(uh), y(uh),qqq(uh), z(uh)) and (ppp(Qhu), y(Qhu),qqq(Qhu), z(Qhu)) be the so-

lutions of (2.42)-(2.45) with ũ = uh and ũ= Qhu, respectively. Assume that all the conditions

in Theorem 3.4 are valid. Then we have

‖y(Qhu)− y(uh)‖+ ‖ppp(Qhu)− ppp(uh)‖ ≤ Ch2, (3.37)

‖z(Qhu)− z(uh)‖+ ‖qqq(Qhu)− qqq(uh)‖ ≤ Ch2. (3.38)
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Combining Lemmas 3.1, 3.3 and 3.5, we can derive the following error estimate.

Lemma 3.6. Let (ppp, y,qqq, z,u) and (ppph, yh,qqqh, zh,uh) be the solutions of (2.8)-(2.12) and

(2.29)-(2.33), respectively. Assume that all the conditions in Lemmas 3.1, 3.3 and 3.5 hold.

Then we have

‖y − yh‖+ ‖z − zh‖ ≤ Ch2. (3.39)

Lemma 3.7. Assume that all the conditions in Lemma 3.4 are valid and u ∈W 1,∞(Ω). Let u

and uh be the solutions of (2.8)-(2.12) and (2.29)-(2.33), respectively. Then we have

‖u− uh‖0,∞ ≤ Ch. (3.40)

Proof. By (2.25) and the inverse inequality, we arrive at

‖u− uh‖0,∞ ≤C(‖u−Qhu‖0,∞ + ‖Qhu− uh‖0,∞)

≤C(h‖u‖1,∞ + h−1‖Qhu− uh‖). (3.41)

Gathering (3.41) and Lemma 3.4, we derive (3.40). �

Moreover, in order to improve the accuracy of the control approximation on a global
scale, similar to the case in [20], we construct the following a postprocessing projection
operator of the discrete co-state to the admissible set

û = (max{0, zh} − zh)/ν . (3.42)

Now, we can prove the following global superconvergence result.

Theorem 3.1. Assume that all the conditions in Lemma 3.6 hold. Let u be the solution of

(2.8)-(2.12) and û be the function constructed in (3.42). Then we have

‖u− û‖ ≤ Ch2. (3.43)

Proof. From (2.13) and (3.42), we arrive at

|u− û| ≤ C |z− zh|+ C |z̄− zh|. (3.44)

By (3.44) and Lemma 3.6, we have

‖u− û‖ ≤ C‖z − zh‖ ≤ Ch2. (3.45)

This completes the proof. �
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4. L∞-error estimates

In this section, we will give the L∞-error estimates both for the control variable and
the state, co-state variables. In the rest of the section, the control variable is approximated
by piecewise linear functions.

Now, we are in the position of deriving the estimate for ‖Phz − zh(u)‖, we need an a
priori regularity estimate for the following auxiliary problems:

− div(A∇ξ)+Φξ= F1, x ∈ Ω, ξ|∂Ω = 0, (4.1)

− div(A∇ζ)+φ′(y)ζ = F2, x ∈ Ω, ζ|∂Ω = 0, (4.2)

where

Φ =







φ(y)−φ(yh(u))

y − yh(u)
, y 6= yh(u),

φ′(yh(u)), y = yh(u).

Lemma 4.1. [18] Let ξ and ζ be the solutions for (4.1) and (4.2), respectively. If Ω is

convex, then

‖ξ‖H2(Ω) ≤ C‖F1‖L2(Ω), (4.3)

‖ζ‖H2(Ω) ≤ C‖F2‖L2(Ω). (4.4)

Then, we will give the following superconvergence results for the intermediate solu-
tions which are very important for our following work.

Lemma 4.2. Let (ppp, y,qqq, z) ∈ (VVV ×W )2 and (ppph(u), yh(u),qqqh(u), zh(u)) ∈ (VVV h×Wh)
2 be the

solutions of (2.42)-(2.45) and (2.46)-(2.49) with ũ= u respectively. If the solution satisfies

ppp, qqq ∈ (H2(Ω))2, y ∈W 2,∞(Ω), z ∈W 1,∞(Ω),

then we have

‖Ph y − yh(u)‖ ≤ Ch3, (4.5)

‖Phz − zh(u)‖ ≤ Ch3. (4.6)

Proof. From equations (2.42)-(2.45) and (2.46)-(2.49), we can easily obtain the fol-
lowing error equations

