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Abstract. This paper is concerned with the development of an efficient algorithm for
the analytic solutions of nonlinear fractional differential equations. The proposed algo-
rithm Laplace homotopy analysis method (LHAM) is a combined form of the Laplace
transform method with the homotopy analysis method. The biggest advantage the
LHAM has over the existing standard analytical techniques is that it overcomes the
difficulty arising in calculating complicated terms. Moreover, the solution procedure
is easier, more effective and straightforward. Numerical examples are examined to
demonstrate the accuracy and efficiency of the proposed algorithm.
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1 Introduction

Fractional calculus is an emerging field and over the last decades it has represented an al-
ternative tool to solve several problems from various fields. Interest in the differentiation
and integration of non-integer orders dates back to the nineteenth century. Nowadays,
fractional calculus is used to model various phenomena in physics, materials science,
control theory, polymer modelling and engineering, such as the rheological behavior of
viscoelastic materials, heat transfer and diffusion [1, 2].

The increasing use of fractional differential equations in mathematical models mo-
tivates the desire to develop good quality numerical and analytical methods for their
solution. Most nonlinear fractional differential equations do not have exact analytic so-
lutions; therefore, approximation and analytical techniques must be used.

∗Corresponding author.
Email: awawdeh@hu.edu.jo (F. Awawdeh), abbasbandy@yahoo.com (S. Abbasbandy)

http://www.global-sci.org/aamm 222 c©2013 Global Science Press



F. Awawdeh and S. Abbasbandy / Adv. Appl. Math. Mech., 5 (2013), pp. 222-234 223

The variational iteration method (VIM) [3, 4], Adomian decomposition method
(ADM) [5], homotopy perturbation method (HPM) [6] and homotopy analysis method
(HAM) [7–16] are relatively new efficient approaches to provide an analytical approxima-
tion to linear and nonlinear problems. In recent years, the application of these methods
has been extended to obtain an analytical approximate solution to differential equations
of fractional order [3, 4, 17–21].

The ADM and VIM are limited in that the former has complicated algorithms in cal-
culating Adomian polynomials for nonlinear problems, and the latter has an inherent
inaccuracy in identifying the Lagrange multiplier for fractional operators, which is nec-
essary for constructing variational iteration formula. The HPM is indeed a special case
of the homotopy analysis method [22]. However, mostly, the results given by HPM con-
verge to the corresponding numerical solutions in a rather small region. Although the
HAM provides us with a simple way to adjust and control the convergence region of
solution series by choosing a proper value for the auxiliary parameter h̄, we face the diffi-
culty in calculating complicated integrals that arise when dealing with strongly nonlinear
problems.

Therefore, in this work we will introduce a new alternative procedure to eliminate
these disadvantages in solving nonlinear fractional differential equations. The newly de-
veloped technique by no means depends on complicated tools from any field. This can
be the most important advantage over other methods. It is worth mentioning that the
proposed algorithm is an elegant combination of the Laplace transform method and the
homotopy analysis method. Some nonlinear fractional differential equations are exam-
ined to illustrate the effectiveness, accuracy and convenience of this method, and in all
cases, the presented technique performed excellently.

2 Analysis of the new algorithm

The homotopy analysis method (HAM) is a general analytic approach to get series solu-
tions of various types of nonlinear equations. The validity of the HAM is that it provides
a simple way to adjust and control the convergence of solution series and provides great
freedom to choose proper base functions to approximate a nonlinear problem. There-
fore, the HAM can overcome the foregoing restrictions and limitations of perturbation
techniques so that it provides a possibility to analyze strongly nonlinear problems.

In this section, we present a modified algorithm of the homotopy analysis method
with the help of Laplace transform. This algorithm can be implemented to handle, in a
realistic and efficient way, nonlinear fractional differential equations. This new modifi-
cation improves the accuracy of applying the HAM directly and facilitates the computa-
tional work.

