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Abstract. We develop and analyze an immersed Eulerian-Lagrangian local-

ized adjoint method (ImELLAM) for transient advection-diffusion equations

with interfaces. The derived method possesses the combined advantages of the

immersed finite element method and the Eulerian-Lagrangian method.
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1. Introduction

Transient advection-diffusion equations arise in mathematical models for de-
scribing petroleum reservoir simulation, groundwater contaminant transport, ge-
ological storage of carbon dioxide and remediation, and many other applications
[1, 13, 2, 7, 12, 13, 14, 20]. These equations admit solutions with moving steep
fronts and complicated structures. Furthermore, subsurface porous medium ma-
trix often contains a variety of faults and fractures of different magnitude. Those
relatively large faults must be accurately incorporated into the corresponding math-
ematical models, in which the geological formations consist of several subdomains
with different geological properties and salient physical interfaces. This also means
that in the numerical discretization the computational meshes must align with the
large faults in order to obtain a stable and accurate numerical solution. Note that
the number of large faults is usually quite limited, so the modeling and numerical
implementation is doable. On the other hand, there are numerous relatively small
fractures which are very difficult, if not impossible at all, to describe in a deter-
ministic manner geologically. As a matter of fact, these relatively tiny fractures
are often described in a probability sense. The impact of these tiny fractures can
be handled via the approach of upscaling or multiscale numerical techniques. As
for those intermediate fractures, they are probably too big to be upscaled into the
underlying numerical schemes in any reasonable manner. On the other hand, there
are probably too many intermediate fractures such that the computational meshes
of the underlying numerical scheme align with each of them. Based on these con-
siderations we plan to adopt the approach of immersed numerical method to handle
these intermediate fractures.

To expose the idea, in this paper we consider the one-dimensional transient linear
advection-diffusion equation with interfaces

(1)
φut + (V u−Dux)x = f(x, t), x ∈ (a, b), 0 < t ≤ T,

u(x, 0) = u0(x), x ∈ [a, b].
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In such areas as porous medium flow and transport, the geological formations may
consist of several subdomains with different geological properties. Consequently,
there exist physical interfaces between different subdomains. Across these inter-
faces, the concentration u(x, t) and the Darcy flux V (x) are continuous, but the
porosity of the porous medium φ(x) and the diffusion coefficient D(x) are discon-
tinuous. Nevertheless, the diffusive flux is continuous across these interfaces. We
assume that V is constant in the domain (a, b), φ and D are piecewise constants
and a < α1 < · · · < αK < b are the interfaces. This leads to the following interface
conditions for k = 1, · · · ,K,

(2) [[u]](αk, t) = 0, [[Dux]](αk, t) = 0, t ∈ [0, T ],

where [[u]](αk, t) = u(α+
k , t) − u(α−

k , t) represents the jump of u across the inter-
face x = αk. To focus on main idea for the development and the analysis of the
ImELLAM scheme, we assume that the problem is closed by the periodic boundary
condition.

In this paper we develop and analyze an immersed Eulerian-Lagrangian local-
ized adjoint method (ImELLAM) for transient advection-diffusion equations with
interfaces. The rest of the paper is organized as follows: In §2 we present some
preliminaries that are needed in the development and analysis of the ImELLAM
scheme. In §3 we derive the ImELLAM scheme. In §4 we prove an optimal-order
error estimate for the ImELLAM scheme. §5 contains concluding remarks.

2. Preliminary

In this section we recall some preliminaries that are needed in the development
and analysis of the ImELLAM scheme.

2.1. Sobolev Spaces. Let W k
p (a, b) consist of functions whose weak derivatives

up to order-k are p-th Lebesgue integrable in (a, b), and Hk(a, b) := W k
2 (a, b). Let

Hm
E (a, b) be the subspace of Hm(a, b) with periodic boundary condition. For any

Banach space X , we introduce Sobolev spaces involving time [6]

W k
p (t1, t2;X) :=

{

f :

∥

∥

∥

∥

∂lf

∂tl
(·, t)

∥

∥

∥

∥

X

∈ Lp(t1, t2), 0 ≤ l ≤ k, 1 ≤ p ≤ ∞

}

,

‖f‖Wk
p (t1,t2;X) :=























(

k
∑

l=0

∫ t2

t1

∥

∥

∥

∥

∂lf

∂tl
(·, t)

∥

∥

∥

∥

p

X

dt

)1/p

, 1 ≤ p < ∞,

max
0≤l≤k

esssup
t∈(t1,t2)

∥

∥

∥

∥

∂lf

∂tl
(·, t)

∥

∥

∥

∥

X

, p = ∞.

