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Abstract. This paper introduces the use of partition of unity method for the develop-

ment of a high order finite volume discretization scheme on unstructured grids for solv-

ing diffusion models based on partial differential equations. The unknown function and

its gradient can be accurately reconstructed using high order optimal recovery based on

radial basis functions. The methodology proposed is applied to the noise removal prob-

lem in functional surfaces and images. Numerical results demonstrate the effectiveness

of the new numerical approach and provide experimental order of convergence.
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1. Introduction

Evolutionary nonlinear partial differential equations (PDEs) are nowadays a well as-

sessed tool in image, surface processing and computer vision. The main image and surface

processing applications involving PDE models are nonlinear filtering, edge/feature detec-

tion, image deblurring and enhancement, restoration, inpainting, segmentation, shape ex-

traction and analysis, motion analysis, see, e.g., [7, 17, 22]. The time discretization of

the PDE models is usually obtained by explicit or implicit methods while the space dis-

cretization is provided by finite element (FEM), finite difference (FD) or finite volumes

(FV) schemes covering the domain by suitable grids. In image processing structured grids

are simple to handle, while in surface processing block structured or unstructured grids are

of common usage. FEM and FV methods have been used successfully to solve problems of

image multi-scale analysis. In particular, since FV schemes are directly based on the inte-

gral form of the conservation law and because the numerical flux is based on the physics of
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nonlinear wave propagation, the FV schemes are thus able to cope with discontinuities in

the solution, and thus are particularly suitable to deal with image or surfaces domains [8].

The goal of our work is to construct a new numerical method, that we name "partition

of unity high order finite volume" (PUHOFV) method, which solves PDEs with, at least

theoretically, arbitrary high order of accuracy in space on unstructured meshes complex

domains. In particular, we investigate certain PDE diffusion models in the context of image

and surface denoising. The main ingredient of the proposed PUHOFV scheme is a new

reconstruction strategy based on partition of unity and RBF optimal recovery, which makes

use of simple regularization techniques allowing for a robust computation on strongly

unstructured grids.

The partition of unity framework is a powerful technique to approximate a global func-

tion blending together the local approximations; it is able to model discontinuities and sin-

gularities through local enrichment. Initially introduced as a general FEM method in com-

putational mechanics, see, e.g., [1,14], the partition of unity approach has become popular

also in the computer graphics community within shape reconstruction setting, [27]. In this

work, the partition of unity method is used to provide an easy to use and accurate approx-

imation framework for finite volume schemes on unstructured grids.

The finite volume method is based on the discretization of the solution domain into

a set of non-overlapping finite volumes and thereafter, the integral representation of the

underlying conservation laws are approximated over these volumes using some appropri-

ate numerical strategy [26]. In the cell-centered approach the computed quantities are

stored on each cell and the centroid values of the dependent variable play an important

role in the interpolation methods required to reconstruct fluxes. However, a high accuracy

reconstruction should be combined with an accurate integral approximation method [25].

Traditionally, the midpoint rule has been the favored method to approximate the line

integrals involving these fluxes. However, it achieves second order accuracy only when the

flux evaluations are sufficiently accurate. We will consider Gaussian quadrature methods

for integration in order to obtain an arbitrary desired precision.

The basic FV schemes offer a piecewise constant solution representation in space; they

are very robust but provide only a first order accuracy, thus requiring to refine the grid

tremendously to obtain the desired accuracy, with a consequent overhead in time and

memory requirements. This leads naturally into the theory of optimal recovery. Since

Barth and Frederickson’s pioneering work [2], a number of researchers have studied high

order FV methods using unstructured meshes. The reason for developing very high order

schemes is that they permit a good resolution of physical phenomena even on very coarse

grids and that they exhibit only very little numerical dissipation, which is important when

performing simulations in large domains for long times. Furthermore, grid refinement

becomes much more efficient using high order schemes since numerical errors decrease

faster compared to the case when the same grid refinement is applied using a low order

scheme.

The key aspect of a high order accurate FV solver is a high order reconstruction by

means of piecewise smooth functions from the cell average values. To this aim, a variety of

techniques have been explored to reconstruct the fluxes to at least second order accuracy
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using some set of suitably chosen local nodal values of the dependent variable. To avoid

oscillations introduced by the reconstruction at discontinuities, slope limiters are used to

ensure local maximum principles and to guarantee that the total variation of the numerical

solution rests at least bounded [10]. This can be obtained by high order polynomial recon-

struction using Essentially Non-Oscillatory (ENO) or Weighted Essentially Non-Oscillatory

(WENO) techniques [33]. On structured grids a very high order of accuracy can be ob-

tained but on unstructured grids the procedure becomes very complicated.

We investigate the method of radial basis functions (RBFs) reconstruction which leads

to high-order gradient and flux approximations. Moreover, the optimal recovery with RBF

that we propose employs a particular stencil which avoids the ENO-construction and oscil-

lations.

Radial Basis Functions are a well assessed tool in the scattered data approximation field

[6,13] since they represent a powerful alternative to polynomial reconstruction. For many

years, RBFs have also been used to solve PDEs, through the use of collocation methods [11,

12]. However, the RBF-based collocation approach does not share many of the desirable

properties of the finite volume method, such as local conservation and the ability to work

with small size matrices. Moreover, collocation solution of PDEs can be severely affected

by the well known ill-conditioning in the RBF coefficient computations which depends on

the location of the point values [30,31].

The use of RBF local interpolation instead of a global approach, leads to the solution

of small size linear systems. However, for severe irregular unstructured grids, the ill-

conditioning problems could affect the accuracy of the solution. To this aim, regularized

approximations can be obtained by using a truncated singular value decomposition, or

more sophisticated regularization procedures [5]. In this work we provide an alternative

regularization approach based on least square approximation and splitting interpolation.

In the numerical section we will demonstrate how this does not affect the experimental

order of convergence obtained by optimal radial recovery.

The remaining of this paper is organized as follows. In Section 2 the governing equa-

tions are briefly reviewed, while some basic ingredients of partition of unity are introduced

in Section 3. In Section 4, the space discretization based on a finite volume scheme is dis-

cussed. The radial recovery strategy is introduced in Section 5 in order to derive a high

order finite volume scheme. The proposed regularization procedures to achieve accurate

RBF coefficients in case of ill-conditioning are introduced in Section 6. The experimen-

tal order of convergence of the PUHOFV method is demonstrated in Section 7, together

with the application to a two coupled non-linear second order PDE-model for curvature

preserving surface denoising. Section 8 contains concluding remarks.

2. Statement of the problem and assumptions

We consider the following nonlinear partial differential equation

∂ u

∂ t
−∇.(g(|∇u|)∇u− a) = f (u), (2.1)



156 S. Morigi and F. Sgallari

where u(t, x) is an unknown function defined in [0, tMAX ] × Ω, a represents a generic

vector and f is a given source term.