(A−1(ppp− ppph(u)), vvvh)− (y − yh(u), divvvvh) = 0, (4.7)

(div(ppp− ppph(u)), wh) + (φ(y)−φ(yh(u)), wh) = 0, (4.8)

(A−1(qqq− qqqh(u)), vvvh)− (z − zh(u), divvvvh) = −(ppp− ppph(u), vvvh), (4.9)

(div(qqq− qqqh(u)), wh) + (φ
′(y)z −φ′(yh(u))zh(u), wh) = (y − yh(u), wh), (4.10)
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for any vvvh ∈ VVV h and wh ∈Wh. As a result of (2.18), we can rewrite (4.7)-(4.10) as

(A−1(ppp− ppph(u)), vvvh)− (Ph y − yh(u), divvvvh) = 0, (4.11)

(div(ppp− ppph(u)), wh)+ (φ(y)−φ(yh(u)), wh) = 0, (4.12)

(A−1(qqq− qqqh(u)), vvvh)− (Phz − zh(u), divvvvh) = −(ppp− ppph(u), vvvh), (4.13)

(div(qqq− qqqh(u)), wh) + (φ
′(y)z −φ′(yh(u))zh(u), wh) = (Ph y − yh(u), wh), (4.14)

for any vvvh ∈ VVV h and wh ∈Wh.
For sake of simplicity, we now denote

τ = Ph y − yh(u), e = Phz − zh(u). (4.15)

Then, we estimate (4.5) and (4.6) in Part I and Part II, respectively.

Part I. As we can see,

‖τ‖= sup
ψ∈L2(Ω),ψ6=0

(τ,ψ)

‖ψ‖
, (4.16)

we then need to bound (τ,ψ) for ψ ∈ L2(Ω). Let ξ ∈ H2(Ω) ∩ H1
0(Ω) be the solution of

(4.1). We can see from (2.20) and (4.11)

(τ, F1) = (τ,−div(Agradξ)) + (τ,Φξ)

= −(τ, div(Πh(Agradξ))) + (τ,Φξ)

= −(A−1(ppp− ppph(u)),Πh(Agradξ)) + (τ,Φξ). (4.17)

Note that

(div(ppp− ppph(u)),ξ) + (A
−1(ppp− ppph(u)),Agradξ) = 0. (4.18)

If follows from (4.12), (4.17) and (4.18), we derive

(τ, F1) =(A
−1(ppp− ppph(u)),Agradξ−Πh(Agradξ))

+ (div(ppp− ppph(u)),ξ− Phξ) + (Φ(y − Ph y),ξ)

+ (φ(y)−φ(yh(u)),ξ− Phξ). (4.19)

From Lemma 3.1, (2.19) and (2.21), we have

(A−1(ppp− ppph(u)),Agradξ−Πh(Agradξ))≤ Ch3‖ξ‖2, (4.20)

(div(ppp− ppph(u)),ξ− Phξ)≤ Ch3‖ξ‖2. (4.21)

For the third term on the right hand side of (4.19), using (2.18), (2.19) and the assumption
on φ, we get

(Φ(y − Ph y),ξ) =(Φ(y − Ph y),ξ− Phξ) + (y − Ph y, (Φ−πcΦ)Phξ)

≤Ch‖ξ‖1,∞‖y − Ph y‖ · ‖ξ‖1 + Ch‖ξ‖2,∞‖y − Ph y‖ · ‖ξ‖

≤Ch3‖ξ‖1, (4.22)
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where πc be the element average operator. By (2.19), Lemma 3.1 and the assumption on
φ, we find that

(φ(y)−φ(yh(u)),ξ− Phξ)

≤C‖φ‖1,∞‖y − yh(u)‖ · ‖ξ− Phξ‖ ≤ Ch3‖ξ‖1. (4.23)

Thus, (4.5) can be proved by using (4.16) and (4.19)-(4.23).