We also introduce piecewise-smooth Sobolev spaces incorporated with certain
continuity conditions and the corresponding norms for the immersed finite element
method [10, 15]

PW k
p (a, b) :=

{

v : v|(αk−1,αk) ∈ W k
p (αk−1, αk), k = 1, · · · ,K + 1

}

,

PH2
int(a, b) :=

{

v : v ∈ C(a, b), v|(αk−1,αk) ∈ H2(αk−1, αk),

[[Dvx]](αk) = 0, k = 1, · · · ,K + 1
}

.
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Here α0 = a and αK+1 = b. We let PW k
2 (a, b) = PHk(a, b). For any function

v ∈ PW k
p (a, b), we define

‖v‖2Wm
p (a,b) :=

K+1
∑

k=1

‖v‖2Wm
p (αk−1,αk)

.

2.2. The linear immersed finite element space. In this subsection we intro-
duce the local linear immersed finite element basis functions and define the im-
mersed finite element space. Let a =: x0 < x1 < · · · < xI := b be a quasi-uniform
space partition with hi = xi − xi−1 for i = 1, · · · , I and h = max1≤i≤I hi. For each
interface αk there exists one j = j(k) such that the element (xj−1, xj) contains
αk. It is reasonable to assume that there is at most one interface in each spatial
element. We require the basis function satisfy the natural jump condition:

(3) φi(xj) =

{

1, if i = j,

0, otherwise,
[[φi]](αk) = 0, [[Dφix]](αk) = 0.

So φi is a standard hat function if no interface is located in (xi−1, xi). Otherwise,
φi−1 and φi are defined as follows [10, 15]:

(4) φi−1(x) =




























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





x− xi−2

hi−1
, xi−2 ≤ x < xi−1,

xi−1 − x

γk
+ 1, xi−1 ≤ x < αk,

βk(xi − x)

γk
, αk ≤ x < xi,

0, otherwise,

and

(5) φi(x) =







































x− xi−1

γk
, xi−1 ≤ x < αk,

βk(x− xi)

γk
+ 1, αk ≤ x < xi,

xi+1 − x

hi+1
, xi ≤ x ≤ xi+1,

0, otherwise,

where βk and γk are given by

βk =
D(α−

k )

D(α+
k )

, γk = hi −
D(α+

k )−D(α−
k )

D(α+
k )

(xi − αk).

Let Sh(a, b) be the immersed finite element space defined by

Sh(a, b) =
{

v : v(x) =

I
∑

i=1

viφi(x)
}

and Πv ∈ Sh(a, b) be a interpolation of v for any v ∈ PH2
int(a, b). Then the

following estimate holds [8, 9, 10, 11, 15, 16, 17].

(6) ‖Πv − v‖Hl(a,b) ≤ C1h
2−l‖v‖H2(a,b), l = 0, 1.
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3. An Immersed Eulerian-Lagrangian Localized Adjoint Method

Let 0 =: t0 < t1 < . . . < tn < . . . < tN−1 < tN := T be a quasi-uniform
partition of the time interval [0, T ], with ∆tn := tn − tn−1 for n = 1, 2, . . . , N and
∆t = max1≤n≤N ∆tn. We develop the ImELLAM scheme within the framework of
the Eulerian-Lagrangian localized adjoint method, which was originally proposed
by Celia, Russell, Herrera, and Ewing [4]. In the ELLAM formulation, the space-
time test functions w ∈ H1

E are chosen to be continuous and piecewise smooth
and to vanish outside the space-time prism [a, b]× (tn−1, tn]. We use the notation
w(x, t+n−1) = limt→tn−1+0 w(x, t) to account for the possible discontinuity of w in
time at time tn−1. We multiply (1) by w and integrate the resulting equation on
[a, b]× (tn−1, tn] by parts to obtain

(7)

∫ b

a

φu(x, tn)w(x, tn)dx+

∫ tn

tn−1

∫ b

a

(Dux)(x, t)wx(x, t)dxdt

−

∫ tn

tn−1

∫ b

a

u(x, t)(φwt + V wx(x, t)dxdt

=

∫ b

a

φu(x, tn−1)w(x, t
+
n−1) dx+

∫ tn

tn−1

∫ b

a

f(x, t)w(x, t)dxdt.

