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A POSTERIORI ERROR ESTIMATES OF hp-FEM

FOR OPTIMAL CONTROL PROBLEMS

WEI GONG, WENBIN LIU, AND NINGNING YAN

Abstract. In this paper, we investigate a posteriori error estimates of the

hp-finite element method for a distributed convex optimal control problem

governed by the elliptic partial differential equations. A family of weighted

a posteriori error estimators of residual type are formulated. Both reliability

and efficiency of the estimators are analyzed.
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1. Introduction

Finite element approximation plays an important role in the numerical methods
of optimal control problems. There have been extensive theoretical and numerical
studies for the finite element approximation of various optimal control problems.
However the literature is too huge to even give a very brief review here. In recent
years, the adaptive finite element method has been extensively investigated. Adap-
tive finite element approximation is among the most important means to boost the
accuracy and efficiency of the finite element discretizations. It ensures a higher
density of nodes in certain areas of the given domain, where the solution is more
difficult to approximate, using an a posteriori error indicator. We acknowledge the
pioneering work due to Babuška and Rheinboldt [4]. Further references can be
found in the monographs [2], [5], [31], and the references cited therein.

In the recent years, adaptive finite elements for optimal control has become a
focus of research interests. There have appeared many research papers on the adap-
tivity of various optimal control problems. For example, [6] studied the adaptive
finite element method for optimal control problems via a goal-orientated approach,
while a posteriori error estimates of residual type were derived for convex distributed
optimal control problems governed by the elliptic and the parabolic equations in
[18], [22]-[24], and for boundary control problems in [21].

To authors’ knowledge, the papers discussing the adaptive finite element meth-
ods for optimal control problems are all related to low order FEM, i.e. h-FEM.
In the adaptive h-FEM, the adaptivity is performed by mesh refinement guided by
a posteriori error estimators. There are also many high order methods, such as
spectral element methods, the p-version and the hp-version finite element methods,
which have been applied to many practical problems. Using the local refinement
of the meshes where the solution is singular and applying higher order polynomials
where the solution is smooth, the adaptive hp-version finite element method can
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achieve very high computation efficiency. There have been some extensive investi-
gations of adaptive hp-FEM for the elliptic partial differential equations (see, e.g.,
[3], [7], [10], [15], [26], [28] and [29]).

It seems to be very suitable to apply the hp finite element method to approximate
optimal control problem, see [20]. The main objective of this paper is to establish a
posteriori error estimates for the hp-version finite element approximation of a model
optimal control problem governed by the elliptic partial differential equation, which
were not available before and can be used to guide the hp-adaptivity process. In this
paper, we proved the upper and lower bounds of the a posteriori error estimates,
although there is a gap of order p2 between the lower and the upper bounds due
to the existing gap in the a posteriori estimates for the hp-adaptive finite element
approximation of the elliptic equations. We also formulate a family of a posteriori
error estimators given by weighted residuals on the elements and the edges. In our
work, we used some techniques that have been used for a posteriori error estimates of
the h-version FEM for optimal control problems (see, e.g., [22]-[24] for more details).
We also used the weighted techniques and some estimates of the hp-interpolation
of Clément-type proposed in [26], where a posteriori error estimates were obtained
for hp-FEM of the elliptic partial differential equations. In comparison with the
hp a posteriori error estimates for the elliptic equations, the main difference here
is how to handle the variational inequality in the optimality conditions as in the
h-version adaptive finite element method for optimal control. Besides different
interpolators and interpolation results that now have to be used, the variational
inequality is further different from that for the control constraint of obstacle type
in the literature, due to the different control constraint set studied in this paper.
While the existing techniques for the constraints of obstacle type can be modified
for deriving the upper bounds, the techniques are very different to derive the lower
bound here. These are studied in Lemma 5.2 where we use the inverse inequality
to estimate the lower bound for the control, and this approach has not been used
before.

The paper is organized as follows: In Section 2, we introduce the model problem
and its weak formulation, and give the hp-finite element spaces and the hp-finite
element approximation of the control problem. In Section 3, some technical lemmas
are introduced, which are used for the later a posteriori error analysis. In Section
4, an a posteriori error estimator for the control problems is provided based on
the local residual technique. It is shown that the a posteriori error estimator is
an upper bound of the error. In Section 5, it is proved that the a posteriori error
estimator provided in Section 4 is also a lower bound of the error, although there
is a gap of order p2 between the lower and the upper bounds. In the last section,
a family of weighted a posteriori error estimators are presented as the extension of
the analysis of Sections 4 and 5 using the weight function technique introduced in
[26].

2. The model problem and hp-FEM approximation

Let Ω(ΩU ) be a bounded domain in R2 with the Lipschitz boundary ∂Ω(∂ΩU ).
In this paper we adopt the standard notationWm,q(Ω) for Sobolev spaces on Ω with
norm || · ||Wm,q(Ω) and seminorm | · |Wm,q(Ω). We set Wm,q

0 (Ω) ≡ {w ∈ Wm,q(Ω) :

w|∂Ω = 0}. We denote Wm,2(Ω)(Wm,2
0 (Ω)) by Hm(Ω)(Hm

0 (Ω)). In addition, c or
C denotes a general positive constant independent of h and p.
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In this paper, we will investigate the following distributed convex optimal control
problems:

(1) min
u∈K

{

g(y) +
δ

2

∫

ΩU

u2
}

,

subject to

−div(A∇y) = f +Bu in Ω(2)

y = 0 on ∂Ω,

where g(·) is a convex functional, which is bounded below and continuously dif-
ferentiable on the observation space L2(Ω), and δ is a positive constant. We take
the state space V = H1

0 (Ω), the control space U = L2(ΩU ), the observation space
Y = L2(Ω), and H = L2(Ω). Let B be a linear continuous operator from U to H ,
and K be a closed set in the control space U . In this paper, we set

K = {u ∈ L2(ΩU ) :

∫

ΩU

u > 0}.

To consider the finite element approximation of the optimal control problem
(1)-(2), we first give a weak formula for the state equation. Let f ∈ L2(Ω), and

A(·) = (ai,j(·))n×n ∈ (W 1,∞(Ω))n×n

satisfying
XtAX > c||X ||2R2 ∀X ∈ R2.

For simplicity, we suppose in this paper that A is constant matrix. Let

a(y, w) =

∫

Ω

(A∇y) · ∇w ∀ y, w ∈ V,

(f1, f2) =

∫

Ω

f1f2 ∀ (f1, f2) ∈ H ×H,

(u, v)U =

∫

ΩU

uv ∀ (u, v) ∈ U × U.

It follows from the above assumptions on A that there exists constants c, C > 0
such that ∀ y, w ∈ V

a(y, y) > c||y||2V , |a(y, w)| 6 C||y||V ||w||V .
Then the standard weak formula for the state equation reads: find y(u) ∈ V such
that

(3) a(y(u), w) = (f +Bu,w) ∀ w ∈ H1
0 (Ω).

Therefore, the control problem (1)-(2) can be restated as

(4) min
u∈K⊂U

{

g(y) +
δ

2

∫

ΩU

u2
}

,

subject to

(5) a(y(u), w) = (f +Bu,w) ∀w ∈ V = H1
0 (Ω).