Part II. Since

‖e‖ = sup
ψ∈L2(Ω),ψ6=0

(e,ψ)

‖ψ‖
, (4.24)

we then need to bound (e,ψ) for ψ ∈ L2(Ω). Let ζ ∈ H2(Ω) ∩ H1
0(Ω) be the solution of

(4.2). We can see from (2.20) and (4.13)

(e, F2) =(e,−div(Agradζ)) + (e,φ′(y)ζ)

=− (e, div(Πh(Agradζ))) + (e,φ′(y)ζ)

=− (A−1(qqq− qqqh(u)),Πh(Agradζ)) + (e,φ′(y)ζ)

− (ppp− ppph(u),Πh(Agradζ)). (4.25)

Note that

(div(qqq− qqqh(u)),ζ) + (A
−1(qqq− qqqh(u)),Agradζ) = 0. (4.26)

Thus, it follows from (2.19), (2.21), (2.22), (4.14), (4.25) and (4.26), we derive

(e, F2) =(A
−1(qqq− qqqh(u)),Agradζ−Πh(Agradζ))

+ (div(qqq− qqqh(u)),ζ− Phζ)− (Ph y − yh(u), Phζ)

+ (φ′(y)z −φ′(yh(u))zh(u),ζ− Phζ)

+ (φ′(y)(Phz − z),ζ) + (zh(u)(φ
′(yh(u))−φ

′(y)),ζ)

− (ppp− ppph(u),Πh(Agradζ)) =:
7
∑

i=1

Ii . (4.27)

For I1 and I2, by Lemma 3.1, (2.19) and (2.21), we have

I1 ≤ C‖qqq− qqqh(u)‖ · ‖Agradζ−Πh(Agradζ)‖ ≤ Ch3‖ζ‖2, (4.28)

I2 ≤ C‖div(qqq− qqqh(u))‖ · ‖ζ− Phζ‖ ≤ Ch3‖ζ‖2. (4.29)

It follows from (4.5) that

I3 ≤ C‖Ph y − yh(u)‖ · ‖Phζ‖ ≤ Ch3‖ζ‖. (4.30)

Note that

φ′(y)z −φ′(yh(u))zh(u) = z(φ′(y)−φ′(yh(u)))+φ
′(yh(u))(z− zh(u)). (4.31)
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Then, by Lemma 3.1 and (2.19), and the assumption on φ, we find that

I4 ≤C‖z‖0,∞‖φ‖2,∞‖y − yh(u)‖ · ‖ζ− Phζ‖

+ C‖φ‖1,∞‖z − zh(u)‖ · ‖ζ− Phζ‖ ≤ Ch3‖ζ‖1. (4.32)

As for I5, by the assumption on φ, (2.18) and (2.19), we derive

I5 =(φ
′(y)(Phz − z),ζ− Phζ) + (Phz − z, (φ′(y)−πc(φ′(y)))Phζ)

≤C‖φ‖1,∞‖z − Phz‖ · ‖ζ− Phζ‖+ Ch‖φ‖2,∞‖z − Phz‖ · ‖Phζ‖

≤Ch3‖ζ‖1. (4.33)

For I6, by Lemma 3.1, (2.18), (2.19), (4.5), the embedding ‖v‖0,∞ ≤ c‖v‖2 and the
assumption on φ, we obtain

I6 =(φ
′(yh(u))−φ

′(y), (zh(u)− z)ζ) + (φ′(yh(u))−φ
′(Ph y), zζ)

+ (φ′′(y)(Ph y − y), zζ) +

�

1

2
φ′′′(y + θ(Ph y − y))(Ph y − y)2, zζ

�

=(φ′(yh(u))−φ
′(y), (zh(u)− z)ζ) + (φ′(yh(u))−φ

′(Ph y), zζ)

+ (φ′′(y)(Ph y − y), zζ− Ph(zζ)) + (Ph y − y, (φ′′(y)−πc(φ′′(y)))Ph(zζ))

+
1

2
(φ′′′(y + θ(Ph y − y))(Ph y − y)2, zζ)

≤C‖φ‖2,∞‖y − yh(u)‖ · ‖z − zh(u)‖ · ‖ζ‖0,∞ + C‖φ‖2,∞‖Ph y − yh(u)‖ · ‖z‖ · ‖ζ‖0,∞

+ Ch‖φ‖2,∞‖y − Ph y‖ · ‖z‖1,∞‖ζ‖1 + Ch‖z‖0,∞‖φ‖3‖y − Ph y‖ · ‖ζ‖0,∞

+ C‖φ‖3‖y − Ph y‖20,∞‖z‖0,∞‖ζ‖ ≤ Ch3‖ζ‖2, (4.34)

where 0 ≤ θ ≤ 1. Finally, for I7, from Lemma 3.1, (2.21), (2.22), (4.5) and (4.11), we
have

I7 =(ppp− ppph(u),Agradζ−Πh(Agradζ))− (A−1(ppp− ppph(u)),A
2gradζ)

