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Abstract. In this paper, we present a theoretical analysis for linear finite element su-
perconvergent gradient recovery on Par6 mesh, the dual of which is centroidal Voronoi
tessellations with the lowest energy per unit volume and is the congruent cell predicted
by the three-dimensional Gersho’s conjecture. We show that the linear finite element
solution uh and the linear interpolation uI have superclose gradient on Par6 meshes.
Consequently, the gradient recovered from the finite element solution by using the su-
perconvergence patch recovery method is superconvergent to∇u. A numerical example
is presented to verify the theoretical result.
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1. Introduction

Superconvergence of the gradient for the finite element approximation is a phenomenon
whereby the convergent order of the derivatives of the finite element solutions exceeds the
optimal global rate. Extensive research works have been done on this active research topic
(see, e.g., Wahlbin [1], Křížek [2], Chen and Huang [3]). Various postprocessing tech-
niques are raised to recover the gradients with high order accuracy from the finite element
solution, such as the well-known Superconvergence Patch Recovery (SPR) method intro-
duced by Zienkiewicz and Zhu [4] and Polynomial Patch Recovery (PPR) method raised
by Zhang and Naga [5]. The superconvergence property in the gradient recovery has been
applied to a posterior error estimation and mesh adaptivity with huge success, especially
in numerical simulations in engineering [6–10].

The geometric structure of the computational mesh has great influence on the super-
convergence property. It is well-known that superconvergence property is preserved for
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both the function values of finite element solution and its derivatives on equilateral meshes.
However the requirement of an equilateral mesh is too stringent and usually it is impossi-
ble to generate such a mesh for a general domain, even for a simple rectangular domain.
Thus some geometric conditions are imposed on computational meshes to guarantee the
superconvergence property, such as the O (h2) approximate parallelogram property by Xu
and Bank [11,12]. But questions such as what kind of meshes satisfy these conditions and
how to generate these meshes are still unsolved. Recently, these questions are partially an-
swered in [13,14]. The superconvergence based on centroidal Voronoi tessellation (CVT)
for linear finite element approximation is reported and based on this result a posterior
error estimator and corresponding adaptive CVT-based mesh generation method are also
raised. This finding is extended to three dimension by Chen, Huang and Wang [15] with
a new recovery method: Modified Superconvergence Patch recovery (MSPR) method to
overcome the influence of slivers. The theoretical proof for superconvergence property
based on general CVT meshes seems quite difficult.

We take the initial step by giving the theoretical analysis of superconvergence property
on a particular CVT structure: Par6 tessellation. The details of Par6 are presented in
Section 2. Following earlier works [16, 17], we first present the result that the gradient
of the linear finite element approximation uh is superconvergent to the gradient of the
piecewise linear interpolant uI of the solution u. More precisely, we have

uh− uI


1,Ω ® h2 ‖u‖3,∞,Ω .

Here the convergence order is approximately 1
2

higher than general cases on general CVT
meshes because of the highly symmetric structure of Par6 tessellation. The low order terms
in the asymptotic expansion of the local error are totally canceled on Par6 structure. The
errors on the boundary are also treated in this estimation. The second major part of this
proof is that the gradient recovered by SPR is superconvergent to true gradient, that is to
say

∇u− Ghuh


0,Ω ® h2 ‖u‖3,∞,Ω ,

where Gh is the SPR recovery operator. Both the superconvergence and the gradient recov-
ery results are for a non-self-adjoint and possibly indefinite problem.

The rest of this paper is organized as follows. A detailed introduction of Par6 tessel-
lation is given in Section 2. The theoretical proof of superconvergence property on Par6
tessellation is presented in Section 3. And in Section 4, numerical example is presented to
verify the theoretical result. Finally, some conclusions are drawn in Section 5.