The equations are accompanied by zero Neumann boundary conditions

∂ u

∂ n
= 0 on [0, tMAX ]× ∂Ω, (2.2)

and initial condition

u(0, x) = u0(x) in Ω, (2.3)

where n is the unit normal to the boundary of the domain Ω.

In general, g(·) can be a nonlinear function of u or ∇u. In the computer vision

community, Eq. (2.1) represents the well-known Perona Malik equation [28], called also

anisotropic diffusion, when g(·) is of the form

g(|∇u|) =
1

1+ K |∇u|2
(2.4)

with some constant K > 0. The diffusion term g(·) selectively diffuses the gray-values in

an image in regions where the signal is of a constant mean in contrast to those regions

where the signal changes its tendency (edge).

Another well-known choice for g(·) is represented by

g(|∇u|) =
1

|∇u|
, (2.5)

which gives raise to the Total Variation (TV) model. The TV image restoration model

was first introduced by Rudin, Osher, and Fatemi (ROF) in their pioneering work [34] on

edge preserving image denoising. It is one of the earliest and best known examples of

PDE-based edge preserving denoising designed with the explicit goal of preserving sharp

discontinuities (edges) in images while removing noise and other unwanted fine scale

details. The revolutionary aspect of this model is its regularization term that allows for

discontinuities but at the same time disfavors oscillations.

In this work, we consider the discretization of (2.1) with the choice (2.5) for the func-

tion g(·), by the PUHOFV scheme in Section 4. Furthermore, in Section 7, we investigate

the application of both the TV model and of a generalization of the two-step model pro-

posed in [20] and [21], to the denoise of images and surfaces.

Our generalization of the two-step model [20] has been introduced in the conference

proceeding [24] and consists of two coupled non-linear second order PDEs. The first

equation smoothes the normal field of the corrupted surface, while the second equation

reconstructs a noise-reduced surface from the smoothed normal field. This model has been

proposed for noise removal in digital images where the purpose is to preserve the edges.

In the functional surface case the structures that characterize the data are the creases, that

is areas of high curvature. The original model will be changed according to this purpose.
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3. Partition of Unity Method for finite volume reconstruction

A Partition of Unity Method (PUM) is a paradigm in which a domain Ω is subdivided

into N overlapping patches, or subdomains Ωi, each of which is associated with a local

approximation

ui :=
∑

k

uk
i φ

k
i (3.1)

defined by basis functions {φk
i } on a local support Ωi := supp{φk

i }. A global approximation

uPU is simply defined as a weighted sum of the local approximations ui, as follows:

uPU(x) :=

N
∑

i=1

ωi(x)ui =
∑

i∈Nx

ωi(x)ui, (3.2)

where card(Nx)≪ N , and the weight functions ωi(x) form a PU, that is

N
∑

i=1

ωi(x) = 1 in Ω. (3.3)

Given a set of nonnegative compactly supported functions {Wi(x)} such that Ω ⊂
⋃

i supp{Wi}, the partition of unity functions ωi(x) can be generated by

ωi(x) =
Wi(x)

N
∑

i=1

Wi(x)

. (3.4)

For the interpolation process, the inverse-distance singular weights functions are mainly

used (see [29])

Wi(x) =
h (ρi − |x − ci |)+

ρi|x − ci |

i2

, where (a)+ =

¨

a if a > 0,

0 otherwise,
(3.5)

centered at ci and having a spherical support of radius ρi. Besides these weight functions,

thin-plate splines, B-splines, and Gaussians can be considered in PU methods.

The PU functions ωi(x) are used to blend together the local approximations ui in such

a way that the global approximation uPU benefits from the local approximation orders, that

can be independent of each local ui, and satisfies global regularity conditions.

A key issue concerning PU methods in the context of finite volume schemes on unstruc-

tured grids is the definition of neighborhood nodes for each evaluation point. Considering

a cell-centered approach with triangle finite volumes, the nodes are the centroids of the

volumes. Thus for each evaluation point x , the global solution given by (3.2) requires the

evaluation at x of a certain set Nx of PU functions. Nx in (3.2) represents the set of indexes

of all the neighbors triangles whose influence region Ωi contains x . In the following we

will refer to this region of influence as the stencil.
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The gradient of uPU can be evaluated as

∇uPU(x) :=

N
∑

i=1

∇ωi(x)ui =
∑

i∈Nx

∇ωi(x)ui. (3.6)

Instead of this constant reconstruction we introduce in Section 5 a radial basis function in-

terpolation ui which is infinitely differentiable, thus allowing us to obtain accurate gradient

reconstructions. Higher order derivatives could be computed in a similar way.

Note that both the reconstructed values of u(x) and its derivatives at a certain location

are obtained using the information from neighboring nodes, and the weights are function

of distances between nodes, with no reference to any grid-based data structure. Thus this

approach could be extended to a meshless framework. However, in this work, we used

a mesh-based approach only for the construction of the local approximation ui in (3.1),

which requires only a local mesh definition. For practical purposes, the entire mesh is

initially pre-computed.

The PU approach for solving differential equations, falls in the category of "meshless"

methods; a mesh in a classical sense does not have to be created and thus the complicating

meshing process is avoided. Truly meshfree Galerkin methods, which are based only on

a set of irregularly spaced points, have to deal with the construction of a cover from a

given set of points that involves neighboring searching and sorting problems [14, 15]. To

cope with these problems, complex data structures have to be constructed and handled.

Moreover, in meshfree Galerkin methods the assembly of the stiffness matrix and the right-

hand side vector is one major issue of concern with PUM, because this process requires

the more complicated integration of the product functions ωi(x)φi(x) [19]. Hence the

meshfree Galerkin methods are so far more expensive than the mesh-based ones. Only

in special cases can be worthwhile to tackle these problems; for example, when a re-

finement/coarsening of the data set is required, or for particle methods in a Lagrangian

approach, or for high dimension domains, (e.g., Rd , d ≥ 3).

In this paper we propose to utilize the partition of unity approach in a mesh-based

FV method to benefit of the high order local approximants to reconstruct a high order

FV-based global solution uPU from the cell average values, in a natural and inexpensive

way.

4. Finite volume discretization

According to the classical Finite Volume (FV) discretization, the computational domain

Ω ⊂ R2, that we assume for simplicity bounded by a piecewise polygonal curve, is first

tessellated into a collection T of non-overlapping triangles Ti , i = 1, · · · ,N , defined as

control volumes, so that

Ω =

N
⋃

i=1

Ti (4.1)

which form an unstructured mesh characterized by a mesh width h. The triangles Ti rep-

resent the primal mesh. In the cell-centered finite volume schemes the triangle themselves
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serve as control volumes with unknown solutions stored on each triangle. Other finite vol-

ume schemes which consider the dual mesh, have been successfully applied to the image

processing field [17].