To illustrate the basic ideas of the new algorithm, we consider the following nonlinear
differential equation of fractional order (more general form can be considered without
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loss of generality):
Dαu(t)=N (u(t))+g(t), t>0, (2.1)

with the initial conditions

u(k)(0)= ck, k=0,1,2,··· ,n−1, (2.2)

where n is an integer that satisfies n−1< α≤ n, N is a nonlinear operator which might
include other fractional derivatives of order less than α, g(t) is a known analytic func-
tion and Dα is the Caputo fractional derivative of order α. For details about fractional
derivatives in the Caputo sense see [2].

To solve the nonlinear fractional differential Eq. (2.1) by using the Laplace transform
method, we recall that Laplace transforms of the derivatives of u(t) are defined by

L[Dαu(t)]= sαU(s)−
n−1

∑
k=0

sα−k−1u(k)(0+).

Taking the Laplace transform of both sides of Eq. (2.1), we get:

L[Dαu(t)]=L[N (u(t))]+L[g(t)].

This can be written as

sαU(s)−
n−1

∑
k=0

sα−k−1u(k)(0+)=L[N (u(t))]+L[g(t)]

or equivalently

U(s)=
n−1

∑
k=0

s−(k+1)u(k)(0+)+
1

sα
L[N (u(t))]+

1

sα
L[g(t)], (2.3)

where U(s)=L[u(t)]. Applying the inverse Laplace transform to both sides of Eq. (2.3)
gives

u(t)=
n−1

∑
k=0

u(k)(0+)

k!
tk+L−1

[ 1

sα
L[g(t)]

]

+L−1
[ 1

sα
L[N (u(t))]

]

. (2.4)

The homotopy analysis method can be used to handle Eq. (2.4) and to address the non-
linear term N (u(t)). Our method based on representing the solution u(t) by an infinite
series whose components will be determined recursively.

It is reasonable to express the solution using the set of base functions
{

tk1α+k2 : k1,k2 ∈N

}

. (2.5)

In view of the homotopy technique, we can construct the following homotopy for
Eq. (2.1):

(1−q)L[φ(t;q)−u0(t)]=qh̄H(t)(Dαφ(t;q)−N (φ(t;q))−g(t)), (2.6)
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where q∈[0,1] is the embedding parameter, h̄ is a non zero auxiliary parameter, H(t) 6=0 is
an auxiliary function, u0(t) is an initial guess of u(t) and L is an auxiliary linear operator.
When q=0, Eq. (2.6) becomes

L[φ(t;0)−u0(t)]=0

and when q=1, Eq. (2.6) becomes the original nonlinear Eq. (2.1). Thus as q varies from
0 to 1, the solution φ(t;q) varies from the initial guess u0(t) to the solution u(t).

Assume that φ(t;q) is analytic in q∈[0,1] so that φ(t;q) can be expanded in Maclaurin’s
series of q as follows

φ(t;q)=u0(t)+
∞

∑
m=1

qmum(t), (2.7)

where

um(t)=
1

m!

∂mφ(t;q)

∂qm

∣

∣

∣

q=0
.

If the auxiliary linear operator L, the nonzero auxiliary parameter h̄ and the auxiliary
function H(t) are properly chosen so that the power series (2.7) of φ(t;q) converges at
q=1. Then, we have under these assumptions the so-called homotopy series solution

u(t)=
∞

∑
m=0

um(t) (2.8)

and the solution at nth-order approximation is given by

u(t)≈
n

∑
m=0

um(t).

Define the vector
~un=

{

u0(t),u1(t),··· ,un(t)
}

.

Differentiating Eq. (2.6) m times with respect to the embedding parameter q, then setting
q=0 and dividing them by m!, we obtain the high-order deformation equations

L[um(t)−χmum−1(t)]= h̄H(t)ℜm(~um−1), m≥1,

where

ℜm(~um−1)=
1

(m−1)!

∂m−1N [φ(t;q)]

∂qm−1

∣

∣

∣

q=0
(2.9)

and

χm =

{

0, m≤1,
1, m>1.

