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Abstract. We tackle the problem of constructing 2D centroidal Voronoi tessellations

with constraints through an efficient and robust construction of bounded Voronoi dia-

grams, the pseudo-dual of the constrained Delaunay triangulation. We exploit the fact

that the cells of the bounded Voronoi diagram can be obtained by clipping the ordinary

ones against the constrained Delaunay edges. The clipping itself is efficiently computed

by identifying for each constrained edge the (connected) set of triangles whose dual

Voronoi vertices are hidden by the constraint. The resulting construction is amenable to

Lloyd relaxation so as to obtain a centroidal tessellation with constraints.
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1. Introduction

Voronoi diagrams have been extensively studied in the field of computational geome-

try [2]. Given a set of points X = {xi}
N
i=1, called sites or generators, the Voronoi diagram

is defined as the space decomposition into cells according to the nearest site. Namely, the

Voronoi cell associated to xi, denoted Vi, is defined as

Vi =
¦

x ∈ R2 | d(x ,xi)≤ d(x ,x j),∀ j ∈ {1, · · · , N}, j 6= i
©

.

One popular way to efficiently construct Voronoi diagrams consists in exploiting its du-

ality property with the Delaunay triangulation: The Delaunay triangulation can be defined

as the dual of the Voronoi diagram, as the triangulation obtained by creating a Delaunay

edge x i x j if the Voronoi cells Vi and V j are neighbors (they share a Voronoi edge). A di-

rect characterization of the Delaunay triangulation is also possible: a triangle defined by

three points of X belongs to the Delaunay triangulation if none of the other points of X
is located inside its circumcircle.
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Centroidal Voronoi diagrams are commonly used in some applications which require a

good sampling of an input domain. One way to distribute a set of points isotropically and in

accordance with a density function is to apply the Lloyd iteration (described in Section 3)

over an initial Voronoi diagram of the input points. Du et al. [6] have shown how the Lloyd

iteration transforms an initial ordinary Voronoi diagram into a centroidal Voronoi diagram,

where each generator happens to coincide with the centroid of its Voronoi cell. This process

is a way to trade global requirements (the density function) for local requirements of

generating a locally uniform distribution of the Voronoi sites.

The Lloyd iteration assumes a Voronoi tessellation with bounded cells so that the cen-

troid of each Voronoi cell is well defined. Assuming a bounded input domain Ω, one direct

way to proceed consists of intersecting each Voronoi cell with Ω and computing the cen-

troid of the resulting intersection (more specifically the connected component containing

the cell generator). In addition to suffering from the usual robustness issues, the inter-

sections may result in non-convex or non-simply connected cells and hence in centroids

located outside Ω (see Fig. 2-Left & Middle).

For cases where the input domain boundary is a polygonal line, one solution consists

of relying on a constrained Delaunay triangulation (CDT). It is a generalization of the De-

launay triangulation which allows the addition of constrained line segments appearing as

edges of the triangulation [4]. The end points of those line segments are also the gener-

ators of the dual Voronoi tessellations. In a CDT, a triangle is valid if its circumcircle does

not contain any point of X visible from inside the triangle. To define the visibility notion,

the input domain boundary is considered as a set of occluding barriers (see Fig. 1-Left).

One of our goals is to consider these geometric constraints in a generic manner so as

to handle inner isolated constraints, evolving cracks, etc. Among others, natural elements

and natural neighbor methods [11, 14, 16, 17] need to handle this type of constraints. In

these applications the constraints can move in an unpredictable manner. Robustness is

thus a key point of our work, since at every step convex Voronoi cells are required.

We now have to deal with Voronoi cells with constraints. As explained above, Delaunay

triangulation and Voronoi diagram are dual structures. For our purpose, defining a dual of

the CDT would thus be useful. It is possible to construct the usual Voronoi diagram from

the Delaunay triangulation with the following dual rule:

Voronoi vertices are constructed at circumcenters of Delaunay triangles and Voronoi

edges are drawn between dual of neighboring Delaunay triangles.