Fundamental to finite volume schemes is the introduction of the so-called cell average

operator for each Ti ∈ T , defined as follows:

Li u = ui(t) :=
1

|Ti|

∫

Ti

u(t, x)d x , (4.2)

where |Ti | denotes the area of the ith triangle. In order to establish mass conservation,

corresponding cell average values of the numerical solution are maintained during the

evolution. The total mass contained in the cell Ti at time t, is then given by

mTi
(t) = |Ti | · ui(t) ∀Ti ∈ T . (4.3)

Therefore the total mass over the entire domain Ω at time t is
∑

Ti∈T
mTi
(t).

The finite volume spatial discretization of the model problem (2.1) with (2.5) pro-

ceeds by integrating on the generic control volume Ti ∈ T , and applying the Gauss-Green

theorem, we get

du(t)

d t
−

1

|Ti |

∑

j∈N(i)

∫

ei j

� ∇u

|∇u|
− a
�

· nds =
1

|Ti |

∫

Ti

f d x , (4.4)

where ei j = ∂ Ti

⋂

∂ T j is the common edge between triangles Ti and T j , n = (nx , ny)T

is the outer unit normal vector on the edge ei j , and N(i) = { j ∈ N|ei j is edge of Ti}. In

order to numerically compute the line integral in (4.4) on the edge ei j we use Gaussian

quadrature of the form

∫

e

G(φ(s))ds =

ng
∑

k=1

wkG(φ(sk)) + O (h
2ng), (4.5)

where ng denotes the number of integration nodes, wk are certain quadrature weights,

and h is in this case the length of the control volume edge. In particular, on the edge ei j

defined by the vertices xi, x j , a three-point Gaussian quadrature in the interval [−1,1] is

applied and the integral nodes are then given by the parametrization

pi j(s) =
1

2
(xi + x j) +

s

2
(x j − xi). (4.6)

The integral term on the left-hand side of Eq. (4.4) becomes:

1

|Ti|

∑

j∈N(i)

∫ 1

−1

�

ux (pi j(s))

|∇u|
nx +

uy(pi j(s))

|∇u|
ny − a · n

�

ds.
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Applying the quadrature rule (4.5) we get

1

|Ti|

∑

j∈N(i)

|ei j |

2







ng
∑

k=1

wk

ux (pi j(sk), t)nx + uy(pi j(sk), t)ny
p

ux (pi j(sk), t)2 + uy(pi j(sk), t)2
+ O (h2ng)







+ |ei j|(a · n).

The integral term on the right-hand side of equation (4.4) can be accurately computed in

a similar way by a two-dimensional Gaussian quadrature formula ensuring that the errors

in computing (4.4) are due to inaccuracies in the integral term on the left-hand side. In

this work we used a seven points Gaussian quadrature rule.

According to the classical conservation theory literature [32], a numerical approxima-

tion of the flux function in (4.4) can be obtained by basic finite volume method replacing

the unknown values u(p(sk), t) simply by the cell averages, that is F(u,u;n), thus obtaining

the following semi-discrete finite volume basic scheme.

Definition 4.1. Basic FV. The semi-discrete finite volume approximation of (4.4) utilizing

continuous in time solution representation, t ∈ [0,+∞), and piecewise constant solution

representation in space uh, such that

u j(t) =
1

|T j |

∫

T j

uh(x , t)d x ,

with initial data u j(0) =
1

|T j |

∫

T j
u0(x)d x , and suitable boundary conditions, is given by the

following system of ordinary differential equations

dui

d t
−

1

|Ti|

∑

j∈N(i)

|ei j |
ng
∑

k=1

wkF(ui ,u j;ni j) =
1

|Ti |

∑

j∈N(i)

wk fk, ∀Ti ∈ T . (4.7)

The finite volume scheme provide an approximation of the cell average of u on Ti de-

noted by ui. The piecewise constant solution uh collects all the approximate cell averages,

i.e., uh|i = ui. If the weak solution u and the numerical flux function F are continuously

differentiable, then the basic finite volume method is of first order in space [32].

More accurate methods, that is high order schemes, can be devised by using sufficiently

accurate flux evaluations, through a suitable reconstruction procedure.

4.1. Reconstruction

An accurate final solution representation is usually obtained by substituting the piece-

wise constant representation of the basic first-order scheme with a piecewise smooth recon-

struction of the dependent variable u inside each control volume obtained using some set

of strategically chosen local cell-average values. The development of high-order schemes

has been severely limited by the absence of robust approximation techniques, capable of

providing accurate estimates of the successive derivatives of the dependent variable on un-

structured grids [9]. Thus the concept of high-order is in general limited in the literature
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to formally second-order schemes (piecewise linear reconstruction). Using a Taylor series

expansion, the linear componentwise reconstruction of the dependent variable inside each

cell Ti is given by

ui(x) = ui +∇ui · (x − xci
), (4.8)

where xci
denotes the centroid of the control volume Ti , and ∇ui is the gradient of the

dependent variable at the centroid. The gradient is assumed to be constant inside each cell

and, therefore, the reconstructed variable is still discontinuous across interfaces.

The main difficulty is the accurate evaluation of gradients, and, eventually higher order

derivatives. Recently, some authors have proposed gradient approximations using Gauss-

Green reconstruction techniques. A second order cell-centered FV scheme based on a linear

least square reconstruction is proposed in [3]. A quadratic reconstruction which requires

the centroid hessian matrix, has been investigated in [9] using moving least squares ap-

proximation techniques. We investigate the possibility to obtain high order gradient and

flux approximations, using RBF interpolations and PU strategy.

The system of ordinary differential equations (4.7) can be solved in time using a variety

of explicit and implicit time integration schemes. A particularly simple time integration

scheme we applied is the well-known forward Euler scheme.

Using the basic finite volume scheme and the forward Euler method, we end up with

a first order scheme in space and in time. To improve the time order of convergence we

have also applied third order strongly stability preserving Runge Kutta methods.

5. Optimal recovery using Radial Basis Function

An approximated solution computed by first order schemes is generally considered too

inaccurate for most quantitative calculations unless to require very fine meshes thus to

make the scheme in general inefficient. For a good reconstruction in regions where the

solution of (4.4) is known or expected to be smooth, a higher order reconstruction scheme

is desirable. Such high order schemes currently form a major research direction in the

theory of finite volume [35].

The accuracy of the basic finite volume method depends crucially on the approximation

properties of the cell average operator. To increase the spatial order of accuracy of the basic

finite volume method, we reconstruct a piecewise smooth function from the cell averages.

