
Numer. Math. Theor. Meth. Appl. Vol. 3, No. 3, pp. 352-366

doi: 10.4208/nmtma.2010.33.5 August 2010

Preconditioning Schur Complement Systems

of Highly-Indefinite Linear Systems

for a Parallel Hybrid Solver†

I. Yamazaki∗, X. S. Li and E. G. Ng

Lawrence Berkeley National Laboratory, Berkeley, California, USA.

Received 30 September 2009; Accepted (in revised version) 27 January 2010

Available online 2 July 2010

Abstract. A parallel hybrid linear solver based on the Schur complement method has

the potential to balance the robustness of direct solvers with the efficiency of precon-

ditioned iterative solvers. However, when solving large-scale highly-indefinite linear

systems, this hybrid solver often suffers from either slow convergence or large memory

requirements to solve the Schur complement systems. To overcome this challenge, we

in this paper discuss techniques to preprocess the Schur complement systems in paral-

lel. Numerical results of solving large-scale highly-indefinite linear systems from various

applications demonstrate that these techniques improve the reliability and performance

of the hybrid solver and enable efficient solutions of these linear systems on hundreds

of processors, which was previously infeasible using existing state-of-the-art solvers.

AMS subject classifications: 65F10, 15A12, 65N55

Key words: Schur complement method, preconditioning, matrix preprocessing.

1. Introduction

A number of parallel linear solvers have been implemented based on a domain decom-

position idea called the Schur complement method [7, 8]. In this method, the unknowns

in interior subdomains are first eliminated using a direct solver. Then, the remaining Schur

complement system is solved using a preconditioned iterative method. This method often

exhibits great parallel performance because interior subdomains can be solved in parallel.

Furthermore, this hybrid approach has the potential to balance the robustness of direct

solvers with the efficiency of iterative solvers because the unknowns in the relatively-small

interior subdomains can be eliminated efficiently using a direct solver, while the sparsity

can be enforced for solving the Schur complement system, where most of the fill occurs. In

†This paper is presented at the International Conference on Preconditioning Techniques for Scientific and

Industrial Applications, August 24-26, 2009, Hong Kong.
∗Corresponding author. Email addresses: i.yamazaki�gmail.om (I. Yamazaki), XSLi�lbl.gov (X. S.

Li), EGNg�lbl.gov (E. G. Ng)

http://www.global-sci.org/nmtma 352 c©2010 Global-Science Press

Preconditioning Schur Complement Systems for a Parallel Hybrid Solver 353

addition, for a symmetric positive definite system, the Schur complement has a smaller con-

dition number than the original coefficient matrix [20, Section 4.2], and fewer iterations

are often required for solving the Schur complement system. Unfortunately, for a highly-

indefinite linear system, the preconditioned iterative method often suffers from either slow

convergence or large memory requirement to solve the Schur complement system.

To address this challenge, we discuss in this paper techniques to preprocess the Schur

complement systems in parallel. Effective preprocessing techniques have been already

developed to solve highly-indefinite linear systems of equations. For example, a matrix

permutation to preserve the sparsity of a preconditioner significantly reduces the com-

putational and memory requirements [11, 13]. Furthermore, unsymmetric scaling and

permutations that place large entries on the diagonal often improve the reliability and per-

formance of the preconditioned iterative solver [3,6]. However, the effectiveness of these

preprocessing techniques on the performance of a parallel hybrid solver has not been well

studied. There are software packages which compute matrix permutations in order to pre-

serve the sparsity of the preconditioners on a distributed memory system [4,12]. However,

these packages are designed primarily for sparse matrices, and their performance suffers

on the Schur complements, which are relatively dense. Furthermore, a robust parallel im-

plementation to place large entries on the diagonal has not yet been developed [5,9,18].

The primary purpose of this paper is to fill this gap.

The rest of this paper is organized as follows: In Section 2 we review the Schur com-

plement method. In Section 3 we discuss the techniques to preprocess the Schur com-

plements in parallel. Then, in Section 4 we present numerical results to demonstrate the

effectiveness of the preprocessing techniques for solving the Schur complement systems of

large-scale highly-indefinite linear systems of equations. We also present numerical results

to demonstrate that our new parallel hybrid linear solver incorporates these preprocess-

ing techniques and efficiently solves these linear systems on a large number of processors.

Finally, in Section 5 we conclude with final remarks.

2. Schur complement method

The Schur complement method is a non-overlapping domain decomposition method,

which is also referred to as iterative substructuring. Specifically, the original linear system

is first reordered into a 2× 2 block system of the following form:

�
A11 A12

A21 A22

��
x1

x2

�
=

�
b1

b2

�
, (2.1)

where A11 is a block-diagonal matrix, each of whose diagonal blocks represents an interior

subdomain, A22 represents separators, and A12 and A21 are the interfaces between A11 and

A22. After one step of the block Gaussian elimination, the 2×2 block system (2.1) becomes

�
A11 A12

0 S

��
x1

x2

�
=

�
b1

bb2

�
, (2.2)

354 I. Yamazaki, X. S. Li and E. G. Ng

where S is the Schur complement defined as

S = A22 − A21A−1
11 A12, (2.3a)

and

bb2 = b2 − A21A−1
11 b1. (2.3b)

Hence, the solution of the linear system (2.1) can be computed by

1. first forming the Schur complement S and the right-hand-side vector bb2;

2. then solving the Schur complement system

Sx2 =
bb2; (2.4)

3. and finally solving the interior system

A11 x1 = b1− A12 x2. (2.5)

Since most of the fill occurs in the Schur complement S, the Schur complement system

is solved using an iterative method, while the interior system is typically solved using a

direct method. See [20] and the references within for a detailed discussion on the Schur

complement method.