2. Par6 pattern: the optimal centroidal Voronoi tessellation in three

dimensional space

Par6 pattern is a assembly which can be repeated indefinitely to fill space [18]. Dif-
ferent from two dimensional case, regular tetrahedrons, unlike equilateral triangles, can
not be fitted together to fill space. Par6 assembly is obtained by distorting a cube into a



180 J. Chen and D. Wang

parallelepiped involving a 35.3◦ rotation of the edges about the y- and z-axis. And then
each parallelepiped is divided into six identical tetrahedrons. Furthermore, the four faces
of these tetrahedrons are all the same—an isosceles triangle with one edge of length p

and the other two of length
p

3p/2. Repeating this assembly to get Par6 tessellation (see
Fig. 1).

Figure 1: Par6 tessellation.
Par6 based centroidal Voronoi Tessellation has the lowest energy per unit volume and is

the most likely congruent cell predicted by the three-dimensional Gersho’s conjecture [19].
Given a density function ρ, a tessellation V = {Vi}n1 of the domain Ω and a set of points
Z = {zi}n1 in Ω, we can define the following cost functional:

F (V, Z) =

n∑

i=1

F(Vi , zi), where F(Vi , zi) =

∫

Vi

ρ(x)
x − zi

2 d x .

The energy per unit volume (Ep) for a partition or tessellation {V, Z} is then defined by:

D(V, Z) =
n2/k

k

F (V, Z)

|Ω|1+2/k
.

Here, k is the dimension of the space (k = 3 in this paper), |Ω| the volume of Ω =
⋃n

i=1 Vi .
For a given bounded domain Ω together with a specified density function and a fixed

number of generator, an optimal CVT is defined as a global minimum of F (V, Z), while
the optimal centroidal Voronoi tessellation in a given Euclidean-dimensional space (e.g.,
the two-dimensional space), asymptotically speaking, is defined as the CVT which has the
lowest energy per unit volume among all CVTs that cover the whole space (as the number
of generators going to infinity).

The optimal CVT concept is closely related to the Gersho’s conjecture [20], which states
that: asymptotically speaking, all cells of the optimal CVT, while forming a tessellation, are

congruent to a basic cell which depends on the dimension. This claim is trivially true in
one dimension. It has been proved for the two-dimensional case [21] with the basic cell
being the two-dimensional regular hexagon. Gersho’s conjecture remains open for three
and higher dimensions [22]. In [23], it was shown that the body-centered-cubic (BCC,
see Fig. 2) lattice based CVT enjoys the lowest energy per unit volume among all possible
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Figure 2: Basi Voronoi ell of BCC on�guration.
lattice based CVTs. The BCC based CVTs has the energy per unit volume valued at 0.07854,
with the basic cell given by the truncated octahedron.

For nonlattice based or general CVTs, it remains unresolved whether the BCC enjoys
the lowest energy per unit volume [22]. One question pertains to the possibility of having
the optimal CVT made up by a combination of several types of basic cells. In [19], a
series of numerical examples are designed for both lattice and nonlattice based CVTs. The
computed energy per unit volume and other related properties and statistics substantiate
the claim of the three-dimensional Gersho’s conjecture: the BCC based CVT enjoys the lowest

energy among all three-dimensional CVTs including both lattice and nonlattice CVTs. Thus,
asymptotically speaking, the congruent cell of the optimal CVT is the Voronoi cell of the
BCC based tessellation, that is, the truncated octahedron.

3. Superconvergence on Par6

3.1. Preliminaries

The non-self-adjoint and possibly indefinite problem is considered: find u ∈ H1(Ω)

such that

B(u, v) =

∫

Ω

(D∇u+ bu) · ∇v+ cuv d x = f (v) (3.1)

for all v ∈ H1(Ω). Here D is a 3× 3 symmetric positive definite matrix, b a vector, and
c a scalar, and f (·) is a linear functional. We assume that all the coefficient functions are
smooth.