In (7) we have used the interface conditions (2) and the periodic boundary condition
to the advection-diffusion term

(8)

∫ tn

tn−1

∫ b

a

(V u−Dux)x(x, t)w(x, t)dxdt

=

K+1
∑

k=1

∫ tn

tn−1

∫ αk

αk−1

(V u−Dux)x(x, t)w(x, t)dxdt

= −

K+1
∑

k=1

∫ tn

tn−1

∫ αk

αk−1

(V u−Dux)(x, t)wx(x, t)dxdt

+
K+1
∑

k=1

∫ tn

tn−1

(V u−Dux)(αk, t)w(αk, t)dt

−

K+1
∑

k=1

∫ tn

tn−1

(V u−Dux)(αk−1, t)w(αk−1, t)dt

= −

∫ tn

tn−1

∫ b

a

(V u−Dux)(x, t)wx(x, t)dxdt.

We follow the principle of the ELLAM framework to choose the test functions w

satisfy the hyperbolic part of the adjoint equation of (1) [4]

(9) φwt(x, t) + V wx(x, t) = 0, (x, t) ∈ (a, b)× (tn−1, tn],

with w(x, tn) being specified for x ∈ (a, b). (9) implies that the last term on the left
side of (7) vanishes and that the test functions w are constant along the trajectory
r(t;x, t̄) defined by

(10)
dr

dt
=

V

φ(r)
, r(t;x, t̄)|t=t̄ = x.

Without loss of generality, we assume r(t; a, tn−1) and r(t; b, tn) do not intersect
with any interfaces during the time interval [tn−1, tn].
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3.1. Evaluation of diffusion term. Now we evaluate the diffusion term in (7).
Note that V is constant and φ(x) is a periodic function with respect to x of the
period b− a. Thus, the curve r(t; b, tn)− (b− a) satisfies the initial-value problem

d(r(t; b, tn)− (b− a))

dt
=

dr(t; b, tn)

dt
=

V

φ(r(t; b, tn))

=
V

φ(r(t; b, tn)− (b − a))
,

r(t; b, tn)− (b − a)
∣

∣

∣

t=tn
= b− (b − a) = a.

Therefore, both r(t; b, tn) − (b − a) and r(t; a, tn) are the solutions of the same
initial-value problem. The uniqueness of such problem concludes that

(11) r(t; b, tn)− r(t; a, tn) = b− a ∀t ∈ [tn−1, tn].

For clarity of presentation, in the evaluation of diffusion term we reserve x for
points in [a, b] at time tn representing the heads of characteristics. We use the
variable y to represent the spatial coordinate of an arbitrary point at time t ∈
(tn−1, tn). We use the relation (11) and the periodicity of problem (1) to evaluate
the diffusion term by the Euler quadrature as follows:

(12)

∫ tn

tn−1

∫ b

a

D(y)uy(y, t)wy(y, t)dydt

=

∫ tn

tn−1

∫ r(t;b,tn)

r(t;a,tn)

D(y)uy(y, t)wy(y, t)dydt

=

∫ b

a

∫ tn

tn−1

D(r(t;x, tn))uy(r(t;x, tn), t)wx(x, tn)dtdx

= ∆tn

∫ b

a

D(x, tn)ux(x, tn)wx(x, tn)dx+ E1(u,w),

Here E1(u,w) is the local truncation error defined by

(13) E1(u,w) :=

∫ b

a

∫ tn

tn−1

[

(Dux)(r(t;x, tn), t)− (Dux)(x, tn)
]

dt wx(x, tn)dx.

3.2. Evaluation of source and sink term. Before evaluation of the source and
sink term, we introduce some notations. Let x∗ denote the foot of characteristics
at time tn−1 with head x at time step tn, x̃ denote the head of characteristics at
time tn with foot x at time step tn−1, and tk(x, tn) denote the time when r(t;x, tn)
intersects the interface αk.

x∗ = r(tn−1;x, tn), x̃ = r(tn;x, tn−1), αk = r(tk(x, tn);x, tn).

Without loss of generality, we consider the case of K = 2 and assume that
α̃1 ∈ (α1, α2), α

∗
2 ∈ (α1, α2), and α̃2 ∈ (α2, b). We define a space-time prism Ωk,

which extends the cell [αk, α̃k] backward along the characteristic curve r(t;x, tn)
from t = tn to t = tn−1, as follows:

(14) Ωk = {(x, t) : r(t;αk, tn) < x < r(t; α̃k, tn), tn−1 < t < tn}, k = 1, 2.