As we will discuss in Section 3.1, each interior subdomains of A11 are solved in parallel.

To utilize a large number of processors, many interior subdomains are often needed. This

increases the size of the Schur complement S, and the solution of (2.4) often suffers from

either slow convergence or large memory requirement. This is especially true when solving

highly-indefinite linear systems, as we will demonstrate in Section 4.

3. Parallel matrix preprocessing

To efficiently solve large-scale highly-indefinite linear systems on a large number of

processors, we have been developing a new parallel implementation of the Schur com-

plement method. In this section, we discuss one feature of our implementation: parallel

preprocessing techniques to improve the reliability and performance of the solver.

3.1. Schur complement construction

Before our discussion on the parallel preprocessing techniques, let us describe how

the Schur complement S is constructed in our current implementation. For our discussion

here, the ℓ-th interior subdomain and corresponding interfaces are denoted by A
(ℓ)

11 , and

A
(ℓ)

12 and A
(ℓ)

21 , respectively, such that the coefficient matrix in the 2× 2 block system (2.1)

Preconditioning Schur Complement Systems for a Parallel Hybrid Solver 355

with k interior subdomains can be written as

�
A11 A12

A21 A22

�
=

A
(1)
11 A

(1)
12

A
(2)
11 A

(2)
12

. . .
...

A
(k)
11 A

(k)
12

A
(1)
21 A

(2)
21 . . . A

(k)
21 A22

. (3.1)

If each interior subdomain A
(ℓ)

11 is factored by a single processor, then the ℓ-th processor

stores the nonzeros of A
(ℓ)

11 and A
(ℓ)

21 in a row-wise order, and the nonzeros of A
(ℓ)

12 in a

column-wise order. If multiple processors are used to factor each interior subdomain,

then the rows of A
(ℓ)

11 and A
(ℓ)

21 , and the columns of A
(ℓ)

12 are evenly distributed among the

processors. Furthermore, the rows of A22 are evenly distributed among the processors

solving the Schur complement system (2.4).

With the block structure (3.1) and the LU factorization of the interior subdomain A
(ℓ)

11 ,

which is denoted by A
(ℓ)

11 = L
(ℓ)

11 U
(ℓ)

11 ,§ the Schur complement is computed as

S = A22 −
k∑

ℓ=1

A
(ℓ)

21 (A
(ℓ)

11)
−1A

(ℓ)

12

= A22 −
k∑

ℓ=1

�
(U
(ℓ)

11)
−T (A

(ℓ)

21)
T
�T�
(L
(ℓ)

11)
−1A

(ℓ)

12

�

= A22 −
pA∑

p=1

E(ℓ)(:, j
(p)

1 : j
(p)

2)F
(ℓ)(j

(p)

1 : j
(p)

2 , :), (3.2)

where pA is the total number of processors, E(ℓ)(:, j
(p)

1 : j
(p)

2) and F (ℓ)(j
(p)

1 : j
(p)

2 , :) are the

j
(p)

1 -th through the j
(p)

2 -th columns and rows of the matrices

E(ℓ) =
�
(U
(ℓ)

11

�−T�
A
(ℓ)

21)
T
�T

and F (ℓ) = (L
(ℓ)

11)
−1A

(ℓ)

12 , (3.3)

respectively. Hence, the p-th processor computes the local outer-product updates of the

Schur complement S, and sends the rows of the updates to the processor that owns the

corresponding rows of A22. Subsequently, if pS denotes the number of processors used to

solve the Schur complement system, and n2 is the dimension of S, then the p-th processor

computes the nonzeros in the
�
1+(p−1)

n2

pS

�
-th through the

�
p

n2

pS

�
-th rows of S, and stores

them in a row-wise order, 1≤ p ≤ pS .¶

§The matrix A
(ℓ)

11 is scaled and permuted to enhance the numerical stability and to preserve the sparsity of L
(ℓ)

11

and U
(ℓ)

11 . For clarity, these scaling and permutation are not shown in the expression.
¶If n2 cannot be devided by pS , then the remaining rows are assigned to the last processor.

356 I. Yamazaki, X. S. Li and E. G. Ng

3.2. Parallel unsymmetric scaling and permutation

After the Schur complement S is computed as described in Section 3.1, nonzeros of S

with magnitudes less than a user-specified drop tolerance are discarded to form a sparsified

Schur complement eS. Then, an ILU factor of eS is computed and used as the preconditioner

for solving the Schur complement system (2.4). Unfortunately, as discussed in Section 1,

the preconditioned iterative solver often suffers from slow convergence or large memory

requirements as the number of interior subdomains increases.