This reconstruction is known as recovery. Since it is not reasonable to build a reconstruction

using all the cell averages, for each cell (triangle Ti) a local reconstruction is computed

using all the cell averages of cells in a neighborhood of Ti , that we will denote by stencil

Si = {T1, · · · , TM}, with T1 = Ti . For each stencil, hT denotes the length scale associated

with each control volume T in Si and h=maxT∈Si
hT .

Definition 5.1. On each stencil, a function Ti ∋ x 7→ Ri(x) is called an rth-order recovery

function if the following conditions hold

1) Ri := 1

|Ti |

∫

Ti
R(t, x)d x = ui(t) i = 1, · · · , M ,

2) limh→0 ‖Ri − u‖L∞(Ω) = O (h
r).
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Figure 1: Stenil assoiated with triangle Ti.
The accuracy of the finite volume approximation strongly depends on a combination

of high-order flux reconstruction with accurate quadrature rules, as it is stated by the

following result, (see [35]).

Theorem 5.1. Assume Ri : R2 → R is an rth-order recovery function on the triangle Ti for

all Ti ∈ T . Let the weak solution u as well as the numerical flux F(u,u,n) be differentiable

up to order min{r, 2ng}. Then ∀Ti ∈ T , the finite volume method

dui

d t
=

1

|Ti|

∑

j∈N(i)

|ei j|

2

ng
∑

k=1

wkF(Ri(t, pi, j(sk)),R j(t, pi, j(sk));ni j), (5.1)

has spatial order O (hmin{r,2ng}).

In order to avoid unwanted oscillations typical from polynomial interpolation, the ENO

approaches select for each cell a set of different stencils, for each stencil a local reconstruc-

tion is constructed and then the smoothest (i.e., least oscillatory) is selected, where the

smoothness of the polynomial reconstruction is measured by using a suitable oscillation

indicator.

We consider the possibility to find local functions with good approximation properties

in order to avoid the oscillatory behavior. Supported by numerical experiments, summa-

rized in Section 7, we claim that the use of a suitable large stencil in the radial recovery

step, avoids the computational cost of the ENO construction.

For a given triangle Ti ∈ T we construct the stencil Si which contains the triangles that

share an edge with Ti , as well as the triangles which share a vertex with Ti , the triangles

which share a vertex with the three upmost adjacent triangles, together with Ti itself. An

example of a stencil is illustrated in Fig. 1. Note that the stencil setting is defined by the

PU approach. Instead of using polynomial reconstruction we will use a radial recovery

function R(x) on a triangle Ti given by

Ri(x) =

M
∑

j=1

λ j L
x j

j
ϕ(‖x− x j‖2), (5.2)
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where ϕ : R≥0 → R is a radial function and M is the number of cells in the stencil Si.

Here Lx j means the application of the cell average operator to the variable x j . In order to

satisfy condition 1) in Definition 5.1, the coefficients λ1, · · · ,λM in (5.2) are determined

by the following recovery conditions on the centers {xc j
} j=1,··· ,M , that are the centroids of

the cells in the stencil

L jRi = L ju, j = 1, · · · , M ,

where L ju are the cell averages of the triangles in the stencil. These conditions can be

conveniently written in a matrix-vector form

AΛ = U , A∈ RM×M , U ∈ RM , Λ ∈ RM , (5.3)

where A= [Lx
i L

x j

j
ϕ(‖x−x j‖2)]i, j=1,··· ,M , while the right-hand side is given by U = {u j}

M
j=1.

In order to compute the elements of A we need to approximate the term

L
y

j
ϕ(‖x− y‖2) =

1

|Ti|

∫

Ti

ϕ(‖x− y‖2)d y (5.4)

by a midpoint quadrature rule that is

L
y

j
ϕ(‖x− y‖2)≈ ϕ(‖x− xcj

‖2).

The application of the operator Lx
i is accounted by means of a seven points Gaussian

quadrature rule within the triangle Ti .

Note that, since the vertices of the unstructured given mesh are fixed, the matrices A

for each stencil associated with Ti, do not change in time and, therefore, they need to be

computed only once at the preprocessing phase.

In what follows we will consider special classes of radial functions ϕ which allow gen-

eralized interpolants in the form (5.3), thus we restrict ourselves to positive definite func-

tions, such as inverse multiquadrics:

ϕ(r) = 1/
p

r2+ γ2, γ > 0,

Gaussians:

ϕ(r) = e−δr2

, δ > 0,

and compactly supported radial basis function of continuity C2ℓ:

ϕ(r) = (1− r)2+2ℓ
+ p(r),

where p polynomial ∂ p = ℓ. In these cases, A is a symmetric positive definite matrix, and

the interpolation problem (5.3) is theoretically uniquely solvable [35]. These RBFs do not

require to be augmented with the polynomial part which is instead necessary in a general

RBF form [18].
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Given the radial recovery function (5.2), and considering (5.4), an approximation of

∇R is given by

∇Ri(x) =

















M
∑

j=1

λ j

�x(1) − x(1)c j

‖x− xc j
‖

�

ϕ′(‖x− xc j
‖)

M
∑

j=1

λ j

�x(2) − x(2)c j

‖x− xc j
‖

�

ϕ′(‖x− xc j
‖)

















. (5.5)

The reconstruction of the gradient of the recovery function ∇Ri is used in the flux

function F evaluation. In particular, the points at which ∇Ri is actually evaluated are

the Gaussian nodes computed by (4.6) on each interior edge of Ti , thus they lie in the

interior of the set of cells in the i-th stencil. This avoids a well-known problem of RBF

interpolations: that of poor accuracy at points near the boundaries.

The radial recovery step takes the cell averages ui, i = 1, · · · ,N , associated to the

triangles Ti as input and compute the unknowns λ j, j = 1, · · · , M in (5.3) for each control

volume Ti . The complete semi-discrete finite volume high order scheme is defined as

follows.

Definition 5.2. High Order FV. The semi-discrete finite volume approximation of (4.4) uti-

lizing continuous in time solution representation, t ∈ [0,+∞), and high order radial recovery

in space uh, such that

u j(t) =
1

|Ti|

∫

T j

uh(x , t)d x ,

with initial data u j(0) =
1

|Ti |

∫

T j
u0(x)d x , and suitable boundary conditions, is given by the

following two steps for each Ti ∈ T :

STEP 1 Radial recovery: solve (5.3) for Λ

STEP 2 Cell average update: solve the system of ODEs

dui

d t
−

1

|Ti|

∑

j∈N(i)

|ei j|

2

ng
∑

k=1

wkF(Ri(t, pi, j(sk)),R j(t, pi, j(sk));ni j) =
1

|Ti|

∑

j∈N(i)

wk fk.