The initial guess u0(t) will be chosen so that it satisfies the ICs (2.2). Therefore, it is
reasonable that

um(0)=0 for m≥1.
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Taking H(t)=1. The auxiliary linear operator L may be defined as the identity operator
and the initial guess will be chosen as:

u0(t)=
n−1

∑
k=0

u(k)(0+)

k!
tk+L−1

[ 1

sα
L[g(t)]

]

. (2.10)

In Eq. (2.10), it is possible that the term L−1[L[g(t)]/sα ] disobey the solution expression
(2.5). In this case, since g(t) is assumed to be analytic, we expanded g(t) in Maclaurin’s
series.

Then

u1(t)=−h̄
(

L−1
[ 1

sα
L[N (u0(t))]

])

(2.11)

and for m≥2,

um(t)=(1+ h̄)um−1(t)− h̄L−1
[ 1

sα
L[ℜm(N (φ(t;q)))]

]

. (2.12)

We can summarize our LHAM algorithm as follows:

• Determine u0(t) and u1(t) using (2.10) and (2.11) respectively.

• Use u0(t) and u1(t) to determine ℜ2 according to (2.9) and then obtain u2(t) by (2.12).

• Determine ℜm, m≥3, using (2.9) and then evaluate the components um(t), m≥1, by (2.12).

• The series solution follows immediately after using (2.8).

The obtained series solution may converge to an exact solution if such a solution
exists. Otherwise, the series solution can be used for numerical purposes.

The first goal of the LHAM approach is employing the powerful homotopy analysis
method to investigate nonlinear fractional differential equations. The other goals are to
overcome the difficulty arising in calculating complicated integrals.

3 Implementation of the method

The combined Laplace transform HAM method (LHAM) for solving nonlinear fractional
differential equations is illustrated by studying the following examples:

Example 3.1 (see [3]). Consider the following nonlinear differential equation of the frac-
tional order:

Dαu(t)+eu(t)=0, 0<α≤1, (3.1)

with initial condition

u(0)=0. (3.2)
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In accordance with the proposed algorithm, we get the following recursive relations:

u0(t)=0, u1(t)=−hL−1
[ 1

sα
L[−eu0(t)]

]

=h
tα

Γ(α+1)
,

and for m≥2, we obtain

um(t)=(1+ h̄)um−1(t)+ h̄L−1
[ 1

sα
L[ℜm(e

φ)]
]

.

Note that ℜm(eφ) can be obtained recursively as follows:

ℜ0(e
φ)= eu0(t), (3.3a)

ℜm(e
φ)=

m−1

∑
k=0

(

1− k

m

)

ℜk(e
φ(t;q))ℜm−k(φ(t;q)). (3.3b)

For more details about the derivation of (3.3a), one can see [11]. Now, we can easily
obtain the components um(t). As a result, we can verify that

u2(t)=(1+ h̄)u1(t)+ h̄L−1
[ 1

sα
L
[(u0(t)2

2
+u1(t)

)

eu0(t)
]]

=h̄(1+ h̄)
tα

Γ(α+1)
+ h̄2 t2α

Γ(2α+1)

and that the solution of (3.1)-(3.2) can be given as:

u(t)= h̄(2+ h̄)
tα

Γ(α+1)
+ h̄2 t2α

Γ(2α+1)
+··· . (3.4)

We can investigate the influence of h̄ on the series solution by means of the so-called
h̄-curve. As pointed by Liao [13], the valid region of h̄ is a horizontal line segment. Ac-
cording to the h̄-curve shown in Fig. 1, we conclude that all values −0.3≤ h̄≤−0.1 are
acceptable.

At the Nth-order approximation, we have the analytic solution of (3.1)-(3.2), namely

u(t)≈ ũN(t)=
N

∑
m=0

um(t).

Fig. 2 shows the residual error for Nth-order approximation as

Residual Error≈DαũN(t)+eũN(t)

and clearly indicates that the LHAM gives rapid convergence. Moreover the best value
for h̄ is not −1.
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Figure 1: Plots for the h̄-curve for Example 3.1.
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Figure 2: The residual error for Eqs. (3.1)-(3.2) when N=15; h̄=−0.2 (···), h̄=−1 (−·−).
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Figure 3: Plots of 10 terms of the LHAM approximate solutions α=1 : h̄=−1 (···), h̄=−0.5 (−·−), h̄=−0.2
(◦◦) and the exact solution (−−−) for Example 3.1.