The standard dual of the CDT is the constrained Voronoi diagram (CVD), defined by a slight

modification of this rule:

Constrained Voronoi vertices are constructed at circumcenter of constrained De-

launay triangles and constrained Voronoi edges are drawn between dual of De-

launay triangles which are neighbors through a non constrained Delaunay edge

(see Fig. 1-Middle). Note that this definition allows the Voronoi diagram to cross the

constraints, or more exactly, some part of the Voronoi diagram (dashed in Fig. 1-Middle)

continue on the wrong side of the constraints as if they were on the right side. Several
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Figure 1: (Left) CDT: Constrained Delaunay triangulation of a set of verties. (Middle) ConstrainedVoronoi diagram: CVD, standard dual of the CDT. (Right) BVD: Bounded Voronoi Diagram.
Figure 2: (Left) CDT: Constrained Delaunay triangulation of a set of verties. (Middle) A CVD ell(green), from standard dual of the CDT. Its intersetion with the domain has two onneted omponents.(Right) The suitable BVD lipped ell.
approaches have been proposed [9, 12, 15]. We base our work on Seidel’s [12] definition

of the bounded Voronoi diagram (BVD) which clips the CVD with constraints (see Fig. 1-

Right and 2-Right).

Contribution

We propose a simple and efficient algorithm to construct the BVD from the CDT, as

follows. First, mark the triangles whose dual BVD vertices belong to the CVD but not to

the BVD, i.e., the triangles whose circumcenter is not visible as blocked by one or several

constrained edges. Then, extract the BVD cells from the CVD. Notice that a Voronoi edge

of the CVD may be clipped by constraints which are not close to its dual Delaunay edge

(see Fig. 3). This BVD construction makes possible to take the constraints into account in

an efficient manner during the Lloyd iterations, as explained in Section 3.

2. Bounded Voronoi diagram

While the ordinary Voronoi diagram does not take constraints into account, we wish

here to prevent the Voronoi regions to cross over the constraints. To be able to run Lloyd
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Figure 3: Two Voronoi ells and their lipped bounded Voronoi ounter parts. These ells are generatedby a site whih is far from the onstraints and must be lipped.
iterations, each Voronoi cell must be convex and simply connected. To this aim we use

a bounded Voronoi diagram, defined by Seidel [12] as a pseudo-dual to the constrained

Delaunay triangulation [4,13] (see Section 1).

The common duality between Delaunay triangulation and Voronoi diagram links each

triangle to its circumcenter. In our context, each triangle△may have its circumcenter c on

the other side of a constrained edge. Hence, c is the dual of△ if it is on the same side of the

constraint. Otherwise, it is a pseudo-dual, and some Voronoi edges of △ must be clipped

by the constraint. The BVD is defined as follows: each cell Vi of a generator xi is composed

by the points of the domain Ω which are closer to xi than to any other generator. As for

the constrained Delaunay triangulation, the distance incorporates visibility constraints, the

distance dS(x , y) between two points x and y of R2 is defined as:

dS(x , y) =

¨

||x − y||R2 if x “sees” y,

+∞ otherwise.

In this definition, x “sees” y when no constrained edge intersects the segment [x , y]. This

visibility notion can be extended to triangles. We will see later how the notion of tri-

angle sight, or symmetrically triangle “blindness”, is important to construct the bounded

Voronoi diagram. Fig. 4 illustrates a constrained Delaunay triangulation and its pseudo-

dual bounded Voronoi diagram. Notice that trying to construct the naïve Voronoi diagram

by joining the circumcenters of all pairs of incident triangles would not even form a par-

tition. The notion of triangle blindness is pivotal for constructing the bounded Voronoi

diagram.

Definition 2.1 (Blind triangle). A triangle△ is said to be blind if the triangle and its circum-

center c lie on the two different sides of a constrained edge E. Formally,△ is blind if and only

if there exists a constrained edge E such that one can find a point p in △ (not an endpoint of

E), such that the intersection [p, c] ∩ E is non-empty.
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Figure 4: Constrained Delaunay triangulation of a set ofpoints (left) and its pseudo-dual bounded Voronoi diagram(right). Figure 5: Constrution of a ell of thebounded Voronoi diagram. The standardVoronoi diagram is trunated on the on-strained edge (olored triangles are blind).
The BVD construction algorithm initially tags all triangles of the triangulation as being

blind or not blind (Algorithm 1). It then constructs each cell of the diagram indepen-

dently using these tags (Algorithm 2). Finally, all cells are assembled to build the complete

bounded Voronoi diagram of a given set of points and constrained edges.

Algorithm 1. Tag blind triangles

Input: Constrained Delaunay triangulation cd t.