To improve the reliablity and performance of the preconditioned iterative method, we

study two techniques to preprocess the Schur complement S in parallel:

1. Scaling with infinity-norm. Each row of S is first scaled using its infinity-norm. Then

after the row scaling is applied, each column is scaled by its infinity-norm. This

is one of the matrix preprocessing techniques implemented in SuperLU_DIST [15].

The infinity-norms of the rows can be computed in parallel since S is distributed

by rows as described in Section 3.1. To compute the norms of the columns, global

communication is needed.

2. Bipartite weighted matching. One powerful preprocessing technique is unsymmetric

scaling and permutation that place large entries on the diagonal based on bipartite

weighted matching [17]. An efficient serial implementation such as MC64 [6] has

been developed, and its effectiveness for solving highly-indefinite linear systems of

equations has been demonstrated [3]. However, this serial implementation cannot

be used for preprocessing the Schur complement due to the large memory required

to form S on each processor. A robust parallel implementation has not been devel-

oped [5, 9, 18]. As a remedy, we compute scaling and permutations of local ma-

trices. Specifically, if the p-th processor owns the i
(p)

1 -th through the i
(p)

2 -th rows

of S, then the processor computes the scaling and permutation of the local diagonal

block S(i
(p)

1 : i
(p)

2 , i
(p)

1 : i
(p)

2), which is the diagonal block of S between the i
(p)

1 -th and

i
(p)

2 -th rows and columns.‖ These scaling and permutation can be computed using

an existing serial code such as MC64.

After the application of the preprocessing technique, S is sparsified to form eS. The

numerical results using the preprocessing techniques will be presented in Section 4.

3.3. Parallel supernodal nested dissection

Before computing an ILU preconditioner of the sparsified Schur complement eS, we

permute eS to preserve the sparsity of the preconditioner. There are a number of parallel

software packages [4,12] that compute fill-reducing permutations of a sparse matrix based

on a nested dissection algorithm. Unfortunately, eS is relatively dense even after the spar-

sification, and an existing software package does not perform well, especially on a large

number of processors (numerical results will be presented in Section 4).

‖If the diagonal block is singular, some diagonal entries can be zero. A postprocessing may be required to avoid

zero pivots while computing preconditioners. Zero pivots were not encountered in our numerical experiments.

Preconditioning Schur Complement Systems for a Parallel Hybrid Solver 357Table 1: Pesudoode for the row ompression.
Algorithm 3.1:

1. i0 = i
(p)

1 // first row of current supernode

2. n0 = σ · nnz(eS(i0, :)) // max. number of mismatched nonzeros

3. j = 1 // number of supernodes

4. s j = {i0} // set of rows in the j-th supernode

5. for i = i
(p)

1 + 1, i
(p)

1 + 2, . . . , i
(p)

2

6. miss = 0

7. for each nonzeros esi j in eS(i, :)
8. if esi0 j is zero then

9. miss = miss+ 1

10. end if

11. end if

12. if miss > n0 then // create a new supernode

13. i0 = i and n0 = σ · nnz(eS(i, :))
14. j = j + 1 and s j = {i0}
15. else // assign to current supernode

16. s j = s j ∪ {i}
17. end if

18. end for

To reduce the time spent computing the permutation, we compress the rows of eS that

have similar sparsity patterns into a single supernode before computing the permutation.

This is done in parallel; specifically, the p-th processor compresses the local matrix by com-

paring the sparsity pattern of each row with that of the first row in the current supernode.

The pseudocode in Table 1 describes this algorithm. On line 2 of the pseudocode, eS(i0, :) is

the i0-th row of eS, and σ is a user-specified threshold that specifies the allowable difference

among the sparsity patterns of the rows in a supernode, 0≤ σ ≤ 1; specifically, it specifies

the maximum ratio of the number of nonzeros in the i-th row, which do not match the

sparsity pattern of the first row in the same supernode, over the total number of nonzeros

in the i-th row. Hence, if σ = 0, the sparsity pattern of the first row contains those of

all the rows in the same supernode. A larger σ allows a greater difference in the sparsity

pattern and a greater compression rate. This will reduce the time needed to compute the

permutation, but may degrade the quality of the resulting permutation (numerical results

will be presented in Section 4). On line 3, j counts the number of supernodes, and on

line 4 the first supernode s j is initialized to contain only the first row of the local matrix.

On lines 6 through 11, we count the number of mismatched nonzeros in the i-th row us-

ing the counter miss. Then, on lines 13 and 14, if miss is greater than the user-specified

threshold, the current row is assigned to a new supernode. Otherwise, the row is assigned

to the current supernode on line 16.

Note that in Algorithm 3.1, we are comparing the sparsity pattern of the i-th row

against that of the first row of a supernode, but not vice versa. Specifically, the first row

may have many nonzeros which do not match with the sparsity patterns of the rest of the

rows in the supernode. The quality of the supernode can be improved by comparing the

358 I. Yamazaki, X. S. Li and E. G. Ng

sparsity pattern of the first row against those of the rest of the rows, but this will require

some additional computations. In practice, we observed that eS has dense block structures,

and Algorithm 3.1 is effective enough, as will be shown in Section 4.