In order to insure that (3.1) has a unique solution, we assume that the eigenvalues
of D satisfy 0 < µ < λmin < λmax < ν uniformly in Ω. Let Vh ⊂ H1(Ω) be the space of
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continuous piecewise linear polynomials associated with a quasi-uniform triangulation Th,
and consider the approximate problem: find uh ∈ Vh such that

B(uh, vh) = f (vh) (3.2)

for all vh ∈ Vh. The following result is standard in FEM

u− uh


1,Ω ≤

ν

µ
inf

vh∈Vh

u− vh


1,Ω .

We define the piecewise constant matrix function Dτ in terms of the diffusion matrix D

as follows:

Dτi j =
1

|τ|

∫

τ

Di j d x .

Note that Dτ is symmetric and positive definite.

Figure 3: A tetrahedron.
Following the discussion in [17], we consider the unique shape tetrahedron τ in Par6

illustrated in Fig. 3. Let {pk}4k=1 denote four vertices of τ and the corresponding four
barycentric coordinates are denoted as {ϕk}4k=1. We assume τ follows the orientation given
by the right-hand rule and △klm is used to denote the face with vertices pk,pl and pm. If
the orientation of △klm, given by the order k, l, m, coincides with the induced orientation
from τ, we say△klm has the consistent orientation with τ. Fk is the surface opposite vertex
pk with the outer normal vector nk. Let ei j denote the oriented edges of element τ from pi

to p j and ti j, di j the corresponding unit tangent vectors and edge length, respectively. Let
θkl be the angle between tkl and the supporting plane of Fl . In general, θkl 6= θlk. Let Dτ
be a constant symmetric 3× 3 matrix defined on τ. We define ξi j = ni · Dτn j. Since Dτ is
symmetric, ξi j = ξ ji .
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The following fundamental identity is proved in [17] for vh ∈ P1(τ) and φ ∈ H3(τ):
∫

τ

∇(φI −φ) · Dτ∇vh

=

4∑

k,l=1,k 6=l

∂ vh

∂ tkl

ξkl

4cosθkl

�
(d2

lm− d2
km)

∫

Fk

ϕlϕm

∂ 2φ

∂ t2
kl

+ 4
��△klm

��
∫

Fk

ϕlϕm

∂ 2φ

∂ tkl∂ nkl ,m

�
+ O (h3)
φ


3,τ ‖v‖1,τ , (3.3)

where φI is the piecewise linear interpolant for φ, m is chosen such that △klm has the
consistent orientation with τ, and nkl ,m is the unit outward normal vector of edge tkl on
the supporting plane of triangle △klm.

3.2. Superconvergence between the FE solution and linear interpolant

A superconvergence result between the linear finite element approximation of a model
second order elliptic equation and its linear interpolant is given in this section.

Recalling the property of Par6 triangulation Th. The Par6 assembly is obtained by
distorting the cube into a parallelepiped with a 35.3◦ rotation of the edges about the y-
and z-axis. Each parallelepiped is divided into six tetrahedrons and all the tetrahedrons in
Par6 are the same. Furthermore, the four faces of these tetrahedrons are all the same—an
isosceles triangle with one edge of length p and the other two of length

p
3p/2

.
= 0.866p

(see Fig. 4).

Definition 3.1. Let Th denote the Par6 triangulation and E = E1
⊕E2 denote the set of

edges in Th, where E1 is the set of interior edges and E2 is set of edges on the boundary.
Let Ωe denote the patch of e, which is the union of tetrahedrons sharing e.

The following lemma is the key in this paper.

Lemma 3.1. Let the triangulation Th be Par6. Let Dτ be a piecewise constant matrix function

defined on Th, whose elements Dτi j satisfy

��Dτi j

��® 1,
��Dτi j −Dτ′ i j

�� ® h,

for i, j = 1,2,3. Here τ and τ′ are tetrahedrons sharing a common edge. Then

������

∑

τ∈Th

∫

τ

∇(u− uI) · Dτ∇vh

������
® h2 ‖u‖3,∞,Ω |v|1,Ω . (3.4)