Tag all triangles non-blind by default.

for each constrained edge e of cd t do

Create a stack: t r iangles

for both adjacent triangles fe to e tagged non-blind do

Push fe into t r iangles

while t r iangles is non-empty do

Pop f from stack t r iangles

if f is blinded by e (use P ) then

Tag f as blinded by e

for each adjacent triangle f ′ to f do

if f ′ is finite and tagged non-blind

& the common edge between f and f ′ is unconstrained then

Push f ′ into t r iangles.

Algorithm 1 tags all triangles of the triangulation as being either blind or non-blind.

In addition, each blind triangle stores which constrained edge in the triangulation acts as

a visibility obstacle, i.e., which edge prevents it to see its circumcenter (it is the first con-

straint intersected by the oriented line joining any point of the triangle to its circumcenter).

Notice how the algorithm only needs to iterate over the constrained edges of the triangu-
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lation, as all sets of blinded triangles form connected components incident to constrained

edges. Indeed, the Voronoi diagram of the vertices of the blind triangles on one side of any

constraint is a tree rooted from the dual ray of the constraint.

Algorithm 2. Construct a BVD cell

Input: Unconstrained vertex x of the constrained Delaunay triangulation cd t.

Call P the polygon (cell) in construction,

Call fini t a triangle incident to x,

Let f be initialized to fini t

Call fnex t the next triangle counterclockwise around x,

Call L f , fnex t
the line going through the circumcenters of f and fnex t .

repeat

if f is tagged non-blind then

Insert the circumcenter of f into P.

if fnex t is blind then

Call S fnex t
the constrained edge blinding fnex t ,

Insert point L f , fnex t
∩ S fnex t

into P.

else

Call S f the constrained edge blinding f .

if fnex t is tagged non-blind then

Insert L f , fnex t
∩ S f into P.

else

Call S fnex t
the constrained edge blinding fnex t ,

if S f 6= S fnex t
then

Insert L f , fnex t
∩ S f and L f , fnex t

∩ S fnex t
into P.

f ← fnex t

Call fnex t the next triangle counterclockwise around x,

until f = fini t

Output: Bounded Voronoi cell of x in counterclockwise order.

We define a robust predicate, called P in the sequel, to test if a triangle is blinded by a

constrained edge. More specifically, P takes as input a triangle and a segment, and returns

a Boolean indicating whether or not the circumcenter of the triangle lies on the same side

of the segment than the triangle. The circumcenter is never constructed explicitly in order

to obtain a robust tagging of the blind triangles. Each cell of the bounded Voronoi diagram

can be constructed by circulating around vertices of the triangulation, and by choosing as

cell vertex either circumcenters or intersections of the standard Voronoi edges with the

constrained edges. Note that we do not need to construct bounded Voronoi cells incident

to input constrained vertices as the latter are constrained and therefore not relocated by

the Lloyd iteration. Algorithm 2 describes this construction, and Fig. 5 illustrates the con-

struction of a single bounded Voronoi cell. Fig. 6 illustrates a bounded Voronoi diagram.
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Figure 6: CDT with its blind triangles, and bounded Voronoi diagram of a PSLG.
3. Lloyd iteration

Energy minimization The Lloyd iteration [10] is a minimizer for the energy functional:

E =
N
∑

i=1

∫

y∈Vi

ρ(y)||y − xi ||
2d y,

where ρ is a density function defined over the domain Ω, {xi}
N
i=1 the generators and

{Vi}
N
i=1

the corresponding Voronoi cells.

It minimizes this energy by alternately moving the generators to the centroid of their

Voronoi cells, and recomputing the Voronoi diagram. The centroid x⋆ of the cell V is

defined as:

x⋆ =

∫

V
yρ(y)d y
∫

V
ρ(y)d y

.

After convergence, the space subdivision obtained is a centroidal Voronoi Tessellation (CVT)

[5, 6]. As it corresponds to a critical point of the energy E , it is a necessary condition for

minimizing E . Fig. 7 is an illustration of the evolution during Lloyd iterations.

Convergence criterion We choose to stop the Lloyd iteration when all generators move

less than a user-defined distance threshold. We first define the notion of move ratio of a

generator x in its Voronoi cell V as mr(x) =
||x−x⋆||

diameter(V )
. The Lloyd iteration is stopped

when maxx∈{xi}
N
i=1

mr(x) < p (p is typically set to 1%).