After the rows of eS are compressed into supernodes, the corresponding columns are

also compressed. Finally, we compute a nested dissection of this supernodal graph using

an existing parallel software package. The supernodal graph has an edge between two

supernodes if the adjacency graph of eS has an edge between two vertices, each belonging

to a different supernode of those two supernodes. After the nested dissection ordering of

the supernodal graph is computed, the permutation of eS is computed simply by expanding

the permutation of the supernodes.

4. Numerical experimentsTable 2: The matries used in the numerial experiments.
name n sym k n2 nnz(S)

tdr190 1,100,242 yes 32 31,272 97,600,856

dds.qd 380,698 yes 32 24,878 71,335,044

dds.ln 834,575 yes 31 26,110 66,407,552

mat211 801,378 no 31 27,660 90,519,264

tmt.sy 726,713 yes 125 22,941 7,823,701

In this section, we present numerical results of the preprocessing techniques described

in Section 3. In Table 2, we show some properties of the Schur complements S of the indef-

inite matrices used in the experiments; “n” is the dimension of the original matrix A, under

“sym,” we identify if the matrix is symmetric (the matrix elements are real), “k” is the num-

ber of interior subdomains∗∗, and “n2” and “nnz(S)” are the dimension of and the number

of nonzeros in S, respectively. The matrices tdr190, dds.qd, and dds.ln arise from numer-

ical simulations of particle accelerator cavity designs [2,14]: tdr190 is for an international

linear collider, and dds.qd and dds.ln are for dumped detuned structures with quadratic

and linear elements, respectively. The simulation involves nonlinear eigenvalue problems

for solving discretized Maxwell equations, where the solutions of the linear systems are

needed for the shift-and-invert operations. When the shift is close to an actual eigenvalue,

these linear systems are close to singular and extremely difficult to solve using a precon-

ditioned iterative method. The matrix mat211 is from a linear system of the discretized

extended MHD equations for a numerical simulation of fusion device modeling [1]. The

last matrix tmt.sy is from a symmetric electromagnetics problem, and is available from the

University of Florida Sparse Matrix Collection††.

In Sections 4.1 and 4.2, we present numerical results of solving the Schur complement

systems. The unrestarted GMRES of PETSc [16] was used as our preconditioned itera-

∗∗The parameter k is chosen such that the dimensions of the Schur complements are about 25, 000. The

2× 2 block system (2.1) is computed using an existing software package, Hierarchical Interface Decomposi-

tion (HID) [10].
††http://www.ise.ufl.edu/researh/sparse/matries/CEMW/tmt_sym.html

Preconditioning Schur Complement Systems for a Parallel Hybrid Solver 359

tive method. The GMRES iteration was started with the zero vector, and the computed

solution x̄2 was considered to be converged when the ℓ2-norm of the initial residual was

reduced by at least twelve order of magnitude, i.e., ‖ b̄2 − S̄ x̄2‖2/‖ b̄2‖2 ≤ 10−12, where S̄

and b̄2 are the Schur complement and the right-hand-side vector, respectively, after the

preprocessing is applied. Then, in Section 4.3, we compare the performance of our par-

allel hybrid solver using the preprocessing techniques to solve the original linear systems

with those of existing state-of-the-art parallel solvers. Our hybrid solver was implemented

in C.

4.1. Numerical behaviors

We first study the effects of the preprocessing techniques on the numerical behavior of

GMRES using a single processor. The numerical experiments were conducted on a desktop

machine with Intel 2.7GHz Quad-Core CPUs and 8GB of main memory. All the codes were

compiled using the gcc compiler and -O3 optimization flag.

Table 3 shows the performance of GMRES using three preprocessing techniques: no

preprocessing, scaling with the infinity-norms, and ones generated using MC64 (“none”,

“∞-scale, and “MC64,” respectively, in the table). The sparsity of eS is enforced using a

drop tolerance τ1 such that the (i, j)-th element si j of S is discarded if |si j| < τ1

p
|siis j j |.

ILU preconditioners were computed using the PETSc interface to the ILUTP subroutine of

SPARSKIT [19], which uses a drop tolerance τ2 to enforce the sparsity of the precondition-

ers. In the table, “fill” is the fill-ratio, “itrs” is the number of GMRES iterations needed for

the solution convergence, and “time” is the total solution time required to solve the Schur

complement system in seconds (i.e., the total time spent to preprocess and sparsify S, com-

pute the preconditioner, and perform GMRES iterations). The fill-ratio in the table is the

ratio of the total number of nonzeros in eS and its ILU factors over the total number of

nonzeros in the matrices A21, A22, and A12, namely,

nnz(eS) + nnz(I LU(eS))
nnz(A21) + nnz(A22)+ nnz(A12)

.

This approximately measures the memory required for solving the Schur complement sys-

tems. Note that when the hybrid solver is used to solve a linear system, most of the fill

occurs in the Schur complement S, and this fill-ratio is large (i.e., nnz(eS) is large). On

the other hand, the overall fill-ratio, which approximates the total memory required for

solving the entire system, can be expressed as the ratio of the total number of nonzeros in

the LU factors of A11 and the ILU factor of eS over the number of nonzeros in the matrix A,

namely

nnz(LU(A11))+ nnz(I LU(eS))
nnz(A)

.