Also we let Ω̄ denote [a, b]× (tn−1, tn)\ (Ω1∪Ω2). We then evaluate the source and
sink term as follows
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∫

Ωk

f(y, t)w(y, t)dydt

=

∫ α̃k

αk

∫ tn

t(x,tn)

f(r(t;x, tn), t)w(r(t;x, tn), t)rx(t;x, tn)dtdx

+

∫ αk

α∗

k

∫ tk(x̃,tn)

tn−1

f(r(t;x, tn−1), t)w(r(t;x, tn−1), t)rx(t;x, tn−1)dtdx

=

∫ α̃k

αk

∫ tn

tk(x,tn)

f(r(t;x, tn), t)w(x, tn)dtdx

−

∫ tn

tn−1

∫ θ

tn−1

f(r(t;αk, θ), t)w(αk , θ)rθ(t;αk, θ)dtdθ

=

∫ α̃k

αk

(tn − tk(x, tn))f(x, tn)w(x, tn)dx

+

∫ tn

tn−1

V

φ(α−
k )

(θ − tn−1)f(αk, θ)w(αk, θ)dθ + E2(k, f, w).

Here E2(k, f, w) is the local truncation error defined by

E2(k, f, w)

= −

∫ α̃k

αk

∫ tn

tk(x,tn)

(f(x, tn)− f(r(t;x, tn), t))w(x, tn)dtdx

−

∫ tn

tn−1

∫ θ

tn−1

V

φ(α−
k )

(f(αk, θ)− f(r(t;αk, θ), t))w(αk , θ)dtdθ.

On the other hand, we evaluate the source and sink term on Ω̄ as follows

∫ tn

tn−1

∫ b

a

f(y, t)w(y, t)dydt

=

∫

(a,α1)∪(α̃1,α2)∪(α2,b)

∫ tn

tn−1

f(r(t;x, tn), t)w(r(t;x, tn), t)rx(t;x, tn)dtdx

=

∫

(a,α1)∪(α̃1,α2)∪(α2,b)

∫ tn

tn−1

f(r(t;x, tn), t)w(x, tn)dtdx

= ∆tn

∫

(a,α1)∪(α̃1,α2)∪(α2,b)

f(x, tn)w(x, tn)dx + E3(f, w).

Here E3(f, w) is the local truncation error defined by

E3(f, w)

= −∆tn

∫

(a,α1)∪(α̃1,α2)∪(α2,b)

∫ tn

tn−1

(f(x, tn)− f(r(t;x, tn), t))w(x, tn)dtdx.
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We combine the preceding equations to obtain the following equation in the
presence of K interfaces

(15)

∫ tn

tn−1

∫ b

a

f(y, t)w(y, t)dydt

= ∆tn

∫

⋃K−1

k=1
(α̃k,αk+1)∪(a,α1)∪(αK ,b)

f(x, tn)w(x, tn)dx

+

K
∑

k=1

∫ α̃k

αk

(tn − tk(x, tn))f(x, tn)w(x, tn)dx

+

K
∑

k=1

∫ tn

tn−1

V

φ(α−
k )

(θ − tn−1)f(αk, θ)w(αk, θ)dθ

+

K
∑

k=1

E2(k, f, w) + E3(f, w).

3.3. An ImELLAM scheme. We substitute (12) and (15) into (7) to obtain an
ImELLAM reference equation for problem (1)

(16)

∫ b

a

φ(x)u(x, tn)w(x, tn)dx+∆tn

∫ b

a

D(x)ux(x, tn)wx(x, tn)dx

=

∫ b

a

φ(x)u(x, tn−1)w(x, t
+
n−1) dx

+∆tn

∫

⋃K−1

k=1
(α̃k,αk+1)∪(a,α1)∪(αK ,b)

f(x, tn)w(x, tn)dx

+

K
∑

k=1

∫ α̃k

αk

(tn − tk(x, tn))f(x, tn)w(x, tn)dx

+
K
∑

k=1

∫ tn

tn−1

V

φ(α−
k )

(θ − tn−1)f(αk, θ)w(αk, θ)dθ

−E1(u,w) +

K
∑

k=1

E2(k, f, w) + E3(f, w).