Proof. Denote, with respect to τ,

αklm =
ξkl

4cosθkl

(d2
km
− d2

lm
), βklm =

ξkl

cosθkl

��△klm

�� .
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Figure 4: The Par6 assembly and the tetrahedron in Par6
Applying identity (3.3),

∑

τ∈Th

∫

τ

∇(u− uI ) · Dτ∇vh

=
∑

τ∈Th

4∑

k,l=1,k 6=l

∂ vh

∂ tkl


αklm

∫

Fk

ϕlϕm

∂ 2u

∂ t2
kl

+ βklm

∫

Fk

ϕlϕm

∂ 2u

∂ tkl∂ nkl ,m




=I1 + I2,

where

Ii =
∑

ekl∈Ei

∑

τ∈Ωekl

∂ vh

∂ tkl


αklm

∫

Fk

ϕlϕm

∂ 2u

∂ t2
kl

+βklm

∫

Fk

ϕlϕm

∂ 2u

∂ tkl∂ nkl ,m


 ,

for i = 1,2. In the above formulas, Fk,αklm and βklm are different for different tetrahe-
drons. The index τ is omitted for the simplification of notation.
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As mentioned before, the tetrahedrons contained in Par6 tessellation are all the same
and only two types of edges are contained in Par6: edge of length p and edge of lengthp

3/2p. From further observation on Par6 assembly shown in Fig. 4, it can be found that
for interior edges, the edge of length p such as eAG is shared by 4 tetrahedrons while the
edge of length

p
3/2p, for example eAF , is shared by 6 tetrahedrons. Thus we estimate I1

in the following way.
For the edge of length p, taking eAG for example, we will pair the tetrahedrons in patch

ΩeAG
one to one to cancel the low order terms. In tetrahedron τAEFG, we have term

∂ vh

∂ tAG


αAGE

∫

FEFG

ϕGϕE

∂ 2u

∂ t2
AG

+ βAGE

∫

FEFG

ϕGϕE

∂ 2u

∂ tAG∂ nAG,E


 ,

while in tetrahedron τGC DA we have

∂ vh

∂ tGA


αGAC

∫

FCDA

ϕAϕC

∂ 2u

∂ t2
GA

+ βGAC

∫

FCDA

ϕAϕC

∂ 2u

∂ tGA∂ nGA,C


 .

Noticing △AGE and △GAC are on the same plane, we get nAG,E = −nGA,C . And since not
only the tetrahedrons in Par6 are the same, but also the four faces of these tetrahedrons
are all the same, the following identities hold:

∫

FEFG

ϕGϕE

∂ 2u

∂ t2
AG

=

∫

FCDA

ϕAϕC

∂ 2u

∂ t2
GA

,

∫

FEFG

ϕGϕE

∂ 2u

∂ tAG∂ nAG,E
=

∫

FCDA

ϕAϕC

∂ 2u

∂ tGA∂ nGA,C
.

Using the elementary identity
�����

∫

F

f

����� ® h−1

∫

τ

�� f
��+
∫

τ

��∇ f
�� ,

we get (for z= tAG and z= nAG,E)
∫

FEFG

ϕGϕE

∂ 2u

∂ tAG∂ z

∂ vh

∂ tAG

® h−1

∫

τ

��∇2u
�� ��∇vh

��+
∫

τ

��∇3u
�� ��∇vh

�� . (3.5)

Coefficients α and β are estimated by
��αAGE −αGAC

�� = 0,
��βAGE − βGAC

�� =
����
ξAG

cosθAG

��△AGE

��− ξGA

cosθGA

��△GAC

��
����

=

�����

��△AGE

��
cosθAG

�����
��ξAG −ξGA

�� ® h3, (3.6)
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where
��Dτi j −Dτ′ i j

�� ® h has been used. The other pair of tetrahedrons contained in patch
ΩeAG

, say τADEG and τGC FA, are treated in the same way.

For the edge of length
p

3/2p, such as eAF , we also pair the tetrahedrons in patch ΩeAF

to cancel low order terms. The only difference is that there are 3 pairs to treat in this type
of patch. Table 1: Number of tetrahedrons ontained in the boundary edge path.