A final remark concerns the approximation error between the solution of (4.4) in a

Sobolev space W k
2 (Ω) of all u with distributional derivatives Dαu ∈ L2(Ω), |α| ≤ k, and the

optimal recovery uh given by the High Order FV scheme. At this aim, the weak solution u is

required to be more regular than u ∈W 1
2 (Ω), more precisely, u ∈W k

2 (Ω), with k > D/2, if

D is the current space dimension. Following [35], under the assumption of u ∈W k
2 (Ω), the

reconstruction error for uh in the finite dimensional subspace Vh of W 1
2 (Ω), can be bounded

by

‖u− uh‖L∞(Ω) ≤ Chk−1‖u‖W k
2 (Ω)

. (5.6)

This result is applied to the C2ℓ compactly supported RBF with ℓ ≥ k − D+1

2
, and to the

Gaussian RBF, see [35]; for the class of inverse multiquadrics RBF this bound is still an

open problem.
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6. Regularized radial recovery step

Aspects of stability and accuracy of the RBF interpolant involve critical quantities such

as the separation distance and the fill distance of a given data set. In particular, the qual-

ity of the reconstruction is driven by the fill distance, that is defined as the radius of the

largest ball with arbitrary center without any data points in its interior. Dense data set are

characterized by a good approximation error. On the other hand, the stability, measured

in terms of separation distance, is a serious problem in case of dense data sets. The sepa-

ration distance is defined as the radius of the smallest ball without any data points in its

interior, but with at least two points of the data set on the boundary; therefore, separation

distance only depends on the closest pair of points. The condition number of the matrices

A of the linear system (5.3), is extremely large if the separation distance is small. In the

case of optimal recovery the conditioning depends on the separation distance of the set of

centroids in the stencil. Almost degenerate triangles in a stencil can lead to almost linear

dependency of the matrix A in (5.3).

We refer the reader to [5] for RBF regularization in the interpolation framework.

The linear systems have a special form of degeneration: the large eigenvalues usually

are moderate, but there are very small ones leading to bad condition. Therefore it makes

sense to go for approximate solutions of the linear systems, for instance by projecting the

right-hand sides to spaces spanned by eigenvectors corresponding to large eigenvalues.

One way to achieve this is to calculate the singular value decomposition of A and then use

only the subsystem corresponding to large singular values.

A standard regularization strategy to construct a reasonably stable approximation is to

choose a positive tolerance and to ignore small singular values, i.e., with absolute value

less than the chosen tolerance, because they are usually polluted by roundoff and hardly

discernible from zero. This is called the truncated singular value decomposition (TSVD)

method and it is issued in the present work.

Another popular possibility is the Tikhonov regularization, which solves

min
Λ
‖AΛ− U‖2 + ν‖Λ‖2, (6.1)

where ν is the positive regularization parameter which value can be determined by differ-

ent criterium as L-curve or Morozov discrepancy principle, if the noise level is known, or

simply experimentally.

The two mentioned regularization methods involve the choice of a parameter, the tol-

erance in TSVD and the ν value in (6.1), which strongly depends on the regularity of the

data and thus a wrong choice can affect the solution in a significant way. Therefore, in the

following sections, we propose and theoretical justify the least square approximation as

a valid alternative to improve the matrix conditioning. Furthermore, we suggest another

approach to obtain a regularized solution maintaining an optimal radial recovery step,

following the approach proposed in [23].
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6.1. Regularization by least-squares approximation

Let X = X1

⋃

X2 be the set of the indices of the centroids in a given stencil consisting

of M triangles. In order to maintain a well-conditioning system, we consider in the set

X2, only those centroids that provide a separation distance value acceptable among the M

centroids of the entire stencil. Let X1 be the set of the remaining indexes of the ℓ ≪ M

centroids discarded from the set X to increase the separation distance. Without lost of

generality, we suppose that X1 corresponds to the last ℓ columns of A.

Using this set X1 we construct the orthonormal columns e j, for each j ∈ X1, of a matrix

W ∈ RM×ℓ, as the canonical unit vectors with one in the jth entry and zeros elsewhere.

Hence the span of the orthonormal columns of W represents the space W , corresponding

to the elements of X1. Let us introduce the orthogonal projectors

PW =WW T and P⊥W = I − PW ,

where I denotes the identity matrix. We use these projectors to split the solution of the

linear system (5.3) according to

Λ = Λ′ +Λ
′′
, Λ′ = PWΛ, Λ

′′
= P⊥WΛ, (6.2)

where Λ′ represents the critical contribution to the solution that could increase the condi-

tion number of the matrix, while Λ
′′
∈ RM\{W} is the meaningful part to be considered.

Using the projectors PW and P⊥W and the decomposition (6.2), the linear system (5.3)

can be rewritten

(APW +AP⊥W )Λ = U . (6.3)

The regularized solution of (6.3) is now obtained by considering only the second part

of the coefficient matrix in (6.3),

AP⊥WΛ = U . (6.4)

Taking into account the choice of the projector P⊥W we rewrite (6.4) as the overdetermined

linear system

BΛ = U , (6.5)

where B = AP⊥W ∈ R
M×(M−ℓ) contains the (M − ℓ) non-vanishing columns of A, and Λ ∈

R
(M−ℓ).

Our claim is now that solving the overdetermined linear system (6.5) by least square

method, represents a sort of regularization of problem (5.3), that is we improve the con-

ditioning of problem (5.3).

Theorem 6.1. Let A ∈ RM×M be the coefficient matrix of the linear system (5.3) associated

to the set X , and B ∈ RM×(M−ℓ) the matrix in (6.5), associated to the set X2, then ond(B)≤ond(A), where ond represents the condition number of a matrix.

Proof. The condition number of a rectangular matrix is computed as the quotient of the

largest and smallest singular values of the matrix. The result follows from the fact that the
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singular values of A interlace the singular values of sub-matrices of A consisting of all rows

of A and an increasing number of columns (see [16], p. 449). 2

In general, the least square regularized solution obtained does not strictly satisfy the

interpolation conditions given in Definition 5.1 of optimal recovery; nevertheless, as we

will demonstrate in Section 7, this will not affect the performance of the PUHOFV proposed

method.

6.2. Regularization by splitting interpolation

In order to guarantee the optimal recovery, we propose a splitting interpolation scheme

applied to improve the conditioning of the linear systems (5.3).

Introduce the QR-factorization

AW = QR,

where Q ∈ RM×ℓ has orthonormal columns and R ∈ Rℓ×ℓ is upper triangular and W is

defined as in the previous section. We will assume that the subspace W is chosen so that

AW is of full rank. Then R is nonsingular. Introduce the orthogonal projectors

PQ = QQT and P⊥Q = I − PQ,

and decompose the system (5.3),

PQAΛ′ + PQAΛ
′′
= PQU , (6.6)

P⊥Q AΛ
′′
= P⊥Q U , (6.7)

where we used that P⊥Q APW = 0 in the derivation of (6.7). Note that Λ
′
∈ W represents

the part of the solution that can cause instability, while Λ
′′
∈ RM\W is the meaningful

well-conditioned part.