The Lloyd iteration requires computing centroids of (possibly bounded) Voronoi cells

in 2D. Such computations require a quadrature formula when a variable density function
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Figure 7: Lloyd iteration with a uniform density. Four lusters of verties (0), randomly loated insidea square with onstraints. Blak points are the generators, red points are the ells' entroids. In thereading order, generators and entroids after 1, 5, 10, 100 iterations; and after onvergene of the Lloyditeration, when generators and entroids oinide.
is specified, i.e., when the input sizing function is not uniform. The density function ρ and

the sizing function µ are linked by the following formula [7,8]: µ(x) = 1

ρ(x)d+2 , where d is

the dimension of the domain. In 2D, this yields

µ(x) =
1

ρ(x)4
.

The key idea behind a quadrature is to decompose a simple domain (a convex poly-

gon in our case) into smaller sub-domains (so-called quadrature primitives) where simple

interpolation schemes are devised. The number n of quadrature primitives used for each

element allows the user to tune the computation accuracy of the centroids. In practice this

number is increased as the iterations go. During first iterations, vertices are moving a lot,

inside their cells and inside the domain. The computation of the centroid location needs

only a low precision, and n = 10 typically is enough. Later in the course of iterations,

the Voronoi tessellation is getting close to be centroidal. To ensure the convergence of the

tessellation to a CVT through Lloyd iterations, the precision needs to be increased. Other-

wise, and in particular when the chosen sizing field is highly graded, it might happen that

the Lloyd algorithm does not converge to a stable CVT. In practice, we run final steps with

n= 100.

We use the midpoint approximation rule in 2D, with a decomposition of each bounded

Voronoi cell into n sub-triangles. More precisely, an initial step triangulates the cell by join-

ing each of its vertices to its generator. The next step recursively bisects the longest edge
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Figure 8: Frane. CVT inside the domain. Verties lying in a bounded region are not allowed to rossthe onstraints.
Figure 9: World. CVT inside the domain. The sizing funtion is hosen as being uniform (left) andadapted, with k = 0.1 (right).

Figure 10: Sea horse. CVT inside the bubble domain. The sizing funtion is hosen as being uniform(left) and adapted, with k = 0.1 (right). Both CVT's ontain 2000 points. Starting from a uniformlydistributed initial set of points, Lloyd optimization reahes onvergene in about 100 iterations. In theuniform ase (left), it takes about 7 seonds, and in the adaptive ase (right), it takes about 80 seonds.
of these triangles until the number of quadrature triangles reaches n. On each quadrature

triangle, the midpoint approximation formula is applied:

∫

△

f (x)d x ≈
|△|

3
( f (x12) + f (x23) + f (x13)),



2D CVT with Constraints 221

where x12, x23 and x13 are the midpoints of a quadrature triangle edges. Finally, we sum

the integrals on each quadrature triangle in order to obtain an approximate centroid of the

whole bounded Voronoi cell. Our algorithm is implemented in C++ using the Computa-

tional Geometry Algorithms Library CGAL [3].

4. Results

Algorithms 1 and 2 construct the bounded Voronoi diagram of a set of points, with

respect to a set of line segment constraints. Running Lloyd algorithm on the bounded

Voronoi diagram turns it into a centroidal and bounded Voronoi tessellation. This opti-

mization process alternates relocating each vertex to its cell centroid, and updating the

tessellation. This is made possible thanks to the BVD properties: each bounded cell is

convex and simply connected.

Figs. 8, 9 and 10 show centroidal Voronoi tessellations generated from random initial

point sets. Fig. 8 highlights the fact that vertices lying in a bounded region are not allowed

to cross the constraints.

Figs. 9 and 10 show examples where the density function used in the Lloyd iteration can

be either constant, or automatically adapted and k-Lipschitz. The automatically adapted

density function that we use derives from the sizing function described in [1] as:

µ(x) = inf
s∈∂Ω
[kd(s, x)+ size(s)],

where ∂Ω is the domain boundary, d the Euclidean distance, size(s) the prescribed size at

s, and k a user-defined constant. It is shown to be the maximum k-Lipschitz function that

is smaller or equal to size(s) on the boundary of the domain.

5. Conclusion

We have proposed a robust and simple algorithm to compute 2D centroidal Voronoi

tessellations with constraints. This algorithm is among others motivated by meshless sim-

ulation applications which require computing natural neighbor interpolation over bounded

Voronoi diagrams. As future work we wish to elaborate upon a fully dynamic construction

of the bounded Voronoi diagram such that removing a constrained edge leads to local up-

dates of the blind triangles. Finally, we plan to elaborate upon the efficient computation of

2D natural neighbor interpolation coordinates based upon the proposed bounded Voronoi

diagram.
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