It is well known that the control problem (4)-(5) has a solution (y∗, u∗), and that a
pair (y∗, u∗) is the solution of (4)-(5) if and only if there is a co-state λ∗ ∈ V such
that the triplet (y∗, λ∗, u∗) satisfies the following optimality conditions:

a(y∗, w) = (f +Bu∗, w) ∀ w ∈ V = H1
0 (Ω),(6)

a(q, λ∗) = (g′(y∗), q) ∀ q ∈ V = H1
0 (Ω),(7)

(δu∗ +B∗λ∗, v − u∗)U > 0 ∀ v ∈ K ⊂ U = L2(ΩU ),(8)
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where B∗ is the adjoint operator of B. Just for simplicity of presentation, we still
denote (y∗, λ∗, u∗) by (y, λ, u) if there is no confusion.

Next, let us consider the hp-finite element approximation of above optimal con-
trol problem. Let Ωh(Ωh

U ) be a polygonal approximation to Ω(ΩU ) with the bound-
ary ∂Ωh(∂Ωh

U ). For simplicity, we assume that Ωh = Ω (Ωh
U = ΩU ). Let T = {τ}

(TU = {τU}) be a local quasi-uniform partitioning of Ωh(Ωh
U ) into disjoint regular

element τ(τU ), let E(T ) denote all edges, and E0(T ) denote all edges that do not lie
on the boundary ∂Ω. Each element τ(τU ) can be the image of either the reference
square τ̂ = S = (0, 1)2 or the reference triangle τ̂ = T = {(x, y) : 0 < x < 1, 0 <
y <min{x, 1 − x}} under an affine map Fτ : τ̂ → τ . We assume that hτ (hτU ) de-
note the maximum diameter of the element τ(τU ) and the triangulation is γ−shape
regular, i.e:

(9) h−1
τ ||F ′

τ ||+ hτ ||(F
′

τ )
−1|| 6 γ.

This implies that element sizes of neighboring elements are comparable.
For γ shape regular meshes T (TU ) on a domain Ω(ΩU ), we associate each element

τ ∈ T (τU ∈ TU ) with a polynomial degree pτ ∈ N0 (pτU ∈ N0) and define the
degree vector p = {pτ : τ ∈ T } (pU = {pτU : τU ∈ TU}). Then we can define the
hp-version finite element spaces Sp(T ,Ω), SpU(TU ,ΩU ), S

p
0 (T ,Ω) as following

Sp(T ,Ω) := {u ∈ H1(Ω) : u|τ ◦ Fτ ∈ Πpτ
(τ̂ )},

SpU(TU ,ΩU ) := {u ∈ L2(ΩU ) : u|τU ◦ FτU ∈ ΠpτU
(τ̂U )},

Sp
0 (T ,Ω) := Sp(T ,Ω) ∩H1

0 (Ω),

Πp(τ̂ ) :=

{

Qp if τ̂ = S
Pp if τ̂ = T

,

where S and T are the reference square and the reference triangle defined above,
Pp and Qp denote the polynomial spaces with polynomials of total degree no more
than p and polynomials of degree no more than p in each variable, respectively.

Note that associated with T is a finite dimensional subspace Sp(T ,Ω) of C(Ωh
)

and associated with TU is a finite dimensional subspace SpU(TU ,ΩU ) of L2(Ωh
U ).

As to polynomial degree distribution p(pU), similar to (9), we assume that the
polynomial degrees of neighboring elements are comparable, i.e., there is a constant
γ > 0 such that

(10) γ−1(pτ + 1) 6 pτ ′ + 1 6 γ(pτ + 1) ∀τ, τ ′ ∈ T , τ̄ ∩ τ̄ ′ 6= ∅,

and

(11) γ−1(pτU + 1) 6 pτ ′

U
+ 1 6 γ(pτU + 1) ∀τU , τ ′U ∈ TU , τ̄U ∩ τ̄ ′U 6= ∅.

Let Kh,pU = K ∩ SpU(TU ,ΩU ) be the finite element space for the control, and
Sp
0 (T ,Ω) be the finite element space for the state and costate. Then the hp-FEM

approximation to (4)-(5) reads

(12) min
uhp∈Kh,pU

{

g(yhp) +
δ

2

∫

ΩU

u2hp

}

,

subject to

(13) a(yhp, w) = (f +Buhp, w) ∀w ∈ Sp
0 (T ,Ω).
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Again, it can be proved that (12)-(13) are equivalent to the discrete optimality
conditions: Find (yhp, λhp, uhp) ∈ Sp

0 (T ,Ω)× Sp
0 (T ,Ω)×Kh,pU such that

a(yhp, w) = (f +Buhp, w) ∀ w ∈ Sp
0 (T ,Ω),(14)

a(q, λhp) = (g′(yhp), q) ∀ q ∈ Sp
0 (T ,Ω),(15)

(δuhp +B∗λhp, v − uhp)U > 0 ∀ v ∈ Kh,pU .(16)

3. Some preliminary lemmas

We first derive a relationship between the control u and the costate λ. For the
control set considered in this paper:

K = {u ∈ L2(ΩU ) :

∫

ΩU

u > 0},

it is a matter of calculation to show that the control u and the costate λ have the
following relationship (see, e.g., [12]):

u =
1

δ
max{0, λ̂} − 1

δ
B∗λ,(17)

where λ̂ =

∫
ΩU

B∗λ
∫
ΩU

1
.

Let y(u) and yhp(uhp) be the solutions of (6) and (14), respectively. Denote

J(u) = g(y(u)) +
δ

2

∫

ΩU

u2, Jhp(uhp) = g(yhp(uhp)) +
δ

2

∫

ΩU

u2hp.

Then the reduced problems of (4) and (12) read

(18) min
u∈K

{J(u)},

and

(19) min
uhp∈Kh,pU

{Jhp(uhp)}.

Moreover, we have that

(J ′(u), v)U = (δu+B∗λ, v)U ,

(J ′
hp(uhp), v)U = (δuhp +B∗λhp, v)U ,

(J ′(uhp), v)U = (δuhp +B∗λ(uhp), v)U ,

where λ(uhp) is the solution of the following auxiliary equation:

a(y(uhp), w) = (f +Buhp, w) ∀ w ∈ V = H1
0 (Ω),(20)

a(q, λ(uhp)) = (g′(y(uhp)), q) ∀ q ∈ V = H1
0 (Ω).(21)

For the functional J(·) defined above, we show in the following lemma that it is
uniformly convex if g is convex.

Lemma 3.1. Let J be defined above and g be convex. Then we have the
following uniformly convex property: ∀w, v ∈ U

(22) (J ′(w)− J ′(v), w − v)U > δ‖w − v‖2L2(ΩU ).

Proof. Note that

J ′(w)(w − v) = (δw,w − v)U + (B∗λ(w), w − v)U .

It follows from (6) and (7) that

(B∗λ(w), w − v)U = (λ(w), B(w − v))
= a(y(w) − y(v), λ(w))
= (g′(y(w)), y(w) − y(v)).
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Similarly

(B∗λ(v), w − v)U = (g′(y(v)), y(w) − y(v)).

Note that g is convex. Then for all w, v ∈ U ,

(J ′(w)− J ′(v), w − v)U = (δw − δv, w − v)U + (B∗λ(w) −B∗λ(v), w − v)U
= δ(w − v, w − v)U + (g′(y(w)) − g′(y(v)), y(w) − y(v))
> δ(w − v, w − v)U + 0 = δ‖w − v‖2L2(ΩU ).