Let now B = P⊥Q A = [b1 · · · bM−ℓ · · · bn], represented columnwise, and B =

[b1 · · · bM−ℓ] ∈ R
M×(M−ℓ).

We solve (6.7) for Λ
′′
, in a least square sense by computing

BΛ
′′

= U , (6.8)

where U is composed of the first M − ℓ elements of P⊥Q U . Then Λ
′′
= [Λ

′′

0], which is

obtained by adding ℓ zeros to the vector Λ
′′

.

Theorem 6.2. Let A be the coefficient matrix of the linear system (5.3) and B the matrix in

(6.8). Then cond(B) ≤ cond(A).

Proof. Let us first recall that if C , D, E ∈ RM×M are given matrices, and C = DE then

ρi+ j+1 ≤ ̺i+1σ j+1, i, j = 0, · · · , M − 1, i + j+ 1≤ M , (6.9)
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where ρi,̺i,σi are the singular values of C , D, E respectively. Next, let us consider C ≡
B, D ≡ P⊥Q , E ≡ A, and recall that the condition number of a matrix is given by the ratio

between the biggest and the smallest singular values. If in (6.9) we consider j = 0, i = 0,

then we get

ρ1 ≤ ̺1σ1 = σ1, (6.10)

in fact an orthogonal projector has singular values 1 and 0, and ρ1 and σ1 are the biggest

singular values of B and A, respectively. Since A is full rank, we can also write D = C E−1.

From the relation between singular values (6.9)

̺M−ℓ ≤ ρM−ℓσ1∗,

where σ1∗ = 1/σM . Since ̺M−ℓ = 1 we get σM ≤ ρM−ℓ. Thus, if we consider B we get

(see [4]):

cond(B) =
ρ1

ρM−ℓ
≤
σ1

σM

= cond(A).

This completes the proof of the theorem. 2

Then Λ′ is obtained by (6.6). In fact, Eq. (6.6) has a coefficient matrix of small dimen-

sion ℓ× ℓ and can be expressed as

Rz′ =QT (U − AΛ
′′
). (6.11)

We compute the solution z′ of (6.11), and then we evaluate

Λ′ =Wz′. (6.12)

The final computed solution Λ of linear system (5.3), that gives RBF coefficients with

interpolation conditions, can now be obtained by summing up the two approximations Λ′

and Λ
′′
. Experimental results demonstrate that we improve the condition number of the

linear system of at least two orders of magnitude.

7. Applications and numerical results

In this section, we evaluate and validate the strategies described in the previous sec-

tions by using two numerical experiments. In the first experiment, the accuracy and con-

vergence is analyzed by considering a diffusion problem which allows us to compare the

numerical results with the analytical solution. In the second experiment, we apply the dis-

cussed PUHOFV strategies to a couple of PDE second order models for the specific problem

of noise removal on images and functional surfaces defined, respectively, on structured

and unstructured meshes. This illustrates the efficacy of the high order optimal recovery

strategies in real cases, compared with the basic FV schemes.



Partition of unity and RBF for high order FV schemes 169

7.1. Experimental Order of Convergence (EOC)

In this experimental section we consider the isotropic diffusion equation of the form

∂ u

∂ t
=∇ · (∇u), (7.1)

for a compact time interval I = [0, tMAX ], and the computational domain Ω = [0,1] ×
[0,1]. In case of initial conditions

u(0, x) = cos(2πx) cos(πy), (7.2)

and homogeneous Neumann boundary conditions, the exact scalar solution u : I ×Ω→ R
of (7.1) is given by

u(t, x) = cos(2πx) cos(πy)e−5π2 t . (7.3)

We consider the solution of Eq. (7.1) by a FV discretization scheme applied to a nested

sequence of four regular grids with mesh width h. In particular, mesh sizes h =

0.1,0.05,0.025,0.0125 form square grids of size n× n, respectively, 10×10,20×20,40×
40,80× 80. We let tMAX = 5 · 10−3 and we compute the time step τ in such a way to

guarantee the CFL condition τ ≤ h2/4 for the explicit forward Euler time discretization.

In order to measure the accuracy of the approximate solution uh on a mesh of width h

we measure the errors

E2(h) =
‖u− uh‖2
N

, Eg(h) =
‖∇u−∇uh‖2
Ne

, (7.4)

where u is the exact solution, N is the number of triangles of the mesh, and Ne is the

number of internal edges in the mesh.

The reconstruction of edge-centered gradients ∇uh is obtained by the radial recovery

function and its approximation of ∇R given by (5.5).

In order to estimate the convergence, the experimental order of convergence (EOC),

identified as the parameter α in the formula

Error(h/2) = C(h/2)α, (7.5)

can be determined by comparing numerical solutions and exact solution on subsequently

refined grids

α= log2(E2(h)/E2(h/2)). (7.6)

The same formula for Eg instead of E2, makes it possible to estimate the convergence rate

of the edge-centered gradient approximations.

Tables 1, 2, and 3 show the dependence of the errors (7.4) in L∞((0, tMAX ), L2(Ω))-

norm on the mesh size, for subsequently refined/denser grids, together with the corre-

sponding convergence orders α.

In Table 1 the optimal recovery step is based on an RBF interpolation, while in Table

2 the results report the convergence in case of least squares approximation in the radial
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Grid size τ E2(h) α Eg α

10× 10 2.50× 10−4 2.90× 10−3 − 0.0775 −
20× 20 6.25× 10−5 3.38× 10−4 3.10 0.0236 1.71

40× 40 1.56× 10−5 3.82× 10−5 3.14 0.0094 1.33

80× 80 3.90× 10−6 7.98× 10−6 2.26 0.0035 1.42Table 2: Convergene results for regular meshes using a PUHOFV disretization and least squares radialreovery step.
Grid size τ E2(h) α Eg α

10× 10 2.50× 10−4 2.70× 10−3 − 0.0768 −
20× 20 6.25× 10−5 4.44× 10−4 2.60 0.0245 1.64

40× 40 1.56× 10−5 4.96× 10−5 3.16 0.0096 1.35

80× 80 3.90× 10−6 4.38× 10−6 3.50 0.0035 1.45Table 3: Convergene results for irregular meshes using a PUHOFV disretization and interpolationreovery step.
Nv/N τ E2(h) α Eg α

100/183 7.48× 10−7 2.7× 10−3 − 0.0820 −
400/776 8.77× 10−8 3.69× 10−4 2.50 0.0367 1.16

1600/3169 3.31× 10−9 8.84× 10−5 2.43 0.0126 1.54

recovery step (see Section 6.1). The results show that our scheme reaches an expected

order of convergence greater than 2 even in case of approximated optimal recovery. It

should be observed that the ‖∇uh‖Th
always remains limited in the evolution, as a confirm

of a limited total variation of uh.