Edge type Edges on the boundary surface Edges on the corner
length p 2 1
length

p
3/2p 3 depends on position

Thus combining (3.5) with (3.6) and noticing vh ∈ P1(τ), we estimate I1 by

��I1

�� ® h2

∫

Ω

���∇2u
��+ h
��∇3u
��� ��∇vh

�� ® h2 ‖u‖3,Ω

��vh

��
1,Ω . (3.7)

Now we turn to the estimate for I2. If vh = 0 on ∂Ω, then it is easy to see I2 = 0. For the
edges on the boundary, say e ∈ E2, after carefully observation on Par6 tessellation we show
the number of tetrahedrons contained in the patch Ωe in Table 1. For the corner edges of
length

p
3/2p, the number of tetrahedrons contained in patch Ωe depends on the position.

Corner edges that appear on position AE and CG are shared by 2 tetrahedrons, while DH

and BF are only contained by 1 tetrahedron. We can pair the tetrahedrons in boundary
edge patch and treat it same as before. The remaining question is how to estimate the term
that can not find a partner. In general case, we define

Bekl
(u) = αklm

∂ 2u

∂ t2
kl

+ βklm

∂ 2u

∂ tkl∂ nkl ,m
,

Bekl
(u) =
��ekl

��−1
∫

ekl

Bekl
(u).

Thus

I2 =
∑

ekl∈E2

∑

τ∈Ωekl

∫

Fk

ϕlϕmBekl
(u)
∂ vh

∂ tkl

.

Since only the terms that can not find a partner are considered, we just need to estimate

eI2 =
∑

ekl∈∂Ω

∫

Fk

ϕlϕmBekl
(u)
∂ vh

∂ tkl

=
∑

ekl∈∂Ω

∫

Fk

ϕlϕmBekl
(u)
∂ vh

∂ tkl

−
∑

ekl∈∂Ω

∫

Fk

ϕlϕm

�
Bekl
(u)− Bekl

(u)
� ∂ vh

∂ tkl

.



Superconvergence Gradient Recovery on Par6 187

For the second term, we have
������

∑

ekl∈∂Ω

∫

Fk

ϕlϕm(Bekl
(u)− Bekl

(u))
∂ vh

∂ tkl

������

® h3 |u|3,∞,Ω

∑

ekl∈∂Ω

∫

Fk

����
∂ vh

∂ tkl

���� ® h5/2 |u|3,∞,Ω

��vh

��
1,Ω , (3.8)

where the trace inequality has been used.
We now estimate the first term. Let P to be the set of vertices on ∂Ω. Then we have

∑

ekl∈∂Ω

∫

Fk

ϕlϕmBekl
(u)
∂ vh

∂ tkl

=
∑

ekl∈∂Ω
Bekl
(u)
∂ vh

∂ tkl

∫

Fk

ϕlϕm =
∑

ekl∈∂Ω
Bekl
(u)
∂ vh

∂ tkl

��Fk

��
12

=
1

12

∑

x∈P

�
Bekl
(u)− Be′

kl
(u)
�

vh(x)

��Fk

��
��ekl

�� ,

where e′
kl

is a boundary edge of a neighboring tetrahedron τ′.
It is easy to see

��Fk

��
��ekl

�� ® h,
���Bekl
(u)− Be′

kl
(u)

��� ® h2 |u|2,∞,Ω .

Thus we get
�����
∑

x∈P
(Bekl

(u)− Be′
kl
(u))vh(x)

��Fk

��
��ekl

��

�����

® h3 |u|2,∞,Ω

vh


∞,∂Ω ® h3
��logh
��1/2 |u|2,∞,Ω

vh


1,Ω ,

where the following Sobolev inequality has been used,
vh


∞,Ω ®
��logh
��1/2 vh


1,Ω .