The ImELLAM scheme states as follows: Find uh(x, tn) ∈ Sh(a, b) for n =
1, · · · , N such that for any wh(x, tn) ∈ Sh(a, b)

(17)

∫ b

a

φ(x)uh(x, tn)wh(x, tn)dx +∆tn

∫ b

a

D(x)uhx(x, tn)whx(x, tn)dx

=

∫ b

a

φ(x)uh(x, tn−1)wh(x, t
+
n−1) dx

+∆tn

∫

⋃K−1

k=1
(α̃k,αk+1)∪(a,α1)∪(αK ,b)

f(x, tn)wh(x, tn)dx

+
K
∑

k=1

∫ α̃k

αk

(tn − tk(x, tn))f(x, tn)wh(x, tn)dx

+

K
∑

k=1

∫ tn

tn−1

V

φ(α−
k )

(θ − tn−1)f(αk, θ)wh(αk, θ)dθ.
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4. An optimal-order error estimate for the ImELLAM scheme

In this section we prove the main theorem of this paper.

Theorem 4.1. Assume u ∈ L∞(0, T ;H2)
⋂

H1(0, T ;H2), f ∈ H1(0, T ;L2), then
the following optimal-order error estimate holds for the ImELLAM scheme (17).

‖uh − u‖L∞(0,T ;L2)

≤ C∆t
(∥

∥

∥

du

dt

∥

∥

∥

L2(0,T ;H1)
+ ‖u‖L2(0,T ;H1) +

∥

∥

∥

df

dt

∥

∥

∥

L2(0,T ;L2)

+‖f‖L2(0,T ;L2)

)

+ Ch2
(

‖u‖L∞(0,T ;H2) + ‖u‖H1(0,T ;H2)

)

.

Here the constant C is independent of u, h, or ∆t.

Proof. Without loss of generality, we assume K = 2 in the proof, e.g. there are two
interfaces in the domain (a, b). In this case, the combination of piecewise diffusion
coefficients and porosity and the periodicity of the problem concludes that

(18) φ(x) =















φ−, x ∈ [a, α1),

φ+, x ∈ (α1, α2),

φ−, x ∈ (α2, b],

D(x) =















D−, x ∈ [a, α1),

D+, x ∈ (α1, α2),

D−, x ∈ (α2, b].

Let e = uh−u and choose w(x, tn) in the reference equation (16) to be wh(x, tn) ∈
Sh(a, b). We then subtract (16) from (17) to get an error equation for anywh(x, tn) ∈
Sh(a, b).

(19)

∫ b

a

φ(x)e(x, tn)wh(x, tn)dx +∆tn

∫ b

a

D(x)ex(x, tn)whx(x, tn)dx

=

∫ b

a

φ(x)e(x, tn−1)wh(x, t
+
n−1) dx+ E1(u,wh)

−

K
∑

k=1

E2(k, f, wh)− E3(f, wh).

Let ξ = uh−Πu and η = Πu−u. The estimate for η is given in (6), so we need only
to estimate ξ. We choose wh(x, tn) to be ξ(x, tn) and rewrite the error equation
(19) in terms of ξ and η as follows:

(20)

∫ b

a

φ(x)ξ2(x, tn)dx+∆tn

∫ b

a

D(x)ξ2x(x, tn)dx

=

∫ b

a

φ(x)ξ(x, tn−1)ξ(x, t
+
n−1)dx +

∫ b

a

φ(x)η(x, tn−1)ξ(x, t
+
n−1)dx

−

∫ b

a

φ(x)η(x, tn)ξ(x, tn)dx −∆tn

∫ b

a

D(x)ηx(x, tn)ξx(x, tn)dx

+E1(u, ξ)−

K
∑

k=1

E2(k, f, ξ)− E3(f, ξ).

The left side of (20) is in the form we need, so we need only to estimate the right
side term by term. The first term on the right side of (20), which can be bounded
in a standard way when no interface is present, now requires careful analysis. The
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standard estimate gives

(21)

∫ b

a

φ(x)ξ(x, tn−1)ξ(x, t
+
n−1)dx

≤
1

2

∫ b

a

φ(x)ξ2(x, tn−1)dx +
1

2

∫ b

a

φ(x)ξ2(x̃, tn)dx

=
1

2

∫ b

a

φ(x)ξ2(x, tn−1)dx +
1

2

∫ b

a

φ(x̃)ξ2(x̃, tn)dx

+
1

2

∫ b

a

(φ(x) − φ(x̃))ξ2(x̃, tn)dx.