=(ppp− ppph(u),Agradζ−Πh(Agradζ))− (A−1(ppp− ppph(u)),A
2gradζ−Πh(A

2gradζ))

− (Ph y − yh(u), div(Πh(A
2gradζ)))≤ Ch3‖ζ‖2. (4.35)

Substituting the estimates for I j , 1≤ j ≤ 7 into (4.27), we derive (4.6) by using (4.24). �

Let (ppph(Phu), yh(Phu),qqqh(Phu), zh(Phu)) and (ppph(u), yh(u),qqqh(u), zh(u)) be the solutions
of (2.46)-(2.49) with ũ = Phu and ũ = u, respectively. We can get the following error
equations

(A−1(ppph(Phu)− ppph(u)), vvvh)− (yh(Phu)− yh(u), divvvvh) = 0, (4.36)

(div(ppph(Phu)− ppph(u)), wh) + (φ(yh(Phu))−φ(yh(u)), wh) = 0, (4.37)

(A−1(qqqh(Phu)− qqqh(u)), vvvh)− (zh(Phu)− zh(u), divvvvh)

= −(ppph(Phu)− ppph(u), vvvh), (4.38)

(div(qqqh(Phu)− qqqh(u)), wh) + (φ
′(yh(Phu))zh(Phu)−φ′(yh(u))zh(u), wh)

= (yh(Phu)− yh(u), wh), (4.39)
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for any vvvh ∈ VVV h and wh ∈Wh.
Using the assumptions on φ and A, we get

Lemma 4.3. Let (ppph(Phu), yh(Phu),qqqh(Phu), zh(Phu)) and (ppph(u), yh(u),qqqh(u), zh(u)) be the

solutions of (2.46)-(2.49) with ũ = Phu and ũ = u, respectively. Then we have

‖yh(u)− yh(Phu)‖+ ‖ppph(u)− ppph(Phu)‖ = 0, (4.40)

‖zh(u)− zh(Phu)‖+ ‖qqqh(u)− qqqh(Phu)‖= 0. (4.41)

We assume that we have a sequence of uniform convex functional Jh(·) : L2(Ω)→ R:

Jh(u) =
1

2
‖ppph(u)− pppd‖

2 +
1

2
‖yh(u)− yd‖

2 +
ν

2
‖u‖2. (4.42)

It is can be shown that

(J ′h(u), v) = (νu+ zh(u), v), (4.43)

(J ′h(uh), v) = (νuh+ zh, v), (4.44)

(J ′h(Phu), v) = (νPhu+ zh(Phu), v). (4.45)

Similar to (3.27), there exists a constant c > 0 satisfying

(J ′h(Phu)− J ′h(uh), Phu− uh)≥ c‖Phu− uh‖
2. (4.46)

In the following, we will give the L∞-error estimate for the control variable.

Theorem 4.1. Let u and uh be the solutions of (2.8)-(2.12) and (2.29)-(2.33), respectively.

If u ∈W 2,∞(Ω), then we have

‖u− uh‖0,∞ ≤ Ch2. (4.47)

Proof. Similar to (3.32), from (2.13), (2.18) and (4.46), we have

c‖Phu− uh‖
2

≤(zh(u)− z, Phu− uh) + (νu+ z, Phu− u) + (zh(Phu)− zh(u), Phu− uh)

=(zh(u)− Phz, Phu− uh) + (zh(Phu)− zh(u), Phu− uh). (4.48)

It follows from Lemma 4.2 and Lemma 4.3 that

‖Phu− uh‖ ≤ Ch3. (4.49)

By (2.19) and the inverse inequality, we arrive at

‖u− uh‖0,∞ ≤C(‖u− Phu‖0,∞ + ‖Phu− uh‖0,∞)

≤C(h2‖u‖2,∞ + h−1‖Phu− uh‖). (4.50)

Gathering (4.50) and (4.49), we derive (4.47). �
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From Eqs. (2.8)-(2.12) and (2.29)-(2.33), we can use (2.18) obtain the following error
equations

(A−1(ppp− ppph), vvvh)− (Ph y − yh, divvvvh) = 0, (4.51)

(div(ppp− ppph), wh) + (φ(y)−φ(yh), wh) = (Phu− uh, wh), (4.52)

(A−1(qqq− qqqh), vvvh)− (Phz − zh, divvvvh) = −(ppp− ppph, vvvh), (4.53)