This completes the proof. �

In the followings, we state two lemmas, which generalize the well-known Clément-
type interpolation operators studied in [9] and [30] to the hp context. The readers
can refer to [25] for the details. The two operators both provide piecewise polyno-
mial approximations for H1 functions. However, the second operator can preserve
the homogenous boundary conditions.

Lemma 3.2. (Clément type quasi-interpolation). Let TU be a γ-shape regular
triangulation (see (9)) of a domain ΩU ⊂ R2 and let pU be a polynomial degree
distribution which is comparable (see (10)). Then there exists a bounded linear
operator Π : L1(ΩU ) → SpU(TU ,ΩU ), and there exists a constant C > 0, which
depends only on γ, such that for every u ∈ H1(ΩU ) and all elements τU ∈ TU and
all edges eU ∈ E(TU ),

‖u−Πu‖L2(τU ) +
hτU
pτU

‖∇(u−Πu)‖L2(τU ) 6 C
hτU
pτU

‖∇u‖L2(ωτU
),(23)

‖u−Πu‖L2(eU ) 6 C

√

heU
peU

‖∇u‖L2(ωeU
),(24)

where heU is the length of the edge eU and peU =max(pτ1, pτ2), where τ1, τ2 are
elements sharing the edge eU , ωτU , ωeU are patches covering τU and eU with a few
layers, respectively. We refer to [25] for more details on ωτU and ωeU .

Lemma 3.3. (Scott-Zhang type quasi-interpolation). Let T be a γ-shape reg-
ular triangulation (see (9)) of a domain Ω ⊂ R2 and let p be a polynomial degree
distribution which is comparable (see (10)). Then there exists a linear operator
I : H1

0 (Ω) → Sp
0 (T ,Ω), and there exists a constant C > 0, which depends only on

γ, such that for every u ∈ H1
0 (Ω) and all elements τ ∈ T and all edges e ∈ E(T ),

‖u− Iu‖L2(τ) +
hτ
pτ

‖∇(u− Iu)‖L2(τ) 6 C
hτ
pτ

‖∇u‖L2(ωτ ),(25)

‖u− Iu‖L2(e) 6 C

√

he
pe

‖∇u‖L2(ωe),(26)

again, where he is the length of the edge e and pe =max(pτ1 , pτ2), where τ1, τ2 are
elements sharing the edge e, ωτ , ωe are patches covering τ and e with a few layers,
respectively.

Analysis of the hp a posteriori error estimators requires polynomial inverse esti-
mates in weighted Sobolev spaces. Under this consideration, the weight functions:
Φτ̂ (x) :=dist(x, ∂τ̂ ) on the reference element τ̂ should be introduced (see [26] for
more details). For an arbitrary element τ ∈ T , set Φτ = cτΦτ̂ ◦ F−1

τ , where cτ is
a scaling factor which is chosen such that

∫

τ Φτdxdy=meas(τ). Similarly, one can
define the weight function Φê(x) := x(1 − x) on the reference interval ê = (0, 1).
For an interior edge e, the weight function Φe is then defined by Φe = ceΦê ◦ F−1

τ ,
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where ce is chosen such that
∫

e
Φeds=meas(e). For the above weighted Sobolev

spaces, we have the following lemmas (see [26] for more details).
Lemma 3.4. Let τ̂ be the reference square S or the reference triangle T defined

in Section 2, let the weight function Φτ̂ be defined above. Let γ, β ∈ R satisfying
−1 < γ < β and δ ∈ [0, 1]. Then for all polynomial ψp ∈ Qp(Pp),

∫

τ̂

Φτ̂ |∇ψp|2dxdy 6 C1p
2

∫

τ̂

|ψp|2dxdy,(27)

∫

τ̂

(Φτ̂ )
γψ2

pdxdy 6 C2p
2(β−γ)

∫

τ̂

(Φτ̂ )
βψ2

pdxdy,(28)

∫

τ̂

(Φτ̂ )
2δ|∇ψp|2dxdy 6 C3p

2(2−δ)

∫

τ̂

(Φτ̂ )
δψ2

pdxdy,(29)

where Ci, i = 1, 2, 3, are constants, C2 is dependent on β and γ, and C3 is dependent
on δ.

Lemma 3.5. Let τ̂ be the reference square S or the reference triangle T defined
in Section 2, α ∈ (1/2, 1]. Set ê = (0, 1) × {0}. Then there exists a constant
Cα > 0, which is dependent on α, such that the followings hold. For every univariate
polynomial ψ ∈ Pp and every ǫ ∈ (0, 1] there exists an extension vê ∈ H1(τ̂ ) such
that

(i) vê|ê = ψ · Φα
ê and vê|∂τ̂\ê = 0;

(ii) ‖vê‖2L2(τ̂) 6 Cαǫ‖ψΦα/2
ê ‖2L2(ê);

(iii) ‖∇vê‖2L2(τ̂) 6 Cα(ǫp
2(2−α) + ǫ−1)‖ψΦα/2

ê ‖2L2(ê);

where Φê is the weight function defined above, and τ̂ is the reference element such
that ê ⊂ ∂τ̂ .

4. A posteriori upper error estimates

In this section, we will derive upper a posteriori error estimates of residual type.
We first define the following notations:

(30) ξ2 =
∑

τ∈T

ξ2τ =
∑

τ∈T

(ξ2Bτ
+ ξ2Eτ

),

(31) η2 =
∑

τ∈T

η2τ =
∑

τ∈T

(η2Bτ
+ η2Eτ

),

(32) ζ2 =
∑

τU∈TU

ζ2τU ,

where

ξ2Bτ
:=

h2τ
p2τ

‖g′(yhp) + div(A∗∇λhp)‖2L2(τ),(33)

ξ2Eτ
:=

∑

e⊂∂τ∩Ω

he
2pe

‖[A∗∇λhp · ne]‖2L2(e),(34)

η2Bτ
:=

h2τ
p2τ

‖f +Buhp + div(A∇yhp)‖2L2(τ),(35)

η2Eτ
:=

∑

e⊂∂τ∩Ω

he
2pe

‖[A∇yhp · ne]‖2L2(e),(36)

ζ2τU :=
h2τU
p2τU

‖∇(δuhp +B∗λhp)‖2L2(τU ),(37)



A POSTERIORI ERROR ESTIMATES OF hp-FEM FOR OPTIMAL CONTROL PROBLEMS 55

where we denote the jump of v across the edges by [v], and ne is the unit outer
normal on e. The sum in (34) and (36) extends over all the edges of τ that do
not lie on the boundary ∂Ω. Furthermore, he is the length of the edge e and
pe =max(pτ1, pτ2), where τ1, τ2 are the two elements sharing a edge e.

Using the above definitions, we have the following a posteriori error estimates.
Lemma 4.1. Let (y, λ, u) and (yhp, λhp, uhp) be the solutions of (6)-(8) and

(14)-(16), respectively. Assume that Kh,pU ⊂ K and g(·) is convex. Then we have

(38) ‖u− uhp‖2L2(ΩU ) 6 C(ζ2 + ‖λhp − λ(uhp)‖2L2(Ω)),

where ζ is defined by (32) and (37), λhp and λ(uhp) are the solutions of equations
(15) and (21), respectively.