Fig. 3 shows the approximate solutions obtained in (3.4) using the LHAM when α=1
versus the exact solution, u(t)=−ln(1+t). Clearly, h̄=−1 is not a good choice since it
gives a solution agrees with the exact solution in a small range. You can see that h̄=−0.2
is optimal and agrees with the exact solution in a large range.
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Figure 4: Plots of 10 terms of the LHAM approximate solutions using h̄=−0.2: α=1 (−−−), α=0.75 (−·−),
α=0.5, (◦◦) and α=0.3 (···) for Example 3.1.

Fig. 4 shows the approximate solutions for (3.1)-(3.2) obtained for different values of
α=1,0.75,0.5,0.3. A comparison between the results presented in Figs. 3 and 4 indicates
that the algorithm presented in this paper can handle nonlinear differential equations of
fractional order. It is to be noted that only 10 terms of the series solution were used in
evaluating the approximate solutions given in Figs. 3 and 4.

Solution using the VIM: By applying the VIM, we get the following iteration proce-
dure:

un+1(t)=un(t)+D−α[Dαun(t)+eun(t)], (3.5)

where u0(t)=0 is assumed. Since the integration of the nonlinear term in Eq. (3.5) is not
easily evaluated, we replace the nonlinear term with a series of finite components. Under
this assumption, we have the following variational iteration formulation:

un+1(t)=un(t)−
∫ t

0

(

Dαun(x)+1+un(x)+
1

2
u2

n(x)+
1

6
u3

n(x)
)

dx.

Solution using the ADM: The ADM suggests the solution be decomposed into the infinite
series of components

u(t)=
∞

∑
n=0

un(t)

with the following recursive relation:

u0(t)=0, un+1(t)=−D−α(An(t)), N≥0,

where

A0= eu0 , A1=u1eu0 , A2=
(u2

1

2
+u2

)

eu0 , ··· .

It is to be noted that only the ten-order term of the VIM and only ten terms of the de-
composition series were used in evaluating the approximate solutions for Fig. 5. From
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Figure 5: Approximate solutions for Example 3.1, α=1, using ADM: dashes, VIM: dotted dashes, LHAM when
h̄=−0.2: circles and exact solution: solid line.

the numerical results in Fig. 5, it is easy to conclude that our approximate solution using
the LHAM is more accurate than the approximate solutions obtained using the VIM and
ADM.

Example 3.2 (see [20]). Consider the fractional Riccati equation

Dαu(t)+u2(t)=1, t>0, (3.6)

where 0<α≤1, subject to the initial condition

u(0)=0. (3.7)

In view of (2.10), we choose the initial guess

u0(t)=u(0+)+L−1
[ 1

sα
L[1]

]

=
tα

Γ(α+1)
.

Then by (2.11) we obtain

u1(t)=−h
(

L−1
[ 1

sα
L[−u0(t)

2]
])

=h
( Γ(2α+1)

Γ(α+1)2Γ(3α+1)

)

t3α

and for m≥2, we have by (2.12) that

um(t)=(1+ h̄)um−1(t)− h̄L−1
[ 1

sα
L
[

ℜm(−φ(t;q)2)
]]

=(1+ h̄)um−1(t)+ h̄L−1
[ 1

sα
L
[m−1

∑
k=0

uk(t)um−1−k(t)
]]

. (3.8)
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Figure 6: Plots of 10 terms of the LHAM approximate solutions and the exact solution for Example 3.2 when
α=1.

According to (3.8), it is easy to derive the components of the homotopy series solution by
symbolic software such as Mathematica. For example u2(t) is derived as follows:

u2(t)=(1+ h̄)u1(t)+ h̄L−1
[ 1

sα
L
[ 1

∑
k=0

uk(t)um−1−k(t)
]]

=(h̄+ h̄2)
( Γ(2α+1)

Γ(α+1)2Γ(3α+1)

)

t3α+2h̄2
( Γ(2α+1)Γ(4α+1)

Γ(α+1)3Γ(3α+1)Γ(5α+1)

)

t5α.