This does not work here. We should be careful to the second term after the first
inequality. We again assume α̃1 ∈ (α1, α2), α

∗
2 ∈ (α1, α2), and α̃2 ∈ (α2, b). Note

that for x ∈ [a, α∗
1) ∪ (α1, α

∗
2) ∪ x ∈ (α2, b], x̃ ∈ [ã, α1) ∪ (α̃1, α2) ∪ (α̃2, b̃] and

φ(x) = φ(x̃). More specifically, x̃ can be specified as follows

x̃ = x+
V

φ−

∆tn, x ∈ [a, α∗
1] ∪ [α2, b],

x̃ = x+
V

φ+
∆tn, x ∈ [α1, α

∗
2],

α1 = x+
V

φ−

(t(x, tn−1)− tn−1),

x̃ = α1 +
V

φ+
(tn − t(x, tn−1)), x ∈ (α∗

1, α1),

α2 = x+
V

φ+
(t(x, tn−1)− tn−1),

x̃ = α2 +
V

φ−

(tn − t(x, tn−1)), x ∈ (α∗
2, α2).

With these expressions we directly get

(22)
dx̃

dx
=



























1, x ∈ [a, α∗
1] ∪ [α1, α

∗
2] ∪ [α2, b],

φ−

φ+
, x ∈ (α∗

1, α1),

φ+

φ−

, x ∈ (α∗
2, α2).

We can now do a better job than we did in (21) and evaluate the second term on
its right-hand side precisely

(23)

∫ b

a

φ(x)ξ2(x̃, tn)dx

=

∫ α∗

1

a

φ(x̃)ξ2(x̃, tn)dx+

∫ α1

α∗

1

φ−ξ
2(x̃, tn)dx +

∫ α∗

2

α1

φ(x̃)ξ2(x̃, tn)dx

+

∫ α2

α∗

2

φ+ξ
2(x̃, tn)dx +

∫ b

α2

φ(x̃)ξ2(x̃, tn)dx =
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=

∫ α1

ã

φ(x̃)ξ2(x̃, tn)dx̃ +

∫ α̃1

α1

φ−ξ
2(x̃, tn)

φ+

φ−

dx̃

+

∫ α2

α̃1

φ(x̃)ξ2(x̃, tn)dx̃ +

∫ α̃2

α2

φ+ξ
2(x̃, tn)

φ−

φ+
dx̃

+

∫ b̃

α̃2

φ(x̃)ξ2(x̃, tn)dx̃

=

∫ b̃

ã

φ(x̃)ξ2(x̃, tn)dx̃ =

∫ b

a

φ(x)ξ2(x, tn)dx.

This allows us to bound the first term on the right side of (20) by

∫ b

a

φ(x)ξ(x, tn−1)ξ(x, t
+
n−1)dx

≤
1

2

∫ b

a

φ(x)ξ2(x, tn−1)dx+
1

2

∫ b

a

φ(x)ξ2(x, tn)dx.

We decompose the second and the third terms as follows:

(24)

∫ b

a

φ(x)η(x, tn−1)ξ(x, t
+
n−1)dx −

∫ b

a

φ(x)η(x, tn)ξ(x, tn)dx

= −

∫ b

a

∫ tn

tn−1

φ(x)ηt(x, t)dtξ(x, tn)dx

+

∫ b

a

φ(x)η(x, tn−1)(ξ(x̃, tn)− ξ(x, tn))dx.

The first term on the right side is bounded by

∣

∣

∣

∫ b

a

∫ tn

tn−1

ηt(x, t)dtξ(x, tn)dx
∣

∣

∣

≤ C∆tn‖ξ(·, tn)‖
2
L2 + C‖η‖2H1(tn−1,tn;L2)

≤ C∆tn‖ξ(·, tn)‖
2
L2 + Ch4‖u‖2H1(tn−1,tn;H2).

We substitute the the following expression

ξ(x̃, tn)− ξ(x, tn) =

∫ 1

0

dξ

ds
(x + s(x̃− x), tn)ds

=

∫ 1

0

ξx(x+ s(x̃− x), tn)ds(x̃ − x)

into the second term on the right side of (24) to get

∣

∣

∣

∫ b

a

φ(x)η(x, tn−1)(ξ(x̃, tn)− ξ(x, tn))dx
∣

∣

∣

=
∣

∣

∣

∫ b

a

φ(x)η(x, tn−1)

∫ 1

0

ξx(x+ s(x̃ − x), tn)ds(x̃ − x)dx
∣

∣

∣

≤ C∆tn
∥

∥ξx(·, tn)
∥

∥

∥

∥η(·, tn)
∥

∥

≤ ε∆tn

∫ b

a

D(x)ξ2x(x, tn)dx+ C∆th4‖u‖2L∞(0,T ;H2).