Proof. It follows from Lemma 3.1 and (8), (16) that

c‖u− uhp‖2L2(ΩU ) 6 (J ′(u), u− uhp)U − (J ′(uhp), u− uhp)U

6 −(J ′(uhp), u − uhp)U

= (J ′
hp(uhp), uhp − u)U + (J ′

hp(uhp)− J ′(uhp), u− uhp)U(39)

6 inf
v∈Kh,pU

(J ′
hp(uhp), v − u)U + (J ′

hp(uhp)− J ′(uhp), u− uhp)U .

Note that

(J ′
hp(uhp), v − u)U = (δuhp +B∗λhp, v − u)U .

Let v = πpU
u be the L2-projection of u in SpU(TU ,ΩU ), and Π be the Clément-type

interpolator defined in Lemma 3.2. Then we have

(δuhp +B∗λhp, πpU
u− u)U

=
∑

τU

∫

τU

(δuhp +B∗λhp)(πpU
u− u)

=
∑

τU

∫

τU

(δuhp +B∗λhp −Π(δuhp +B∗λhp))(πpU
u− u).

Since πpU
uhp = uhp, it follows from Lemma 3.2 that

(J ′
hp(uhp), πpU

u− u)U

=
∑

τU

∫

τU

(δuhp +B∗λhp −Π(δuhp +B∗λhp))(πpU
(u − uhp)− (u − uhp))

6 C
∑

τU

‖δuhp +B∗λhp −Π(δuhp +B∗λhp)‖L2(τU )

‖πpU
(u− uhp)− (u− uhp)‖L2(τU )

6 C
∑

τU

hτU
pτU

‖∇(δuhp +B∗λhp)‖L2(ωτU
)‖u− uhp‖L2(τU )(40)

6 C(σ)
∑

τU

h2τU
p2τU

‖∇(δuhp +B∗λhp)‖2L2(τU ) + Cσ‖u− uhp‖2L2(ΩU ),

where σ is an arbitrary small positive number. Moreover, it is easy to show that

(J ′
hp(uhp)− J ′(uhp), u − uhp)U = (δuhp +B∗λhp, u− uhp)U

−(δuhp +B∗λ(uhp), u− uhp)U

= (B∗(λhp − λ(uhp)), u − uhp)U(41)

6 C(σ)‖λhp − λ(uhp)‖2L2(Ω) + Cσ‖u− uhp‖2L2(ΩU ).



56 W. GONG, W. LIU, AND N. YAN

Note that πpU
u ∈ Kh,pU . Then (38) follows from (39)-(41) by setting σ to be small

enough. �

It follows from Lemma 4.1 that in order to obtain a posteriori error estimates
we only need to estimate ‖λhp − λ(uhp)‖2L2(Ω).

Theorem 4.2. Let (y, λ, u) and (yhp, λhp, uhp) be the solutions of (6)-(8) and
(14)-(16). Assume that all the conditions in Lemma 4.1 are valid. Moreover suppose
g(·) is Lipschitz continuous. Then there exists a C > 0 independent of h and p such
that

(42) ‖u− uhp‖2L2(ΩU ) + ‖y − yhp‖2H1(Ω) + ‖λ− λhp‖2H1(Ω) 6 C(ζ2 + ξ2 + η2),

where ζ, ξ and η are defined by (30)-(37).

Proof. Let eλ = λ(uhp) − λhp, and e
λ
I = Ieλ, where I : H1

0 (Ω) → Sp
0 (T ,Ω) is the

Scott-Zhang type interpolator defined in Lemma 3.3. Note that eλI ∈ Sp
0 (T ,Ω).

Applying the standard residual techniques (see, e.g., [31]) and using equations (15)
and (21), we have

c‖λ(uhp)− λhp‖2H1(Ω)

6 a(eλ, eλ) = (g′(y(uhp)), e
λ)− a(eλ, λhp)

= (g′(y(uhp)), e
λ)− a(eλ − eλI , λhp)− (g′(yhp), e

λ
I )

=
∑

τ∈T

∫

τ

(g′(yhp) + div(A∗∇λhp))(eλ − eλI )

−
∑

e∈E0(T )

∫

e

[A∗∇λhp · ne](e
λ − eλI ) + (g′(y(uhp))− g′(yhp), e

λ)

6 C
∑

τ∈T

‖g′(yhp) + div(A∗∇λhp)‖L2(τ)‖eλ − eλI ‖L2(τ)(43)

+C
∑

e∈E0(T )

‖[A∗∇λhp · ne]‖L2(e)‖eλ − eλI ‖L2(e)

+C‖g′(y(uhp))− g′(yhp)‖L2(Ω)‖eλ‖L2(Ω).

Then it follows from Lemma 3.3 that

c‖λ(uhp)− λhp‖2H1(Ω)

6 C
∑

τ∈T

hτ
pτ

‖g′(yhp) + div(A∗∇λhp)‖L2(τ)‖∇eλ‖L2(ωτ )

+C
∑

e∈E0(T )

√
he√
pe

‖[A∗∇λhp · ne]‖L2(e)‖∇eλ‖L2(ωe)(44)

+C‖y(uhp)− yhp‖L2(Ω)‖eλ‖L2(Ω)

6 C(σ)
∑

τ∈T

(ξ2Bτ
+ ξ2Eτ

) + C(σ)‖y(uhp)− yhp‖2L2(Ω) + σ‖eλ‖2H1(Ω).

Setting σ = c
2 , we have

(45) ‖λ(uhp)− λhp‖2H1(Ω) 6 C
∑

τ∈T

(ξ2Bτ
+ ξ2Eτ

) + C‖y(uhp)− yhp‖2L2(Ω).



A POSTERIORI ERROR ESTIMATES OF hp-FEM FOR OPTIMAL CONTROL PROBLEMS 57

Similarly, let ey = y(uhp) − yhp and eyI be the Scott-Zhang interpolation of ey

defined in Lemma 3.3. We have

c‖y(uhp)− yhp‖2H1(Ω) 6 a(ey, ey) = a(ey, ey − eyI)

=
∑

τ∈T

∫

τ

(f +Buhp + div(A∇yhp))(ey − eyI)

−
∑

e∈E0(T )

∫

e

[A∇yhp · ne](e
y − eyI )

6 C
∑

τ∈T

hτ
pτ

‖f +Buhp + div(A∇yhp)‖L2(τ)‖∇ey‖L2(ωτ )

+C
∑

e∈E0(T )

√
he√
pe

‖[A∇yhp · ne]‖L2(e)‖∇ey‖L2(ωe)

6 C(σ)
∑

τ∈T

(η2Bτ
+ η2Eτ

) + σ‖ey‖2H1(Ω),

which implies

(46) ‖y(uhp)− yhp‖2H1(Ω) 6 C
∑

τ∈T

(η2Bτ
+ η2Eτ

).

Hence, it follows from (45), (46) and Lemma 4.1 that

(47) ‖u−uhp‖2L2(ΩU )+‖y(uhp)−yhp‖2H1(Ω)+‖λ(uhp)−λhp‖2H1(Ω) 6 C(ζ2+ξ2+η2).

Note that

(48) ‖y − yhp‖H1(Ω) 6 ‖y(uhp)− yhp‖H1(Ω) + ‖y − y(uhp)‖H1(Ω),

(49) ‖λ− λhp‖H1(Ω) 6 ‖λ(uhp)− λhp‖H1(Ω) + ‖λ− λ(uhp)‖H1(Ω),

and

(50) ‖y − y(uhp)‖2H1(Ω) + ‖λ− λ(uhp)‖2H1(Ω) 6 C‖u− uhp‖2L2(ΩU ).