Typically, this overall fill-ratio is much smaller than the fill-ratio shown in the table. In all

the numerical experiments presented in the table, the overall fill-ratio was between 7.1

and 48.8. Under “itrs” in the table, “−−” indicates that GMRES did not converge within

250 iterations.

360 I. Yamazaki, X. S. Li and E. G. NgTable 3: E�ets of the matrix preproessing.
none ∞-scale MC64

matrix τ1 τ2 fill itr. time fill itr. time fill itr. time

tdr190 10−8 0.0 78 104 2949 87 4 3527 81 3 2753

10−8 10−8 75 104 2567 82 4 2879 78 3 2389

10−8 10−6 69 104 1968 77 5 2722 76 4 2135

10−6 0.0 56 −− −− 78 8 3447 73 8 2724

10−6 10−6 48 −− −− 67 9 2086 63 9 1664

10−6 10−4 37 −− −− 56 86 1079 50 52 778

10−5 0.0 38 −− −− 69 23 3282 64 23 2620

10−5 10−5 24 −− −− 54 24 1528 48 24 1137

10−5 10−4 19 −− −− 47 95 1047 41 56 745

dds.qd 2× 10−7 0.0 85 −− −− 108 4 6357 108 3 6354

2× 10−7 2× 10−7 84 −− −− 107 4 5727 107 3 5750

2× 10−7 2× 10−5 79 −− −− 92 8 3664 92 8 3658

10−4 0.0 7 −− −− 86 79 6145 86 80 6138

10−4 10−4 6 −− −− 62 86 2651 60 80 2479

10−4 10−3 5 −− −− 76 −− −− 76 −− −−
dds.ln 10−8 0.0 137 18 1160 203 2 1524 201 2 1468

10−8 10−8 135 18 1114 202 2 1479 200 2 1442

10−8 10−4 102 20 525 165 12 666 160 12 675

5× 10−5 0.0 5 −− −− 129 21 1098 129 21 1109

5× 10−5 5× 10−5 2 −− −− 101 21 579 102 21 595

5× 10−5 5× 10−4 1 −− −− 79 31 298 79 32 307

mat211 10−6 0.0 92 −− −− 76 16 10970 52 16 4533

10−6 10−6 72 −− −− 43 16 3377 30 16 1472

10−6 10−4 72 −− −− 22 −− −− 15 42 291

10−5 0.0 75 −− −− 67 36 9737 43 35 3783

10−5 10−5 68 −− −− 25 45 1410 14 35 480

10−5 10−4 67 −− −− 17 49 634 9 −− −−
tmt.sy 10−4 10−4 29 88 19 50 55 24 50 55 25

10−4 10−3 18 98 15 28 87 15 28 88 17

The table clearly indicates that for fixed drop tolerances (τ1,τ2), preprocessing sig-

nificantly improves the GMRES convergence rate. Even when the drop tolerances were

chosen to achieve a similar fill-ratio, GMRES still converged within fewer iterations using

preprocessing. For example, with (τ1,τ2) = (10−8, 10−6) and no preprocessing on tdr190,

the fill-ratio was 69 and GMRES converged with 104 iterations. On the other hand, with

∞-scale and MC64, a similar fill-ratio was achieved using (τ1,τ2) = (10−6, 10−6), and GM-

RES needed only 9 iterations. Furthermore, MC64 often performed better than ∞-scale.

For example, with τ1 = 10−6 and τ2 = 0.0 or 10−6, GMRES required the same numbers

of iterations using ∞-scale and MC64. However, the fill-ratio was smaller with MC64,

leading to faster total solution time. Note that ILUTP dynamically permutes columns

of eS to avoid small pivots, which may increase the fill-ratio. We found that ILUTP per-

forms more permutations using∞-scale, which may be the reason for the greater fill (e.g.,

Preconditioning Schur Complement Systems for a Parallel Hybrid Solver 361

with (τ1,τ2) = (10−6, 10−4), ILUTP performed 2,246 and 79 permutations with ∞-scale

and MC64, respectively). Furthermore, with (τ1,τ2) = (10−6, 10−4), MC64 resulted in a

smaller fill-ratio and fewer iterations, leading to significantly faster solution time. For most

of the cases with mat211, when both τ1 and τ2 were fixed, GMRES required fewer iter-

ations with MC64 than ∞-scale, leading to faster solution time. An exception was when

(τ1,τ2) = (10−5, 10−4). Alternatively, when only τ1 is fixed, MC64 required a smaller

fill-ratio to achieve a similar number of GMRES iterations, hence leading to faster solution

time (e.g., With ∞-scale and (τ1,τ2) = (10−5, 0.0), GMRES converged with 36 iterations

with the fill-ratio of 67. With MC64 and (τ1,τ2) = (10−5, 10−5), GMRES converged with

35 iterations with the fill-ratio of only 14). For dds.qd, ∞-scale and MC64 lead to similar

performance improvements over no preprocessing, while for tmt.sy and dds.ln, prepro-

cessing only had a small effect. The effects of preprocessing are problem dependent, but

for all the test cases, it did not degrade the convergence while the overhead was small.