To the aim to investigate the influence of mesh irregularity on the accuracy of the pro-

posed PUHOFV discretization scheme, we apply the scheme for solving (7.1) on a sequence

of four irregular meshes with a number of control volumes (triangles) close to the regu-

lar case (Table 1). The time step τ, in the forward Euler time discretization, is chosen

so that τ ≤ 1

4
min(h), where h is the height of the mesh triangles. In Table 3 we report

the dependence of the errors (7.4) in L∞((0, tMAX ), L2(Ω))-norm on the mesh size, for

meshes of increasing density measured by Nv vertices and N triangles, together with the

corresponding convergence orders α.

The results in Table 3 confirm the ability of the method to achieve high accuracy on

relatively coarse meshes even in case of irregular meshes. The convergence orders are

slightly lower in the irregular case due to the higher number of time steps required in

case of the irregular meshes in order to reach the stopping criterion tMAX . This leads to a

propagation of time inaccuracy amplified by an eventually bad conditioned radial recovery

step based on RBF interpolation. This will be discussed in detail in Section 7.2. In this

case, the convergence can easily be improved by using a more accurate discretization in

time, such as, for example, a third order stability preserving Runge Kutta method.

The approximated solution obtained by PUHOFV space discretization of the PDE model
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(a) (b) (c)Figure 2: Reonstruted solution: (a) ell-averaged solution; (b) linearly reonstruted vertex values;() PU reonstruted vertex ell-averaged values.

Figure 3: Initial ondition u0 for the PDE model (7.1) on the irregular mesh.
(7.1) on a regular mesh 20× 20, is displayed in Fig. 2. This figure depicts, from left to

right, the piecewise constant cell-averaged solution, Fig. 2(a), the linearly-reconstructed

values at the mesh vertices obtained by (4.8), Fig. 2(b), while Fig. 2(c) shows the solution

provided by the PU reconstruction using the cell averaged values uk
i

in (3.1) obtained by

radial optimal recovery.

7.2. Effect of the regularization

The conditioning of the linear systems (5.3) in radial recovery will get extremely large

if the separation distance of the set of centroids of the domain mesh gets small. Never-

theless, no matter what the condition number of the linear system is, we always get good

approximate solutions if the RBF is suitably scaled in the domain. This unexpected robust

behavior is obtained with noisy-free right-hand side, but it is extremely sensitive to the
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noise. In case of radial recovery step in evolutionary PDE, the noise can be represented

either by noise on the initial data set, or by the perturbation propagated in time by a non-

accurate time discretization method, such as, for example, the forward Euler method. The

former aspect will be investigated in Section 7.3, while the latter will be addressed in the

remaining of this section. In all these noisy situations, interpolation should be replaced by

approximation. Interpolation of noisy data in fact could lead the simulation to run into

severe numerical instability.

Let us consider the noisy-free problem (7.1) with analytic solution (7.3). Unlike the

test case in Section 7.1, where we considered a structured grid of increasing dimension,

in this case we evaluate the analytical function u0 at the vertices of an irregular mesh

randomly constructed with 100 vertices and 189 triangles. Fig. 3 shows u0 together with

the associated irregular mesh.

The test problem (7.1) is solved by a PUHOFV discretization in space and a forward

Euler in time, considering a time step τ chosen so that τ ≤ 1

4
min(h), where h is the height

of the mesh triangles. The structure of the stencil is described in Section 5, thus the number

of triangles in each stencil is between a minimum of 10 and a maximum of 20, and this

corresponds to the number of unknowns in the linear systems (5.3).

We want to compare the different regularization approaches discussed in Section 6 in

case of bad conditioning. To this aim, we built the mesh in Fig. 3 with several very close

vertices which cause a small separation distance and thus a bad conditioning. In particular,

the condition numbers of the linear systems (5.3) are in the range [6.97×107, 9.54×1013],

where 153 on the total 189 linear systems have a condition number greater than 1010.

Using the interpolation recovery step, the ill conditioning is propagated in the evolu-

tion and it amplifies the propagated errors due to inaccuracy of the forward Euler time

discretization. After 100 time steps this causes the fail of the convergency and the error

starts to increase.

Then we replace the interpolation recovery step with a TSVD regularization as de-

scribed in Section 6, using a tolerance 1 × 10−4, after 1200 steps we get E2 = 0.0052,

E∞ = 0.6989, and Eg = 0.0867. The evolution converges to the exact solution at the given

tMAX .

Finally, the interpolation recovery step is replaced by least squares approximation

where the centers are selected between the centroids of the stencil so that to increase

the separation distance inside the stencil (see Section 6.1). After 1200 steps we get

E2 = 0.0027, E∞ = 0.1754, and Eg = 0.0628. The evolution converges to the exact

solution at the given tMAX .

We can then conclude that in case of well conditioning, that is an irregular distribution

of nodes of the mesh that does not cause a particularly small separation distance, the

interpolation optimal recovery gives the best accurate reconstruction with respect to any

regularized and thus approximated reconstruction. In case of unstructured mesh that could

lead to bad conditioning, both TSVD and least squares approximation can be used to avoid

instabilities. The latter is parameter free, and this can be considered a good advantage,

moreover it provides slightly better results.
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7.3. Denoise of surfaces and images

Removal of noise is a necessary pre-processing step for several surface processing tasks

such as surface reconstructions, curvature detections, structure recognition, and so on.

In this section we consider the problem of denoising images and functional surfaces that

are typical from range image 3D scanners acquisition systems, where the range image

represents an unstructured set of scalar values corresponding to a set of points on a 3D

acquisition plane. In general the points are corrupted by measurement errors.

A common way to represent bivariate data such as height fields and grey-scale images is

the so-called functional surface S(x , y,u(x , y)) defined along the x y-plane, by an intensity

function u : Ω ⊂ R2 → R. An image can be interpreted as a discretization of a continuous

function defined on Ω ⊂ R2 by assigning the image intensity to the elevation along the

z direction. By introducing the function d(x , y, z) = z − u(x , y) then the surface S is

implicitly defined by d(x , y, z) = 0.

We are interested in restoring a functional surface d(x , y, z) which is corrupted by noise

in such a way that the process should recover the main structures of the surface.

We apply the model proposed in [24], which generalizes [20,21], and is based on the

reconstruction of a noise-reduced surface from the smoothed normal field, considering a

curvature preserving term.