Following a standard argument, here
vh


1,Ω can be replaced by

��vh

��
1,Ω. Combining this

estimate with (3.8), we have
�� eI2

�� ® h5/2
�
|u|3,∞,Ω+ h1/2
��logh
��1/2 |u|2,∞,Ω

� ��vh

��
1,Ω

® h5/2 ‖u‖3,∞,Ω

��vh

��
1,Ω .

Thus the final estimate for I2 is
��I2

�� ® h2 ‖u‖3,∞,Ω

��vh

��
1,Ω . (3.9)

Combining (3.7) and (3.9), we finally obtain the interpolation estimate (3.4). �
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Theorem 3.1. Assume that the solution of (3.1) satisfies u ∈W 3,∞(Ω). Further, assume the

hypotheses of Lemma 3.1. Then

uh− uI


1,Ω ® h2 ‖u‖3,∞,Ω .

Proof. We begin with the identity

B(u− uI , vh) =
∑

τ∈Th

∫

τ

∇(u− uI ) · Dτ∇vh d x +
∑

τ∈Th

∫

τ

∇(u− uI) · (D −Dτ)∇vh d x

+

∫

Ω

(u− uI )(b · ∇vh+ cvh) d x = I1 + I2 + I3.

The first term I1 is estimated by Lemma 3.1. I2 and I3 can be easily estimated by
��I2

��+
��I3

�� ® h2 ‖u‖2,Ω

vh


1,Ω .

Thus
��B(u− uI , vh)
�� ® h2 ‖u‖3,∞,Ω

vh


1,Ω .

Using the inf-sup condition

µ
uh− uI


1,Ω ≤ sup

vh∈Vh

B(uh− uI , vh)vh


1,Ω

= sup
vh∈Vh

B(u− uI , vh)vh


1,Ω

® h2 ‖u‖3,∞,Ω

completes the proof of the theorem. �

3.3. Superconvergence between the gradient recovered by SPR and true

gradient

Superconvergence Patch Recovery (SPR) is a gradient recovery method introduced by
Zienkiewicz and Zhu in [6]. The SPR-recovery gradient is used to produce the ZZ error
estimator in [7], namely ZZ-SPR. This method is widely used in engineering practices for
its robustness in a posteriori error estimates and its efficiency in computer implementation.

We define Nh as the nodal set of a Par6 tessellation Th. Given z ∈ Nh, we con-
sider an element patch ω around z and we choose z as the origin of a local coordi-
nates. Under this coordinate system, we let (x j, y j , z j) be the barycenter of a tetrahedron
τ j ⊂ ω, j = 1,2, · · · , m. From further observation on Par6, we will find the following
geometric condition is satisfied for any interior vertex z:

1

m

m∑

j=1

(x j, y j , z j) = 0. (3.10)
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This geometric condition holds because of the highly symmetric structure of Par6. And for
the boundary vertices, the corresponding geometric condition is:

1

m

m∑

j=1

(x j, y j , z j) = O (h1+α)(1,1,1),

where α ∈ [0,1]. While the tetrahedrons with boundary vertices only occupy small volume
compared with whole domain Ω, that is to say

∑

τ with boundary vertices

|τ| ® Nh3 ® h,

where N is the number of tetrahedrons with boundary vertices.
Let uI ∈ Vh be the linear interpolation of a given function u. We shall discuss a gradient

recovery operator Gh and prove the superconvergence property between ∇u and GhuI .
The value of GhuI is first determined at a vertex, and then linearly interpolated over the
whole domain. SPR uses the local discrete least-squares fitting to seek linear functions
pl ∈ P1(ω)(l = 1,2,3), such that

m∑

j=1

[pl(x j, y j , z j)− ∂luI (x j, y j , z j)]q(x j, y j , z j) = 0, ∀q ∈ P1(ω), l = 1,2,3. (3.11)

Then we define GhuI (z) = (p1(0,0,0), p2(0,0,0), p3(0,0,0)). The existence and unique-
ness of the minimizer in (3.11) can be found in [24].