(div(qqq− qqqh), wh) + (φ
′(y)z −φ′(yh)zh, wh) = (Ph y − yh, wh), (4.54)

for any vvvh ∈ VVV h and wh ∈Wh.
Similar to Lemma 4.2, we can obtain

Lemma 4.4. Let (y, z) and (yh, zh) be the solutions of (2.8)-(2.12) and (2.29)-(2.33) re-

spectively. Then we have

‖Ph y − yh‖+ ‖Phz − zh‖ ≤ Ch3. (4.55)

By modifying the proof of Theorem 3.3 in [19], we can derive

Lemma 4.5. Let (ppp,qqq) and (ppph,qqqh) be the solutions of (2.8)-(2.12) and (2.29)-(2.33) re-

spectively. Then we have

‖Πhppp− ppph‖0,∞ + ‖Πhqqq− qqqh‖0,∞ ≤ Ch
3
2 |lnh|

1
2 . (4.56)

Now, combining (2.19), (2.21), Lemmas 4.4 and 4.5 with the inverse inequality, we
give the following L∞-error estimates for the state and the co-state variables.

Theorem 4.2. Let (ppp, y,qqq, z) ∈ (VVV ×W )2 and (ppph, yh,qqqh, zh) ∈ (VVV h×Wh)
2 be the solutions

of (2.8)-(2.12) and (2.29)-(2.33) respectively. Then we have

‖y − yh‖0,∞ + ‖z − zh‖0,∞ ≤ Ch2, (4.57)

‖ppp− ppph‖0,∞ + ‖qqq− qqqh‖0,∞ ≤ Ch
3
2 |lnh|

1
2 . (4.58)

5. Numerical experiments

In this section, we present below two examples to illustrate the theoretical results. The
optimization problems were solved numerically by projected gradient methods, with codes
developed based on AFEPack [16]. The discretization was already described in previous
sections: the control function u was discretized by piecewise constant functions or piece-
wise linear functions, whereas the state (y, ppp) and the co-state (z,qqq) were approximated
by the order k = 1 Raviart-Thomas mixed finite element functions. In our examples, we
choose the domain Ω = [0,1]× [0,1], ν = 1 and A= I .

Example 1. Consider the following two-dimensional elliptic optimal control problem

min
u∈Uad

�

1

2
‖ppp− pppd‖

2 +
1

2
‖y − yd‖

2 +
1

2
‖u‖2
�

(5.1)



Mixed Methods for Optimal Control Problems 441Table 1: The errors of Example 1 when ontrol was approximated by pieewise onstant funtions.
Resolution ‖u− uh‖ ‖u− uh‖0,∞ ‖Qhu− uh‖ ‖u− û‖

16× 16 6.5135e-02 1.7887e-01 1.2111e-04 4.9681e-03
32× 32 3.2685e-02 9.0705e-02 2.9266e-05 1.2439e-03
64× 64 1.6357e-02 4.5511e-02 7.2654e-06 3.1111e-04

128× 128 8.1806e-03 2.2776e-02 1.8189e-06 7.7787e-05Table 2: The errors of Example 1 when ontrol was approximated by pieewise linear funtions.
Resolution ‖u− uh‖0,∞ ‖y − yh‖0,∞ ‖z − zh‖0,∞ ‖ppp− ppph‖0,∞ ‖qqq− qqqh‖0,∞

16× 16 1.2808e-02 3.1968e-03 1.2808e-02 8.8341e-03 7.1089e-02
32× 32 3.2016e-03 7.9961e-04 3.2016e-03 2.2191e-03 1.7715e-02
64× 64 8.0015e-04 1.9992e-04 8.0015e-04 5.5551e-04 4.4430e-03

128× 128 1.9999e-04 4.9984e-05 1.9999e-04 1.3892e-04 1.1115e-03

subject to the state equation

divppp+ y3 = f + u, ppp = −grady, (5.2)

where

y = sin(πx1) sin(πx2), z = sin(2πx1) sin(2πx2), (5.3a)

u=max(0, z̄)− z, f = 2π2 y + y3 − u, yd = y − 8π2z − 3y2z, (5.3b)

pppd = −

�

π cos(πx1) sin(πx2)

π sin(πx1) cos(πx2)

�

. (5.3c)

In the numerical implementation, we choose the solution u which satisfies
∫

Ω
ud x = 0.