The first step involves the smoothing of the normal vectors n0 =∇d0/|∇d0|minimizing

the functional:

inf
|n|=1

¨∫

Ω

|∇n|d x +
a

2

∫

Ω

|n− n0|
2d x

«

, (7.7)

where a > 0 is a parameter that balances smoothing and fidelity to the original vector

field. The second step recovers the functional surface from the smoothed normal field that

results from solving (7.7), by minimizing the functional

inf
d

¨∫

Ω

(|∇d | −∇d ·n)d x +

∫

Ω

g(curvS)|∇d |d x +
b

2

∫

Ω

(|d − d0|
2−σ2)d x

«

, (7.8)

where b > 0, is a given parameter, σ is a fairly accurate bound of the norm of the noise,

and

curvS = div(n) = div(
(−ux ,−uy , 1)
Æ

1+ u2
x + u2

y

)

=
(1+ u2

y)ux x − 2uxuyux y + (1+ u2
x )uy y

(1+ u2
x + u2

y )
(7.9)

is the mean curvature of the functional surface S. The central functional term in (7.8)

has been introduced to obtain curvature driven diffusion. The diffusivity function g(·)
considered in this work is the well-known Perona Malik diffusivity,

g(s) =
1

(1+ s2/K2)
, K > 0.



174 S. Morigi and F. Sgallari

This results into two coupled non-linear second order PDEs [24]. In the remaining of this

section we will refer to this PDE model as the two-step model.

In the following examples, noisy functional surfaces have been obtained by adding an

error vector η with normally distributed random entries with zero mean to the functional

values z. In Eq. (7.8) we set b = 1. The vector η is scaled to correspond to a specified

noise level µ = ‖ησ‖/‖z‖. According to the notation in Section 4, for the compactly

supported RBFs we set ℓ = 4, for the Gaussian RBFs we set δ = 0.5, while for the inverse

multiquadrics we set γ= 0.5. All computations are carried out in MATLAB, version R2007a,

with machine epsilon ε ≈ 2 · 10−16.

Example 7.1. The above described two-step model can be simply applied to the classi-

cal image denoising problem where the underlying domain turns out to be a rectangular

structured grid. In this example we consider the denoise of a gray-scale image which is

interpreted as a functional surface by assigning the image intensity to the elevation along

the z direction of the x y image plane.

A test image has been used as a functional surface to show the effectiveness of the

curvature term introduced in the two-step model (7.8). The noise-free image of size 100×
100 pixels is shown in Fig. 4 (first row, left). The noisy-free associated functional surface,

shown in Fig. 4 (first row, center), is defined on a structured grid of 10000 vertices and

19602 triangles. The perturbed surface obtained by considering a noise level µ = 1 · 10−2

is shown in Fig. 4 (first row, right). The first step in the two-step model (7.7) is initialized

with a normal perturbed vector field n0 illustrated in Fig. 4 (second row, left), while the

resulting smoothed normal vector fields obtained after 4 and 8 time steps, with τ = 1·10−4

are shown in Fig. 4 (second row, center and right, respectively). The reconstructed surface

obtained applying the second step (7.8) without curvature contribution after 8 time steps

is shown in Fig. 4 (third row, left), while the reconstructions shown in Fig. 4 (third row,

center and right) have been obtained by including g(curvS) after 4 and 10 time steps,

respectively. A PUHOFV scheme has been used for the space discretization using inverse

multiquadrics RBF.

Example 7.2. To demonstrate the effectiveness of the High Order FV scheme we compare

the results obtained by the sophisticated two-step model (7.7) and (7.8), with the results

obtained using the standard Total Variation (TV) model

∂ u

∂ t
−∇ ·
� ∇u

|∇u|

�

= 0, (7.10)

see [34] for reference. The TV model is applied to the damaged surface fish, shown in

Fig. 5(a), defined on an unstructured grid of 13208 triangles and 6833 vertices, corrupted

by a noise level µ = 1 · 10−2, with the aim to recover a noisy-free surface. In Fig. 5(b)

the reconstruction using the two-step model after 10 time steps is illustrated, while in

Fig. 5(c) the surface obtained after 10 time steps of the TV model is shown. The satisfactory

reconstruction we get after only a few steps can be motivated by the use of PUHOFV

scheme, using Gaussian RBF recovery strategy.
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Figure 4: Example 7.1: (�rst row) noise-free image; assoiated unorrupted funtional surfae; damagedfuntional surfae; (seond row) initial perturbed normal �eld; smoothed normal �eld by (7.7), timestep 4; smoothed normal �eld by (7.7), �nal time step; (third row) reonstruted surfae using model(7.8) without urvature ontribution; reonstruted surfae with urvature term g(curvS), intermediateand �nal time steps.
(a) (b) (c)Figure 5: Example 7.2: (a) orrupted surfae fish with noise level 1 · 10−2; (b) reonstruted surfaeapplying the two-step model; () reonstruted surfae obtained by the TV model.

Example 7.3. In the third test we consider a noise-free surface, obtained by the data

set angel, defined on a grid of 5000 triangles and 2601 vertices. Additive white noise

with noise level µ = 5 · 10−3 is added in the z direction. The noisy surface is shown in

Fig. 6(a). The curvature map represented as a gray-level image is depicted in Fig. 7; it
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(a) (b)Figure 6: Example 7.3: (a) orrupted surfae angel with noise level 5 · 10−3; (b) reonstruted surfaeusing PUHOFV sheme on the two-step model, after 10 time steps.
Figure 7: Example 7.3: urvature map.

(a) (b) (c)Figure 8: Example 7.3: (a) a detail from the orrupted surfae angel; (b) reonstruted surfaedetail using PUHOFV sheme for the two-step model; () reonstruted surfae detail using PUHOFVdisretization for the TV model.
is reconstructed through the smoothed normal field and used in the second step of the

two-step model. Applying the two step model discretized by PUHOFV scheme, after 10

time steps we get the smoothed version of the damaged angel surface shown in Fig. 6(b).

The image in Fig. 8(a) shows a detail from the corrupted noisy angel surface. The sur-

face detail reconstructed applying the two-step model discretized with PUHOFV scheme is

shown in Fig. 8(b); we used Inverse Multiquadrics RBF in the optimal recovery steps. The

same reconstructed detail using the TV model, discretized by PUHOFV scheme is shown in

Fig. 8(c). Visual inspection shows a very good reconstruction after only a few time steps.
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8. Conclusions and ongoing Work

In this paper we investigated a high order cell-centered finite volume scheme for dif-

fusion PDE models obtained by combining the use of RBF optimal recovery with Gaussian

quadrature integration methods. The cell averaged results can be assembled together in

a powerful partition of unity framework which provides high quality reconstructions. The

resulting finite volume discretization leads to an accurate numerical solution without the

need for excessively small mesh spacing with a modest additional overhead. In case of

severe irregular unstructured meshes, a least square-based approach is provided to obtain

a robust regularized solution. An ongoing work will proceed with the study of a posteri-

ori error control strategies for finite volume approximations and the use of it for adaptive

numerical techniques.
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