Therefore, (42) follows from (47)-(50). �

5. A posteriori lower error estimates

In this section, we discuss lower a posteriori bounds, i.e., the efficiency of the
error estimates provided in Theorem 4.2. As pointed in [26], we cannot obtain
equivalent a posteriori error estimates for hp-FEM of optimal control problems
using the current techniques. Thus there exists a gap of the order p2 between the
lower and upper bounds in our estimates as in the case of the hp-adaptive finite
element approximation of elliptic equations.

Firstly, we estimate the residual ξBτ
and ηBτ

.
Lemma 5.1. Let (y, λ, u) and (yhp, λhp, uhp) be the solutions of (6)-(8) and

(10)-(12) respectively. Let ξBτ
and ηBτ

be defined by (33) and (35), respectively.
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Assume that g(·) is Lipschitz continuous. Then

ξ2Bτ
6 Cp2τ‖λ− λhp‖2H1(τ) + Cp2ατ

h2τ
p2τ

(

‖y − yhp‖2L2(τ)

+‖πpτ
(g′(yhp))− g′(yhp)‖2L2(τ)

)

,(51)

η2Bτ
6 Cp2τ‖y − yhp‖2H1(τ) + Cp2ατ

h2τ
p2τ

(

‖B(u− uhp)‖2L2(τ)

+‖πpτ
f − f‖2L2(τ) + ‖πpτ

(Bu)−Bu‖2L2(τ)

)

,(52)

where πpτ
is the L2-project operator on the space of polynomials of degree pτ on

the element τ , 1
2 < α 6 1, and the constant C depends on α.

Proof. Let Φτ be the weight function defined before Lemma 3.4 in Section 3. Define
wτ = (πpτ

g′(yhp) + div(A∗∇λhp))Φα
τ ,

1
2 < α 6 1. Using the trivial extension by

zero on Ω \ τ , we have

‖wτΦ
−α

2
τ ‖2L2(τ)

=

∫

τ

(πpτ
(g′(yhp)) + div(A∗∇λhp))wτdxdy

=

∫

τ

(g′(y) + div(A∗∇λhp))wτdxdy +

∫

τ

(g′(yhp)− g′(y))wτdxdy

+

∫

τ

(πpτ
(g′(yhp))− g′(yhp))wτdxdy

= a(wτ , λ− λhp) +

∫

τ

(g′(yhp)− g′(y))wτdxdy(53)

+

∫

τ

(πpτ
(g′(yhp))− g′(yhp))wτdxdy

6 C‖λ− λhp‖H1(τ)|wτ |H1(τ) + ‖(g′(yhp)− g′(y))Φ
α
2
τ ‖L2(τ)‖wτΦ

−α
2

τ ‖L2(τ)

+‖(πpτ
(g′(yhp))− g′(yhp))Φ

α
2
τ ‖L2(τ)‖wτΦ

−α
2

τ ‖L2(τ).

Then we should estimate wτ with H1−seminorm. Using the inverse estimates (28)-
(29) with β = α, γ = 2(α− 1) (note that we have γ = 2(α− 1) > −1 when α > 1

2 ),
δ = α, and a suitable transformation from the reference element τ̂ to τ , we have
that

|wτ |2H1(τ) 6 C

∫

τ

Φ2α
τ |∇(πpτ

g′(yhp) + div(A∗∇λhp))|2dxdy

+C

∫

τ

(πpτ
g′(yhp) + div(A∗∇λhp))2|∇Φα

τ |2dxdy

6 C
p
2(2−α)
τ

h2τ

∫

τ

Φα
τ (πpτ

g′(yhp) + div(A∗∇λhp))2dxdy

+
C

h2τ

∫

τ

Φ2(α−1)
τ (πpτ

g′(yhp) + div(A∗∇λhp))2dxdy(54)

6 Cp2(1−α)
τ

p2τ
h2τ

∫

τ

Φα
τ (πpτ

g′(yhp) + div(A∗∇λhp))2dxdy

= Cp2(1−α)
τ

p2τ
h2τ

‖wτΦ
−α

2
τ ‖2L2(τ).
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Therefore it follows from (53) and (54) that

‖wτΦ
−α

2
τ ‖L2(τ)

6 C(p1−α
τ

pτ
hτ

‖λ− λhp‖H1(τ) + ‖(g′(yhp)− g′(y))Φ
α
2
τ ‖L2(τ)

+‖(πpτ
(g′(yhp))− g′(yhp))Φ

α
2
τ ‖L2(τ))(55)

6 C(
p2−α
τ

hτ
‖λ− λhp‖H1(τ) + ‖y − yhp‖L2(τ) + ‖πpτ

(g′(yhp))− g′(yhp)‖L2(τ)).

Furthermore, it follows from (55) and (28) with β = α and α = 0 that

‖πpτ
(g′(yhp)) + div(A∗∇λhp)‖L2(τ)

6 Cpατ ‖(πpτ
(g′(yhp)) + div(A∗∇λhp))Φ

α
2
τ ‖L2(τ) = Cpατ ‖wτΦ

−α
2

τ ‖L2(τ)

6 Cpατ (
p2−α
τ

hτ
‖λ− λhp‖H1(τ) + ‖y − yhp‖L2(τ) + ‖πpτ

(g′(yhp))− g′(yhp)‖L2(τ)).

Thus

ξ2Bτ
=

h2τ
p2τ

‖g′(yhp) + div(A∗∇λhp)‖2L2(τ)

6 C
h2τ
p2τ

‖πpτ
(g′(yhp)) + div(A∗∇λhp)‖2L2(τ) + C

h2τ
p2τ

‖πpτ
(g′(yhp))− g′(yhp)‖2L2(τ)

6 Cp2τ‖λ− λhp‖2H1(τ) + Cp2ατ
h2τ
p2τ

(‖y − yhp‖2L2(τ) + ‖πpτ
g′(yhp)− g′(yhp)‖2L2(τ)).

This proves (51).
Similarly, we define vτ = (πpτ

f + πpτ
(Buhp) + div(A∇yhp))Φα

τ . Then again we
have that

|vτ |2H1(τ) 6 Cp2(1−α)
τ

p2τ
h2τ

∫

τ

Φα
τ (πpτ

f + πpτ
(Buhp) + div(A∇yhp))2dxdy

= Cp2(1−α)
τ

p2τ
h2τ

‖vτΦ−α
2

τ ‖2L2(τ).