Note that there must be elements [xj1−1, xj1 ] and [xj2−1, xj2 ], such that the inter-
faces α1 and α2 locate in, respectively, and so D(x) and ξx(x, tn) are constant on
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each element [xi−1, xi] for i 6= j1, j2, but they are not constant on [xj1−1, xj1 ] and
[xj2−1, xj2 ]. Then we decompose the fourth term on the right side of (20) as

(25)

∆tn

∫ b

a

D(x)ηx(x, tn)ξx(x, tn)dx

= ∆tn

I
∑

i=1,i6=j1,j2

∫ xi

xi−1

D(x)ηx(x, tn)ξx(x, tn)dx

+∆tn
∑

i=j1,j2

∫ xi

xi−1

D(x)ηx(x, tn)ξx(x, tn)dx.

We use the interpolation property η(xi, tn) = 0 for i = 0, 1, · · · , I to obtain that
the first term on the right side vanishes directly.

Now we consider the second term on the right side of (25). ξx(x, tn) is not con-
stant on [xjk−1, xjk ], but it is constant on both [xjk−1, αk] and [αk, xjk ], respectively,
for k = 1, 2. Then we use [[η]](αk, tn) = 0, [[Dξx]](αk, tn) = 0, and η(xi, tn) = 0 for
i = jk − 1, jk to get

∫ αk

xjk−1

D(α−
k )ηx(x, tn)ξx(x, tn)dx

+

∫ xjk

αk

D(α+
k )ηx(x, tn)ξx(x, tn)dx = 0.

Therefore,

∫ xjk

xjk−1

D(x)ηx(x, tn)ξx(x, tn)dx = 0.

We bound the fifth term on the right-hand side of (20) by

∣

∣

∣

∫ b

a

∫ tn

tn−1

[

(D ux)(x, tn)− (D ux)(r(t;x, tn), t)
]

dt ξx(x, tn)dx
∣

∣

∣

=
∣

∣

∣

∫ b

a

ξx(x, tn)
[

∫ tn

tn−1

∫ tn

t

d

dθ
(D ux)(r(θ;x, tn), θ)dθdt

]

dx

≤ ε∆tn

∫ b

a

D(x, tn)ξ
2
x(x, tn)dx

+C(∆tn)
2
(∥

∥

∥

du

dt

∥

∥

∥

2

L2(tn−1,tn;H1)
+ ‖u‖2L2(tn−1,tn;H1)

)

.

We similarly bound the local truncation term E3(f, ξ) by

∣

∣E3(f, ξ)
∣

∣ ≤ C∆tn‖ξ(·, tn)‖
2

+C(∆t)2
(∥

∥

∥

df

dt

∥

∥

∥

2

L2(tn−1,tn;L2)
+ ‖f‖2L2(tn−1,tn;L2)

)

.

Using the definitions of the test function (9) and the characteristic (10), the
truncation error |E2(k, f, ξ)| can be bounded by
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∣

∣E2(k, f, ξ)
∣

∣

=

∣

∣

∣

∣

∣

∫ α̃k

αk

∫ tn

tk(x,tn)

∫ tn

t

d

dτ
f(r(τ ;x, tn), τ)dτdtξ(x, tn)dx

+

∫ tn

tn−1

∫ θ

tn−1

V

φ(α−
k )

∫ θ

t

d

dτ
f(r(τ ;αk, θ), τ)dτξ(αk , θ)dtdθ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ α̃k

αk

∫ tn

tk(x,tn)

∫ tn

t

d

dτ
f(r(τ ;x, tn), τ)dτdt ξ(x, tn)dx

+

∫ tn

tn−1

∫ θ

tn−1

V

φ(α−
k )

∫ θ

t

d

dτ
f
(

r
(

τ ;αk +
V

φ(α+
k )

(tn − θ), tn

)

, τ
)

dτ

ξ
(

αk +
V

φ(α+
k )

(tn − θ), tn

)

dtdθ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ α̃k

αk

∫ tn

tk(x,tn)

∫ tn

t

d

dτ
f(r(τ ;x, tn), τ)dτdtξ(x, tn)dx

+

∫ α̃k

αk

∫ tk(x,tn)

tn−1

∫ tk(x,tn)

t

d

dτ
f(r(τ ;x, tn), τ)dτdtξ(x, tn)dx

∣

∣

∣

∣

∣

≤ C∆tn‖ξ(·, tn)‖
2 + C(∆t)2

(∥

∥

∥

df

dt

∥

∥

∥

2

L2(tn−1,tn;L2)
+ ‖f‖2L2(tn−1,tn;L2)

)

.