Therefore, MC64 is our default choice.

4.2. Parallel performance

We now present numerical results on a distributed memory system. These numerical

results were collected on a Cray XT4 machine named Franklin at the National Energy Re-

search Scientific Computing Center (NERSC). The pgcc compiler and -fastsse optimization

flag were used to compile the codes.Table 4: E�ets of the supernodal nested dissetion on tdr190, (τ1,τ2) = (10−5, 0.0).
Time

pS σ s nnzLU perm. fact. total

2 none 31,272 101M 21.98 62.80 100.68

0.3 15,748 125M 8.56 78.87 103.82

0.5 5,583 136M 2.38 77.29 97.14

8 none 31,272 116M 8.63 20.28 33.25

0.3 15,752 119M 4.23 20.90 29.81

0.5 5,591 132M 0.97 20.00 25.60

32 none 31,272 112M 5.13 5.34 11.80

0.3 15,750 124M 2.02 5.89 9.20

0.5 5,604 136M 0.50 5.95 7.87

Let us first examine the effectiveness of the supernodal nested dissection discussed in

Section 3.3. For these experiments, we used PT-SCOTCH [4] and SuperLU_DIST [15] to

compute the permutation and LU factorization of eS (i.e., τ2 = 0.0), respectively. Table 4

shows the numerical results for tdr190, where “pS” is the number of processors used to

solve the Schur complement system, “s” is the number of supernodes found in eS, and under

“Time,” we show the times spent computing the permutation, which includes the compres-

sion of the rows, and the time spent for the numerical LU factorization of eS (“perm” and

“fact” in the table, respectively), and “total” is the total time spent for the LU factorization.

These times are in seconds. We see that without the row compression, the time spent by

362 I. Yamazaki, X. S. Li and E. G. Ng

PT-SCOTCH does not scale as well as the time spent for the numerical factorization. As a

result, a larger fraction of time is spent in PT-SCOTCH as a larger number of processors

is used. Now, with the row compression, the time of PT-SCOTCH is significantly reduced.

When more rows were compressed using a large σ, the quality of the permutation de-

graded slightly; specifically, both the number of nonzeros in the LU factors and the time

required for the numerical LU factorization increased. However, the time spent to com-

pute the permutation was reduced more significantly (with σ = 0.5, it was reduced by an

order of magnitude), and the total factorization time was reduced by a factor of 1.5 using

σ = 0.5 on 32 processors.

We now examine the effect of parallel processing techniques on the performance of

GMRES. For these experiments, we used MC64 and (τ1,σ) = (10−5, 0.5) to preprocess

and sparsify S, and used SuperLU_DIST to compute the preconditioners (i.e., τ2 = 0.0). In

Table 5, “fill” is the fill ratio as defined for Table 3, “itrs” is the number of GMRES iterations,

“Pt” is the time spent to preprocess and sparsify S, “Lt” is the time spent to compute

preconditioners, “St” is the time for the GMRES iterations, and “Tt” is the total solution

time. These times are in seconds. We first note that the time spent for preprocessing is

only a small fraction of the total solution time. If ∞-scale was used, the preprocessing

time would be less. We next note that as the number of processors (pS) increases, MC64

computes the scaling and permutation of smaller local diagonal matrices. The table shows

that both fill and itrs are similar to those in Table 3 for (τ1,τ2) = (10−5, 0.0), where the

scaling and permutation were computed based on the global S. These results demonstrate

that the scaling and permutation based on the diagonal blocks of S are as effective as those

based on the global S.Table 5: Performane to solve Shur omplement system, (τ1,τ2,σ) = (10−5, 0.0, 0.5).
tdr190 mat211

pS fill itrs Pt Lt St Tt fill itrs Pt Lt St Tt

4 69 23 1.6 47.5 8.6 57.7 32 35 1.1 38.8 12.9 52.8

8 67 23 0.8 24.6 7.2 32.6 30 35 0.5 21.4 12.0 33.9

16 69 23 0.4 14.5 6.2 21.1 30 34 0.3 12.6 9.8 22.7

32 69 23 0.2 7.9 5.8 13.9 29 34 0.1 8.3 8.2 16.6

4.3. Solver comparison

In this subsection, we compare the performance of our parallel hybrid solver using the

parallel preprocessing techniques to solve the entire system (2.1) with those of state-of-

the-art parallel solvers.

In Table 6, we first compare the performance of a parallel direct solver SuperLU_DIST

with that of our hybrid solver, where SuperLU_DIST is used to compute the preconditioner

(i.e., τ2 = 0.0). An additional drop tolerance τ0 was used to discard small nonzeros from

the matrices E(ℓ) and F (ℓ) of (3.2), and sparsity of eS was enforced using τ1 = 10−5. In

the tables, “pA” is the total number of processors, “nnz” is the number of nonzeros in the

preconditioners, and the rest of the fields are the same as those used in Section 4.2. We

Preconditioning Schur Complement Systems for a Parallel Hybrid Solver 363Table 6: Performane to solve entire system, (τ0,τ1,σ) = (10−6, 10−5, 0.5) for tdr190, (τ0,τ1,σ) =
(10−7, 10−6, 0.5) for mat211.