Therefore,

‖vτΦ−α
2

τ ‖2L2(τ) =

∫

τ

(πpτ
f + πpτ

(Buhp) + div(A∇yhp))vτdxdy

= a(y − yhp, vτ ) +

∫

τ

(πpτ
f − f)vτdxdy

+

∫

τ

(πpτ
(Buhp)− πpτ

(Bu))vτdxdy +

∫

τ

(πpτ
(Bu)−Bu)vτdxdy

6 C‖y − yhp‖H1(τ)|vτ |H1(τ) + ‖(πpτ
f − f)Φ

α
2
τ ‖L2(τ)‖vτΦ−α

2
τ ‖L2(τ)

+‖πpτ
(Buhp −Bu)Φ

α
2
τ ‖L2(τ)‖vτΦ−α

2
τ ‖L2(τ)

+‖(πpτ
(Bu)−Bu)Φ

α
2
τ ‖L2(τ)‖vτΦ−α

2
τ ‖L2(τ),

and hence,

‖vτΦ−α
2

τ ‖L2(τ) 6 C

(

p2−α
τ

hτ
‖y − yhp‖H1(τ) + (‖B(u − uhp)‖L2(τ)

+‖πpτ
f − f‖L2(τ) + ‖πpτ

(Bu)−Bu‖L2(τ))

)

.(56)
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Using similar techniques for ξBτ
, it is deduced that

ηBτ
=

h2τ
p2τ

‖f +Buhp + div(A∇yhp)‖2L2(τ)

6 C
h2τ
p2τ

‖πpτ
f + πpτ

(Buhp) + div(A∗∇λhp)‖2L2(τ) + C
h2τ
p2τ

‖f − πpτ
f‖2L2(τ)

+C
h2τ
p2τ

‖Buhp − πpτ
(Buhp)‖2L2(τ)

6 C
h2τ
p2τ
p2ατ ‖vτΦ−α

2
τ ‖2L2(τ) + C

h2τ
p2τ

‖f − πpτ
f‖2L2(τ) + C

h2τ
p2τ

‖Buhp − πpτ
(Buhp)‖2L2(τ)

6 Cp2τ‖y − yhp‖2H1(τ) + Cp2ατ
h2τ
p2τ

(

‖B(u− uhp)‖2L2(τ) + ‖πpτ
f − f‖2L2(τ)

+‖πpτ
(Bu)−Bu‖2L2(τ)

)

.

Thus (52) follows, and the proof of the lemma is completed. �

Similarly we can have estimation for the residual ζτU .
Lemma 5.2. Let (y, λ, u) and (yhp, λhp, uhp) be the solutions of (6)-(8) and

(10)-(12) respectively, and ζ2τU be defined by (37). Then

ζ2τU 6 Cp2τU

(

‖u− uhp‖2L2(τU ) + ‖B∗(λ− λhp)‖2L2(τU )

+
h2τU
p2τU

(‖B∗(λhp − λ)‖2H1(τU ) + ‖πpτU
+1(B

∗λ)−B∗λ‖2H1(τU ))

)

,(57)

where πpτU
+1 is the L2-project operator on the space of polynomials of degree

pτU + 1 on the element τU .

Proof. Let ~wτU = ∇(δuhp + πpτU
+1(B

∗λhp))ΦτU . Note that (17) implies ∇(δu +

B∗λ) = 0. Then using the trivial extension by zero on ΩU\τU , we have

‖~wτUΦ
− 1

2
τU ‖2L2(τU ) =

∫

τU

∇(δuhp + πpτU
+1(B

∗λhp)) · ~wτUdxdy

=

∫

τU

∇(δuhp +B∗λhp − δu−B∗λ) · ~wτUdxdy

+

∫

τU

∇(πpτU
+1(B

∗λhp)−B∗λhp) · ~wτUdxdy

= −
∫

τU

(δuhp +B∗λhp − δu−B∗λ) · div ~wτUdxdy

+

∫

τU

∇(πpτU
+1(B

∗λhp)−B∗λhp) · ~wτUdxdy

6 C(‖B∗(λ − λhp)‖L2(τU ) + ‖u− uhp‖L2(τU ))‖div~ωτU‖L2(τU )

+C(‖∇(πpτU
+1(B

∗(λhp − λ)))Φ
1
2
τU ‖L2(τU )

+‖∇(πpτU
+1(B

∗λ)−B∗λ)Φ
1
2
τU ‖L2(τU )

+‖∇(B∗(λ− λhp))Φ
1
2
τU ‖L2(τU ))‖~wτUΦ

− 1
2

τU ‖L2(τU ).
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Using the same technique used in Lemma 5.1, we can derive that

‖div~ωτU‖L2(τU ) 6 C|~ωτU |H1(τU ) 6 C
pτU
hτU

‖~ωτUΦ
− 1

2 ‖L2(τU ),

and hence

‖~wτUΦ
− 1

2
τU ‖L2(τU ) 6 C

pτU
hτU

(‖u− uhp‖L2(τU ) + ‖B∗(λ− λhp)‖L2(τU ))

+C(‖B∗(λhp − λ)‖H1(τU ) + ‖πpτU
+1(B

∗λ) −B∗λ‖H1(τU )).(58)

Then it can be deduced from (58) that

ζτU =
h2τU
p2τU

‖∇(δuhp +B∗λhp)‖2L2(τU )

6 C
h2τU
p2τU

‖∇(δuhp + πpτU
+1(B

∗λhp))‖2L2(τU )

+C
h2τU
p2τU

‖∇(B∗λhp − πpτU
+1(B

∗λhp))‖2L2(τU )

6 C
h2τU
p2τU

p2τU ‖~wτUΦ
− 1

2
τU ‖2L2(τU ) + C

h2τU
p2τU

‖∇(B∗λhp − πpτU
+1(B

∗λhp))‖2L2(τU )

6 Cp2τU (‖u− uhp‖2L2(τU ) + ‖B∗(λ− λhp)‖2L2(τU ))

+Cp2τU
h2τU
p2τU

(‖B∗(λhp − λ)‖2H1(τU ) + ‖πpτU
+1(B

∗λ) −B∗λ‖2H1(τU )).

This proves (57). �

In order to obtain a local upper bound for the edge contribution ξEτ
, ηEτ

, we
introduce the set

ωτ =
{

∪ τ ′ : τ ′ and τ share at least one edge
}

.

Lemma 5.3. Let (y, λ, u) and (yhp, λhp, uhp) be the solutions of (6)-(8) and
(10)-(12), ξEτ

and ηEτ
be defined by (34) and (36), respectively. Then

ξ2Eτ
6 C

(

p2+2ǫ
τ ‖λ− λhp‖2H1(ωτ )

+
h2τ
p1−4ǫ
τ

‖y − yhp‖2L2(ωτ )

+
h2τ
p1−4ǫ
τ

∑

τ ′⊂ωτ

‖πpτ′
g′(yhp)− g′(yhp)‖2L2(τ ′)

)

,(59)

η2Eτ
6 C

(

p2+2ǫ
τ ‖y − yhp‖2H1(ωτ )

+
h2τ
p1−4ǫ
τ

‖B(u− uhp)‖2L2(ωτ )

+
h2τ
p1−4ǫ
τ

∑

τ ′⊂ωτ

(‖πpτ′
f − f‖2L2(τ ′) + ‖πpτ′

(Bu)−Bu‖2L2(τ ′))

)

,(60)

where πpτ
is the L2-project operator defined in Lemma 5.1, 0 < ǫ 6 1

4 is an arbitrary
small positive number, the constant C depends on ǫ.

Proof. To obtain an upper bound for the edge contribution, we will resort to weight
functions associated with the edges and a suitable extension operator. For a given
element τ with the (interior) edge e, we set τe to be the union of all the elements
sharing the edge e. We construct a function ωe ∈ H1

0 (τe) with we|e = [A∇yhp ·
ne]Φ

β
e ,

1
2 < β 6 1, such that we and [A∇yhp · ne] will be vê and ψ in Lemma 3.5
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on the reference element. Noting that ωe ∈ H1
0 (τe), we can view ωe as a function

in H1
0 (Ω) by the trivial extension. Then we have

‖[A∇yhp · ne]Φ
β
2
e ‖2L2(e) = ‖ωeΦ

− β
2

τe ‖2L2(e) =

∫

e

[A∇(yhp − y) · ne]ωeds

= a(yhp − y, ωe) +

∫

τe

(f +Bu+ div(A∇yhp))ωedxdy

6 C‖y − yhp‖H1(τe)|ωe|H1(τe)

+C‖f +Bu+ div(A∇yhp)‖L2(τe)‖ωe‖L2(τe).