We combine the preceding estimates to get

‖ξ(·, tn)‖
2
L2 +∆tn

∫ b

a

D(x)ξ2x(x, tn)dx

≤
1 + C∆tn

2
(‖ξ(·, tn)‖

2
L2 + ‖ξ(·, tn−1)‖

2
L2) + ε∆tn

∫ b

a

D(x)ξ2x(x, tn)dx

+C(∆tn)
2
(∥

∥

∥

du

dt

∥

∥

∥

2

L2(tn−1,tn;H1)
+ ‖u‖2L2(tn−1,tn;H1) +

∥

∥

∥

df

dt

∥

∥

∥

2

L2(tn−1,tn;L2)

+‖f‖2L2(tn−1,tn;L2)

)

+ Ch4(‖u‖2H1(tn−1,tn;H2) +∆tn‖u‖
2
L∞(0,T ;H2)).

We choose ε = 1
2 , sum the estimate for n = 1, . . . , N1(≤ N), and cancel like terms

to obtain

‖ξ(·, tN1
)‖2L2 +

N1
∑

n=1

∆tn

∫ b

a

D(x)ξ2x(x, tn)dx

≤ C

N1−1
∑

n=0

∆tn‖ξ(·, tn)‖
2
L2 + C(∆t)2

(∥

∥

∥

du

dt

∥

∥

∥

2

L2(0,T ;H1)
+ ‖u‖2L2(0,T ;H1)

+
∥

∥

∥

df

dt

∥

∥

∥

2

L2(0,T ;L2)
+ ‖f‖2L2(0,T ;L2)

)

+ Ch4
(

‖u‖2L∞(0,T ;H2) + ‖u‖2H1(0,T ;H2)

)

.

We apply Gronwall inequality to conclude

‖ξ‖L∞(0,T ;L2) ≤ C∆t
(
∥

∥

∥

du

dt

∥

∥

∥

L2(0,T ;H1)
+ ‖u‖L2(0,T ;H1) +

∥

∥

∥

df

dt

∥

∥

∥

L2(0,T ;L2)

+‖f‖L2(0,T ;L2)

)

+ Ch2
(

‖u‖L∞(0,T ;H2) + ‖u‖H1(0,T ;H2)

)

.

We combine this estimate with (6) to finish the proof. �
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5. Concluding Remark

In this paper we combine the immersed finite element method with the Eulerian-
Lagrangian localized adjoint method to develop an immersed Eulerian-Lagrangian
localized adjoint method (ImELLAM) for transient advection-diffusion equations
with interfaces. This type of problems arises, e.g., in matheamtical and numerical
modeling of subsurface flow and transport in fractured media. In practice, there are
often too many fractures and faults of intermediate size to align the computational
meshes with. On the other hand, these faults and fractures are often too large to
be upscaled into the numerical model. The ImELLAM scheme developed in this
paper provides a feasible solution technique for effectively simulating subsurface
flow and transport in porous media with faults and fractures of intermediate size.
The derived method possesses the combined advantages of the immersed finite
element method and the Eulerian-Lagrangian method. The underlying Eulerian-
Lagrangian framework is well suited for handling the Lagrangian nature of the
transport problem, while the incorporation of the immersed finite element method
in the method allows the method to effectively treat the physical interfaces.

The analysis of the ImELLAM scheme presents additional numerical difficulties
to the already very technical analysis of Eulerian-Lagrangian methods [5, 18, 19]
due to the introduction of the immerse finite element basis functions. Here the
analysis technique of immerse finite element methods [8, 9, 10] has been utilized to
aid the proof of the main theorem in this paper. The numerical implementation
of ImELLAM scheme is also an important issue which is based upon the already
very technical implementation of immersed finite element methods and Eulerian-
Lagrangian methods. The numerical implementation of the ImELLAM scheme
will be conducted in the near future and corresponding numerical results will be
presented elsewhere.
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