SuperLU_DIST HYBRID+SuperLU_DIST

matrix pA nnz Lt St Tt nnz itrs Lt St Tt

tdr190 8 711M 71.1 2.7 73.8 667M 12 101.4 8.5 109.9

32 721M 48.6 2.0 50.6 567M 25 59.6 6.1 65.6

127 721M 56.8 1.4 58.1 608M 40 22.6 8.4 31.0

504 747M 83.5 1.0 84.5 704M 32 10.4 8.2 18.6

mat211 8 1271M 163.0 1.0 164.1 491M 14 123.4 8.3 131.7

32 1461M 87.0 0.6 87.6 463M 16 34.4 3.8 38.2

128 1484M 54.6 0.4 55.0 507M 14 16.2 3.0 19.2Table 7: Performane to solve entire system, (τ1,τ2) = (10−6, 0.0) for tdr190, (10−7, 0.0) for mat211.
PHIDAL HIPS

matrix pA nnz itrs Lt St Tt nnz itrs Lt St Tt

tdr190 8 459M 24 322.6 21.5 345.0 624M 10 90.1 2.7 92.8

16 368M −− 107.7 −− −− 574M 75 87.8 8.9 96.8

32 – · – – · – – · – – · – – · – 491M −− 92.1 −− −−
mat211 8 294M 64 179.3 33.5 212.8 875M 26 277.9 6.7 284.6

32 252M −− 40.9 −− −− 680M 54 51.8 3.6 55.4

128 – · – – · – – · – – · – – · – 441M −− 26.1 −− −−

used one processor to factor each interior subdomain, and half of the total processors to

solve the Schur complement systems (i.e., pS = pA/2). The table shows that for tdr190,

SuperLU_DIST did not scale beyond 32 processors, while our hybrid solver could reduce

the solution time using up to 504 processors. Similarly, for mat211, our hybrid solver

scaled much better than SuperLU_DIST. As a result, the hybrid solver achieved a speedup

of 4.5 using 504 processors for tdr190 and a speedup of 2.9 using 128 processors for

mat211 over SuperLU_DIST. We also note that for mat211, the number of nonzeros in

the preconditioner was reduced by a factor of up to 3.1 using the hybrid solver over that

using the direct solver. The reduction was smaller for tdr190. This is because as discussed

earlier, tdr190 is extremely difficult to solve using a preconditioned iterative method and

requires a high-quality preconditioner. Even though our current implementation may not

reduce the total memory requirement in comparison to the direct solver, it provides the

flexibility to efficiently solve the linear system on a large number of processors and the

potential to reduce the memory requirement per processor.

In Table 7, we show the performance of PHIDAL [10], which is a parallel precondi-

tioned iterative solver based on GMRES combined with an ILU preconditioner, and the per-

formance of HIPS [7], which is another implementation of the Schur complement method.

Due to the highly-indefinite nature of the problem, ILU preconditioners were not effective

for solving the entire system. In the table, “– · –’ indicates that we have not performed the

experiments since GMRES is expected not to converge. The primary difference between

our hybrid solver and HIPS is the way the preconditioner is computed for solving the Schur

complement system (2.4). Similarly to our implementation, HIPS computes the precondi-

364 I. Yamazaki, X. S. Li and E. G. Ng

tioner based on the ILU factorization of S, but the sparsity of the preconditioner is enforced

based on both numerical values and locations of nonzeros. Specifically, the fill is allowed

only between separators adjacent to the same subdomain. Hence, even though the numer-

ical drop tolerance in our numerical experiments was set to be zero, HIPS still enforces

the sparsity of the preconditioner based on the locations of nonzeros. This allows HIPS

to achieve a good scalability as it can be seen when the number of processors increased

from 8 to 32 for mat211. However, because of these strict sparsity constraints, the num-

ber of GMRES iterations increases quickly with the number of interior subdomains (pA),

and HIPS failed to converge with 32 interior subdomains for tdr190 and with 128 interior

subdomains for mat211. Even when HIPS converged, its solution time was about twice as

long as that of HYBRID+SuperLU_DIST for mat211 due to the slower time to construct the

preconditioner. For tdr190, when HIPS converged, the solution times using HIPS and HY-

BRID+SuperLU_DIST were about the same. We also note that there were more nonzeros in

the preconditioners computed by HIPS than those computed by HYBRID+SuperLU_DIST.

Finally, we note that our hybrid solver can use the preconditioners included in PETSc.

For example, we tested additive Schwartz preconditioners to solve the Schur complement

systems and to solve the entire linear systems. This is a popular approach used in do-

main decomposition, and there is a parallel hybrid solvers based on this type of precon-

ditioner [8]. Unfortunately, our preliminary results indicated that these preconditioners

were not effective for solving highly-indefinite linear systems; specifically, the number of

GMRES iterations increased quickly with the number of processors. For example, when

the Schur complement system for tdr190 is generated with 32 subdomains, an additive

Schwartz preconditioner with 16 subdomains required 174 GMRES iterations. GMRES

failed to converge within 250 iterations for solving the Schur complement system with 128

subdomains using the additive Schwartz preconditioner with 64 subdomains. To solve the

entire system using the additive Schwartz precondition with 8 subdomains, GMRES did

not converge within 250 iterations.