Using the affine equivalence and Lemma 3.5 with α = β, we obtain the upper

bounds for |ωe|H1(τe) and ‖ωe‖L2(τe) in terms of ‖[A∇yhp · ne]Φ
β

2
e ‖L2(e):

|ωe|2H1(τe)
6 C

1

hτ
(ǫp2(2−β)

τ + ǫ−1)‖[A∇yhp · ne]Φ
β

2
e ‖2L2(e),

‖ωe‖2L2(τe)
6 Chτ ǫ‖[A∇yhp · ne]Φ

β

2
e ‖2L2(e),

where ǫ ∈ (0, 1] is an arbitrary small positive number. Summing up, we have

‖[A∇yhp · ne]Φ
β

2
e ‖L2(e) 6 C((

1

hτ
(ǫp2(2−β)

τ + ǫ−1))
1
2 ‖y − yhp‖H1(τe)

+(hτ ǫ)
1
2 ‖f +Bu+ div(A∇yhp)‖L2(τe)).

Considering (52), we sum up all the edges e ⊂ ∂τ ∩ Ω and then obtain that

∑

e⊂∂τ∩Ω

he
pe

‖[A∇yhp · ne]Φ
β

2
e ‖2L2(e)

6 C

(

1

pτ
(ǫp2(2−β)

τ + ǫ−1)‖y − yhp‖2H1(ωτ )
+ ǫpτ

h2τ
p2τ

‖f +Bu+ div(A∇yhp)‖2L2(ωτ )

)

6 C
1

pτ
(ǫp2(2−β)

τ + ǫ−1)‖y − yhp‖2H1(ωτ )
+ Cǫpτ

∑

τ ′⊂ωτ

η2Bτ′

6 C
1

pτ
(ǫp2(2−β)

τ + ǫ−1)‖y − yhp‖2H1(ωτ )
+ Cǫp3τ

∑

τ ′⊂ωτ

‖y − yhp‖2H1(τ ′)

+Cǫp1+2α
τ

h2τ
p2τ

∑

τ ′⊂ωτ

(

‖B(u− uhp)‖2L2(τ ′)

+‖πpτ′
f − f‖2L2(τ ′) + ‖πpτ′

(Bu)−Bu‖2L2(τ ′)

)

,

where ǫ is an arbitrary positive numbers, and 1
2 < α 6 1 is defined in Lemma 5.1.

Setting ǫ = 1/p2τ yields that

∑

e⊂∂τ∩Ω

he
pe

‖[A∇yhp · ne]Φ
β

2
e ‖2L2(e)

6 Cpτ‖y − yhp‖2H1(ωτ )
+ Cp2α−1

τ

h2τ
p2τ

∑

τ ′⊂ωτ

(

‖B(u− uhp)‖2L2(τ ′)

+‖πpτ′
f − f‖2L2(τ ′) + ‖πpτ′

(Bu)−Bu‖2L2(τ ′)

)

.
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Using the inverse estimate for one dimension analogue to Lemma 3.4 and setting
α = β = 1

2 + ǫ with 0 < ǫ 6 1
4 , we have that

η2Eτ
=

∑

e⊂∂τ∩Ω

he
2pe

‖[A∇yhp · ne]‖2L2(e) 6 Cp2βτ
∑

e⊂∂τ∩Ω

he
pe

‖[A∇yhp · ne]Φ
β

2
e ‖2L2(e)

6 Cp1+2β
τ ‖y − yhp‖2H1(ωτ )

+ Cp2β+2α−1
τ

h2τ
p2τ

∑

τ ′⊂ωτ

(

‖B(u− uhp)‖2L2(τ ′)

+‖πpτ′
f − f‖2L2(τ ′) + ‖πpτ′

(Bu)−Bu‖2L2(τ ′)

)

6 C

(

p2+2ǫ
τ ‖y − yhp‖2H1(ωτ )

+
h2τ
p1−4ǫ
τ

‖B(u− uhp)‖2L2(ωτ )

+
h2τ
p1−4ǫ
τ

∑

τ ′⊂ωτ

(‖πpτ′
f − f‖2L2(τ ′) + ‖πpτ′

(Bu)−Bu‖2L2(τ ′))

)

.

This proves (60). The estimate for ξEτ
(59) can be proved similarly. �

Summing up, we can obtain the following global lower estimates using Lemmas
5.1-5.3.

Theorem 5.4. Let (y, λ, u) and (yhp, λhp, uhp) be the solutions of (6)-(8) and
(10)-(12), respectively. Let ξ, η and ζ be defined by (30)-(37). Assume that all the
conditions in Lemmas 5.1-5.3 are valid. Then we have

ξ2 + η2 + ζ2 6 C
∑

τ∈T

p2+2ǫ
τ (‖λ− λhp‖2H1(ωτ )

+ ‖y − yhp‖2H1(ωτ )
+ E2

1)

+C
∑

τU∈TU

p2τU (‖u− uhp‖2L2(τU ) + ‖B∗(λ− λhp)‖2L2(τU ) + E2
2),(61)

where ξ, η and ζ are defined by (30)-(37), 0 < ǫ 6 1
4 is an arbitrary small positive

number, and

E2
1 =

∑

τ∈T

h2τ
p2τ

(‖πpτ
f − f‖2L2(τ) + ‖πpτ

g′(yhp)− g′(yhp)‖2L2(τ) + ‖πpτ
(Bu)−Bu‖2L2(τ)),

E2
2 =

∑

τU∈TU

h2τU
p2τU

‖πpτU+1
(B∗λ)−B∗λ‖2H1(τU ).
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Proof. Summing up the results in Lemmas 5.1-5.3 and setting α = 1
2 + ǫ in Lemma

5.1, we have that

ξ2 + η2 + ζ2

=
∑

τ∈T

(ξ2Bτ
+ ξ2Eτ

) +
∑

τ∈T

(η2Bτ
+ η2Eτ

) +
∑

τU∈TU

ζ2τU

6 C
∑

τ∈T

(

p2τ‖λ− λhp‖2H1(τ) +
h2τ
p1−2ǫ
τ

(‖y − yhp‖L2(τ) + ‖πpτ
g′(yhp)− g′(yhp)‖2L2(τ))

)

+C
∑

τ∈T

(

p2+2ǫ
τ ‖λ− λhp‖2H1(ωτ )

+
h2τ
p1−4ǫ
τ

‖y − yhp‖2L2(ωτ )

+
h2τ
p1−4ǫ
τ

∑

τ ′⊂ωτ

‖πpτ′
g′(yhp)− g′(yhp)‖2L2(τ ′)

)

+C
∑

τ∈T

(

p2τ‖y − yhp‖2H1(τ) +
h2τ
p1−2ǫ
τ

(‖B(u− uhp)‖2L2(τ)

+‖πpτ
f − f‖2L2(τ) + ‖πpτ

(Bu)−Bu‖2L2(τ))

)

+C
∑

τ∈T

(

p2+2ǫ
τ ‖y − yhp‖2H1(ωτ )

+
h2τ
p1−4ǫ
τ

‖B(u− uhp)‖2L2(ωτ )