Lemma 3.2. Let ω be an element patch around a vertex z ∈ Nh, let u ∈ W 3
∞(ω), and let

GhuI(z) be produced by the local discrete least-squares fitting under condition (3.10). Then

��GhuI (z)−∇u(z)
�� ® h2 ‖u‖3,∞,ω .

Proof. Set q = 1 in (3.11) to obtain

m∑

j=1

pl(x j, y j , z j) =

m∑

j=1

∂luI(x j, y j , z j).

Therefore,

pl(0,0,0)− 1

m

m∑

j=1

∂luI(x j, y j , z j)

=pl(0,0,0)− 1

m

m∑

j=1

pl(x j, y j , z j)

=− 1

m
∇pl(0,0,0) ·

m∑

j=1

(x j, y j , z j) = 0, (3.12)



190 J. Chen and D. Wang

where Taylor expansion and condition (3.10) have been used. Next,

1

m

m∑

j=1

∂luI(x j, y j , z j)− ∂lu(0,0,0)

=
1

m

m∑

j=1

∂l(uI − u)(x j, y j , z j) +
1

m

m∑

j=1

[∂luI(x j, y j , z j)− ∂lu(0,0,0)]

=
1

m

m∑

j=1

∂l(uI − u)(x j, y j , z j) +
1

m
∇∂lu(0,0,0) ·

m∑

j=1

(x j, y j , z j) + R(u),

where, by Taylor expansion, the high order term R(u) is estimated by

|R(u)|® h2 |u|3,∞,ω .

Therefore,
�����

1

m

m∑

j=1

∂luI(x j, y j , z j)− ∂lu(0,0,0)

�����® h2 ‖u‖3,∞,ω . (3.13)

Combining (3.12) and (3.13), we have proved
��pl(0,0,0)− ∂lu(0,0,0)

��® h2 ‖u‖3,∞,ω .

This completes the proof of the lemma. �

Lemma 3.3. The recovery operator Gh satisfies

Ghv(z) =

m∑

j=1

c j∇v(x j, y j , z j),
m∑

j=1

c j = 1,

unconditionally. Furthermore, c j > 0 for the locate discrete least-squares fitting under the

condition (3.10).

Proof. Let pl(x, y, z) = a0 + a1 x + a2 y + a3z. Then for the local discrete least-squares
fitting, ai ’s are given by



m
∑

j x j

∑
j y j

∑
j z j∑

j x j

∑
j x2

j

∑
j x j y j

∑
j x jz j∑

j y j

∑
j x j y j

∑
j y2

j

∑
j y jz j∑

j z j

∑
j x jz j

∑
j y jz j

∑
j z2

j







a0

a1

a2

a3


=




∑
j ∂luh(x j, y j , z j)∑

j x j∂luh(x j, y j , z j)∑
j y j∂luh(x j, y j , z j)∑
j z j∂luh(x j, y j , z j)




. (3.14)

Under condition (3.10),
∑

j

x j = 0,
∑

j

y j = 0,
∑

j

z j = 0.
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Therefore, from (3.14) we get

a0 =
1

m

∑

j

∂luh(x j, y j , z j)−
a1

m

∑

j

x j −
a2

m

∑

j

y j −
a3

m

∑

j

z j

=
∑

j

c j∂luh(x j, y j , z j)

with c j = 1/m> 0 . �

Remark 3.1. Under the given condition, the recovered gradient at a vertex z is a convex
combination of gradient values on the element patch surrounding z. Since Par6 is uniform
tessellation, SPR has the same performance as simple averaging or weighted averaging
theoretically but more robust in practice.