5. Conclusion

In this paper, we studied matrix preprocessing techniques for solving the Schur com-

plement systems of large-scale highly-indefinite linear systems of equations using a pre-

conditioned iterative method. The numerical results were presented to demonstrate that

the preprocessing techniques improve both the reliability and the performance of the

solver. Furthermore, we showed the effectiveness of these preprocessing techniques on

a distributed memory system; computing the scaling and permutation based on local ma-

trices can achieve similar performance improvement as that based on the global matrix,

and compressing the rows of the Schur complement can reduce the time to compute the

permutation by an order of magnitude. Finally, we demonstrated that by using these pre-

processing techniques, our new parallel hybrid solver achieves good parallel scalability to

solve large-scale highly-indefinite linear systems on a large number of processors, which

was previously infeasible using existing state-of-the-art parallel solvers.

Preconditioning Schur Complement Systems for a Parallel Hybrid Solver 365

Acknowledgments The authors gratefully thank Cedric Chevellar, Mahantesh Halap-

panavar, Lie-Quan Lee, and François Pellegrini for helpful discussions. This research was

supported in part by the Director, Office of Science, Office of Advanced Scientific Comput-

ing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

We used the resources at the National Energy Research Scientific Computing Center.

References

[1] Center for Extended MHD Modeling (CEMM). http://w3.pppl.gov/emm/.

[2] Community Petascale Project for Accelerator Science and Simulation (ComPASS).

https://compass.fnal.gov.

[3] M. Benzi, J. Haws, and M. Tuma. Preconditioning highly indefinite and nonsymmetric matri-

ces. SIAM J. Sci. Comput., 22(4):1333–1353, 2000.

[4] C. Chevalier and F. Pellegrini. PT-Scotch. Parallel Computing, 34(6–8):318–331, 2008.

[5] I. Duff. Developments in matching and scaling algorithms. In 6th international congress on

industrial and applied mathematics, 2007.

[6] I. Duff and J. Koster. The design and use of algorithms for permuting large entries to the

diagonal of sparse matrices. SIAM J. Matrix Anal. Appl., 20(4):889–901, 1999.

[7] J. Gaidamour and P. Hènon. HIPS: a parallel hybrid direct/iterative solver based on a schur

complement. In Proc. PMAA, 2008.

[8] L. Giraud, A. Haidar, and L. T. Watson. Parallel scalability study of hybrid preconditioners in

three dimensions. Parallel Computing, 34:363–379, 2008.

[9] M. Halappanavar, F. Bobrian, and A. Pothen. A parallel half-approximation algorithm for the

weighted matching problem. In SIAM conference on Computational Science and Engineering,

2009.

[10] P. Hènon and Y. Saad. A parallel multilevel ilu factorization based on a hierarchical graph

decomposition. SIAM J. Sci. Comput, 28(6):2266–2293, 2006.

[11] Karypis Lab, Digital Technology Center, Department of Computer Science and Engineering,

University of Minesota. METIS - Serial Graph Partitioning and Fill-reducing Matrix Ordering.http://glaros.dt.umn.edu/gkhome/metis/metis.

[12] Karypis Lab, Digital Technology Center, Department of Computer Science and Engineering,

University of Minesota. ParMETIS - Parallel Graph Partitioning and Fill-reducing Matrix Or-

dering. http://glaros.dt.umn.edu/gkhome/metis/parmetis/overview.

[13] Laboratoire Bordelais de Recherche en Informatique (LaBRI). SCOTCH -

Software package and libraries for graph, mesh and hypergraph partition-

ing, static mapping, and parallel and sequential sparse matrix block ordering.http://www.labri.fr/perso/pelegrin/soth/.

[14] L-Q. Lee, Z. Li, C.-K. Ng, and K. Ko. Omega3P: A parallel finite-element eigenmode analysis

code for accelerator cavities. Technical Report SLAC-PUB-13529, Stanford Linear Accelerator

Center, 2009.

[15] X. Li and J. Demmel. SuperLU_DIST: A scalable distributed-memory sparse direct solver for

unsymmetric linear systems. ACM Trans. Mathematical Software, 29(2):110–140, 2003.

[16] Mathematics and Computer Science Division, Argonne National Laboratory. The portable,

extensible, toolkit for scientific computation (PETSc). www.ms.anl.gov/pets.

[17] M. Olschowka and A. Neumaier. A new pivoting strategy for gaussian elimination. Linear

Algebra Appl., 240:131–151, 1996.

366 I. Yamazaki, X. S. Li and E. G. Ng

[18] J. Riedy. Auctions for distributed (and possibly parallel) matchings. In CERFACS algorithm

team meeting, 2008.

[19] Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical Report RIACS-

90-20, Research Institute for Advanced Computer Science, 1990.

[20] B. Smith, P. Bjorstad, and W. Gropp. Domain Decomposition. Parallel Multilevel Methods for

Elliptic Partial Differential Equations. Cambridge University Press, New York, 1996.