Therefore, the solution of problem (3.6)-(3.7) is given by:

u(t)=
tα

Γ(α+1)
+(2h̄+ h̄2)

( Γ(2α+1)

Γ(α+1)2Γ(3α+1)

)

t3α

+2h̄2
( Γ(2α+1)Γ(4α+1)

Γ(α+1)3Γ(3α+1)Γ(5α+1)

)

t5α+··· . (3.9)

Fig. 6 shows the approximate solutions obtained for problem (3.6)-(3.7) using the LHAM
when α=1 versus the exact solution, u(t)=tanh(t). The value of α=1 is the only case for
which we know the exact solution and our approximate solutions are in good agreement
with the exact values. We can see that when h̄=−1, the solution (3.9) is exactly the same as
that given by the Adomian decomposition method and homotopy perturbation method.
This illustrates that the two methods are indeed special cases of the LHAM. However,
the results given by the Adomian decomposition method and homotopy perturbation
method converge to the corresponding numerical solutions in a rather small region, as
shown in Fig. 6. But, different from those two methods, the LHAM provides us with a
simple way to adjust and control the convergence region of solution series by choosing
a proper value for the auxiliary parameter h̄. Using the so-called h̄−curve, all values
−0.3≤ h̄≤−0.1 are considered optimal and lead to solutions converge in large regions.
Fig. 7 shows the approximate solutions (3.9) for different values of h̄ when α=0.75.



232 F. Awawdeh and S. Abbasbandy / Adv. Appl. Math. Mech., 5 (2013), pp. 222-234

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

h=−1
h=−0.5 h=−0.3

h=−0.2

Figure 7: Plots of 10 terms of the LHAM approximate solutions for Example 3.2 when α=0.75.

Example 3.3 (see [23]). Consider the fractional oscillation equation:

D3/2u(t)+u(t)= te−t, t>0, (3.10)

subject to the initial conditions

u(k)(0)=0, k=0,1.

The exact solution is

u(t)=
∫ t

0
G(t−x)xe−xdx, G(t)= tα−1Eα,α(−tα),

where Eα,β(z) is the so-called Mittag-Leffler function:

Eα,β(z)=
∞

∑
j=0

zj

Γ(αj+β)
, α>0, β>0.

In view of the LHAM algorithm presented in the previous section, we have that:

u0(t)=L−1
[ 1

s1.5
L[te−t]

]

, u1(t)=hL−1
[ 1

s1.5
L[u0(t)]

]

,

and for m≥2, we obtain

um(t)=(1+ h̄)um−1(t)+ h̄L−1
[ 1

s1.5
L[um−1(t)]

]

. (3.11)

With the help of the h̄-curve, we can see that h̄=−0.1 is an optimal value and the solution
corresponding to that value of h̄ is given by:

u(t)=
1√
π

( 8

15
t5/2− 32

105
t7/2+

32

315
t9/2− 304

12375
t11/2+···

)

+(−0.0360t4+0.0102t5−0.0036t6+···).
A comparison of the proposed algorithm and the exact solution is shown in Fig. 8. It can
be seen that our method is in excellent agreement with the exact solution, and the error
is O(h3) when we use 20 terms of the series solution.
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Figure 8: Plots of 20 terms of the LHAM approximate solution when h̄=−0.1 (−−−) and the exact solution
(···) for Example 3.3.

4 Conclusions

In this paper, we proposed a very effective and convenient algorithm called the LHAM
to solve nonlinear fractional differential equations. The main advantage of the method
is its fast convergence to the solution. Moreover, it avoids the volume of calculations re-
quired by the other existing analytical methods. In practice, the utilization of the method
is straightforward if some symbolic software as Mathematica is used to implement the
calculations. We presented various examples to numerically determine whether the new
method leads to higher accuracy and simplicity, and in all cases the solutions obtained
are easily programmable approximants to the analytic solutions of the original problems
with the accuracy required.
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