Theorem 3.2. Let the solution of (3.1) satisfy u ∈ W 3
∞(Ω), let uh be the solution of (3.2),

and let Gh be a recovery operator defined by the local discrete least-squares fitting. Assume the

tessellation is Par6 Th. Then
∇u− Ghuh


0,Ω ® h2 ‖u‖3,∞,Ω . (3.15)

Proof. We decompose

∇u− Ghuh = (∇u− (∇u)I) + ((∇u)I − GhuI ) + Gh(uI − uh), (3.16)

where (∇u)I ∈ V 3
h

is the linear interpolation of∇u. By the standard approximation theory,
∇u− (∇u)I


0,Ω ® h2 |u|3,Ω . (3.17)

Using Lemma 3.2, we have

(∇u)I − GhuI


0,Ω ≤
� ∑

τ∈Th

|τ|
∑

z∈Nh

⋂
τ̄

��GhuI(z)−∇u(z)
��2
�1/2

® h2 ‖u‖3,∞,Ω |Ω|1/2 ® h2 ‖u‖3,∞,Ω . (3.18)

Similarly, by the fact proved in Lemma 3.3, that Ghv(z) is a convex combination of∇v|τ in
the patch ω,

Gh(uI − uh)


0,Ω ≤
�∑

τ∈Th

|τ|
∑

z∈Nh

⋂
τ̄

��Gh(uI − uh)(z)
��2
�1/2

®

�∑

τ∈Th

|τ|
��∇(uI − uh)
��2
τ

�1/2

=
∇(uI − uh)


0,Ω ® h2 ‖u‖3,∞,Ω , (3.19)

where Theorem 3.1 has been used. Combining (3.16)-(3.19), we obtain the final estima-
tion (3.15). �
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4. Numerical substantiation

In this section, we present a simple numerical example to verify the theoretical results
deduced in previous section. The superconvergence order of

∇u− Ghuh


0,Ω for linear

finite element solution on Par6 tessellation is close to 2, coinciding with the theoretical
results exactly.

The linear finite element solution of the following Poisson equation is considered

−∆u= f inΩ,

u = g on∂Ω,
(4.1)

where Ω is a 3D-bounded Lipschitz domain with boundary ∂Ω, f and g are smooth, and
the solution u of equation (4.1) is assumed to be sufficiently smooth. The right hand side
f is chosen to be 3sin(x + y + z), thus the exact solution is u = sin(x + y + z) and the
boundary condition is properly imposed.

The experiment is conducted on Par6 tessellation, for which the whole parallelepiped
domain Ω is divided into small parallelepiped and then each small parallelepiped is sub-
divided into six identical tetrahedrons (see Fig. 1). The SPR method is performed on a
sequence of meshes with the sizes being h= 0.100,0.050,0.033,0.025. The error estima-
tion and convergence order are shown in Table 2 and Fig. 5.Table 2: Error estimation and onvergene order of the reovered gradient on Par6.

Mesh size SPR
h

∇u− Ghuh


0,Ω

0.100 2.02e-3
0.050 5.18e-4
0.033 2.32e-4
0.025 1.32e-4
Order 1.9779

The convergence order corresponds to the absolute value of slope in the figure, which
is approximately 2, coinciding with our theoretical results exactly.

5. Conclusions and future works

In this paper, a theoretical analysis of linear finite elements superconvergence on Par6
tessellation is presented. Involving the post-processing gradient recovery method SPR, we
show that the recovered gradient Ghuh is a superconvergent approximation to ∇u in a
order of 2. Par6 pattern is a particular CVT structure which can be considered optimal in
three dimension [19]. Thus, our theoretical analysis bears significance to the Centroidal
Voronoi tessellation based finite element superconvergence.

In future, the theoretical extension of superconvergence property on general CVT
meshes will be explored both for two- and three-dimensions. The low order terms in
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Figure 5: Error estimation and onvergene rate of the reovered gradient on Par6.
the asymptotic expansion of the local error are totally canceled because of the highly sym-
metric structure of Par6. The general CVT meshes also enjoy some degree of symmetry
and can be considered as quasi-uniform meshes. Consequently, to analyze the supercon-
vergence property on general CVT meshes, the key is to deduce some symmetric geometry
condition from the CVT mesh generation procedure.
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