In the figures, û is denoted by upro j. In Table 1, the errors ‖u−uh‖, ‖u−uh‖0,∞, ‖Qhu−uh‖
and ‖u− û‖ obtained on a sequence of uniformly refined meshes are shown when control
was approximated by piecewise constant functions. Table 2 displays the errors ‖u−uh‖0,∞,
‖y − yh‖0,∞, ‖z− zh‖0,∞, ‖ppp− ppph‖0,∞ and ‖qqq−qqqh‖0,∞ when control was approximated by
piecewise linear functions. In Figs. 1 and 2, the profile of the numerical solution of u on
the 64× 64 mesh grid is plotted. Moreover, in Figs. 3 and 4, we show the convergence
orders by slopes.

As we can see from the figures that the approximation in the L∞-norm is of order h2

for the piecewise linear functions. In contrast to this, the approximations in the L2-norm
and L∞-norm are only of first order for piecewise constant functions. We also obtain a
quadratic approximation rate for ‖Qhu−uh‖ and ‖u− û‖. Although the error for piecewise
linear approximation is essentially less than that for piecewise constant approximation as
provided in Tables 1 and 2, we should keep in mind that we have triplicate the number of
degree of freedoms.
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Figure 1: The pro�le of the numerial solution of Example 1 on 64×64 triangle mesh when ontrol wasapproximated by pieewise onstant funtions.
0

0.5

1

0

0.5

1
−1.5

−1

−0.5

0

0.5

1

1.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 2: The pro�le of the numerial solution of Example 1 on 64×64 triangle mesh when ontrol wasapproximated by pieewise linear funtions.
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Figure 5: The pro�le of the numerial solution of Example 2 on 64×64 triangle mesh when ontrol wasapproximated by pieewise onstant funtions.
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Figure 6: The pro�le of the numerial solution of Example 2 on 64×64 triangle mesh when ontrol wasapproximated by pieewise linear funtions.
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444 Y. Chen and T. HouTable 3: The errors of Example 2 when ontrol was approximated by pieewise onstant funtions.
Resolution ‖u− uh‖ ‖u− uh‖0,∞ ‖Qhu− uh‖ ‖u− û‖

16× 16 3.2685e-02 9.0622e-02 1.2387e-04 1.2632e-03
32× 32 1.6357e-02 4.5503e-02 2.5658e-05 3.1297e-04
64× 64 8.1806e-03 2.2774e-02 6.3101e-06 7.8077e-05

128× 128 4.0905e-03 1.1390e-02 1.5538e-06 1.9507e-05Table 4: The errors of Example 2 when ontrol was approximated by pieewise linear funtions.
Resolution ‖u− uh‖0,∞ ‖y − yh‖0,∞ ‖z − zh‖0,∞ ‖ppp− ppph‖0,∞ ‖qqq− qqqh‖0,∞

16× 16 3.4336e-03 1.2835e-02 3.4336e-03 7.0742e-02 1.2499e-02
32× 32 8.1432e-04 3.2016e-03 8.1432e-04 1.7670e-02 2.6833e-03
64× 64 2.0085e-04 7.9991e-04 2.0085e-04 4.4383e-03 6.1368e-04

128× 128 5.0042e-05 1.9998e-04 5.0042e-05 1.1110e-03 1.4619e-04

Example 2. In this example, we consider the optimal control problem (5.1)-(5.2) with the
control u satisfying

∫

Ω
ud x > 0. The data are as follows:

y = sin(2πx1) sin(2πx2), z = − sin(πx1) sin(πx2), (5.4a)

u =max(0, z̄)− z, f = 8π2 y + y3 − u, yd = y − 2π2z − 3y2z, (5.4b)

pppd = −

�

2π cos(2πx1) sin(2πx2)

2π sin(2πx1) cos(2πx2)

�

. (5.4c)

The profile of the numerical solution of u is presented in Figs. 5 and 6. From the
error data on the uniform refined meshes, as listed in Tables 3 and 4, it is easy to see
that the numerical results are consistent with our theoretical analysis. We also show the
convergence orders by slopes in Figs. 7 and 8.

6. Conclusion and future works

In this paper, we discussed the order k = 1 Raviart-Thomas mixed finite element meth-
ods for the semilinear elliptic optimal control problem (1.1)-(1.4). We derived some su-
perconvergence results of the mixed finite element methods for the control problem when
the control was approximated by piecewise constant functions. Moreover, we derived L∞-
error estimates for both the control variable and the state variables when the control was
discretized by piecewise linear functions. In our future work, we will investigate the su-
perconvergence of mixed finite element methods for optimal control problems governed
by nonlinear parabolic equations.
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