+
h2τ
p1−4ǫ
τ

∑

τ ′⊂ωτ

(‖πpτ′
f − f‖2L2(τ ′) + ‖πpτ′

(Bu)−Bu‖2L2(τ ′))

)

+C
∑

τU∈TU

p2τU

(

‖u− uhp‖2L2(τU ) + ‖B∗(λ− λhp)‖2L2(τU )

+
h2τU
p2τU

(‖B∗(λhp − λ)‖2H1(τU ) + ‖πpτU
+1(B

∗λ)− B∗λ‖2H1(τU ))

)

6 C

(

∑

τ∈T

p2+2ǫ
τ (‖λ− λhp‖2H1(ωτ )

+ ‖y − yhp‖2H1(ωτ )
)

+
∑

τU∈TU

p2τU (‖u− uhp‖2L2(τU ) + ‖B∗(λ − λhp)‖2L2(τU ))

+
∑

τ∈T

p2+2ǫ
τ

h2τ
p3−2ǫ
τ

(‖B(u− uhp)‖2L2(ωτ )
+

∑

τ ′⊂ωτ

(‖πpτ′
f − f‖2L2(τ ′)

+‖πpτ′
(Bu)−Bu‖2L2(τ ′) + ‖πpτ′

g′(yhp)− g′(yhp)‖2L2(τ ′)))

+
∑

τU∈TU

p2τU
h2τU
p2τU

(‖B∗(λhp − λ)‖2H1(τU ) + ‖πpτU
+1(B

∗λ)−B∗λ‖2H1(τU ))

)

.

Noting that when 0 < ǫ 6 1
4 , we have 3− 2ǫ > 2, 3− 2ǫ− (2+2ǫ) = 1− 4ǫ > 0, and

∑

τ∈T

p2+2ǫ
τ

h2τ
p3−2ǫ
τ

‖B(u−uhp)‖2L2(ωτ )
6 C‖u−uhp‖2L2(ΩU ) 6 C

∑

τU∈TU

p2τU‖u−uhp‖2L2(τU ),

∑

τU∈TU

p2τU
h2τU
p2τU

‖B∗(λhp−λ)‖2H1(τU ) 6 C‖λhp−λ‖2H1(Ω) 6 C
∑

τ∈T

p2+2ǫ
τ ‖λ−λhp‖2H1(ωτ )

.

Then (61) is proved. �
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Remark 5.5. It follows from Theorems 4.2 and 5.4 that

‖u− uhp‖2L2(ΩU ) + ‖y − yhp‖2H1(Ω) + ‖λ− λhp‖2H1(Ω) 6 C(ζ2 + ξ2 + η2),

and

ξ2 + η2 + ζ2 6 C
∑

τ∈T

p2+2ǫ
τ (‖λ− λhp‖2H1(ωτ )

+ ‖y − yhp‖2H1(ωτ )
+ E2

1)

+C
∑

τU∈TU

p2τU (‖u− uhp‖2L2(τU ) + ‖B∗(λ− λhp)‖2L2(τU ) + E2
2),

where E1 and E2 are defined in Theorems 5.4, which are all higher order terms
under some regularity conditions. Then we obtain the a posteriori error estimates
with the upper and lower bounds, although there is a gap of order p2 between the
upper and lower bounds. In order to obtain equivalent a posteriori error estimates
for the hp-finite element method, the Jacobi-weighted Sobolev space may should
be explored (see [15]). But to our knowledge, it seems to be difficult to use the
approach in constrained optimal control problems.

6. A family of a posteriori error estimates

In this section, for each α ∈ [0, 1] we introduce a family of weighted local error
estimators ξα;τ , ηα;τ for each element τ , and ζα;τU for each element τU , as in [26].
The estimators are defined as follows:

(62) ξ2α;τ := ξ2α;Bτ
+ ξ2α;Eτ

,

(63) η2α;τ := η2α;Bτ
+ η2α;Eτ

,

and

(64) ζ2α;τU :=
h2τU
p2τU

‖∇(δuhp + πpτU
+1(B

∗λhp))Φ
α/2
τU ‖2L2(τU ),

where

ξ2α;Bτ
:=

h2τ
p2τ

‖(πpτ
g′(yhp) + div(A∗∇λhp))Φα/2

τ ‖2L2(τ),(65)

ξ2α;Eτ
:=

∑

e⊂∂τ∩Ω

he
2pe

‖[A∗∇λhp · ne]Φ
α/2
e ‖2L2(e),(66)

η2α;Bτ
:=

h2τ
p2τ

‖(πpτ
f + πpτ

(Buhp) + div(A∇yhp))Φα/2
τ ‖2L2(τ),(67)

η2α;Eτ
:=

∑

e⊂∂τ∩Ω

he
2pe

‖[A∇yhp · ne]Φ
α/2
e ‖2L2(e),(68)

where πpτ
(πpτU

+1) is the L
2(τ) (L2(τU )) projection operator on the space of poly-

nomials of degree pτ (pτU + 1), Φτ , ΦτU and Φe are the weight functions defined
before Lemma 3.4 in Section 3. Comparing with the definitions of the a posteriori
estimators defined by (30)-(37), it can be found that ξα, ηα and ζα are similar to
ξ, η and ζ when α = 0. Only differences are that g′(yhp), f , Buhp and B∗λhp, in
ξ, η and ζ are now replaced by πpτ

g′(yhp), πpτ
f , πpτ

(Buhp) and πpτU+1
(B∗λhp) in

ξ0, η0 and ζ0. As usual the global error estimators are given by the sum of their
local contributions:

(69) ξ2α =
∑

τ∈T

ξ2α;τ , η2α =
∑

τ∈T

η2α;τ , ζ2α =
∑

τU∈TU

ζ2α;τU .
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For the above weighted a posteriori error estimators, we can obtain the following
a posteriori error estimates, using the weighted technique (see [26] for more details)
and the approaches similar to those used in Sections 4 and 5. Here we only state
the results and omit their proofs.

Theorem 6.1. Let (y, λ, u) and (yhp, λhp, uhp) be the solutions of (6)-(8) and
(10)-(12), α ∈ [0, 1]. Assume that all the conditions in Theorem 4.2 are valid. Then
when h = max{hτ} and hU = max{hτU} are small enough, there exists a constant
C > 0 independent of h and p such that

‖u− uhp‖2L2(ΩU ) + ‖y − yhp‖2H1(Ω) + ‖λ− λhp‖2H1(Ω)

6 C
∑

τ∈T

(p2ατ ξ2α;τ + p2ατ η2α;τ ) + C
∑

τU∈TU

p2ατU ζ
2
α;τU + CE2,(70)

where ξα;τ , ηα;τ and ζα;τU are defined by (62)-(68),

E2 =
∑

τ∈T

h2τ
p2τ

(‖πpτ
f − f‖2L2(τ) + ‖πpτ

(Bu)−Bu‖2L2(τ)

+‖πpτ
g′(yhp)− g′(yhp)‖2L2(τ)) +

∑

τU∈TU

h2τU
p2τU

‖πpτU
+1(B

∗λ)−B∗λ‖2H1(τU ),

πpτ
and πpτU

+1 are the L2(τ)-projection operator on the space of polynomials of

degree pτ , and the L2(τU )-projection operator on the space of polynomials of degree
pτU + 1, respectively.

Theorem 6.2. Let (y, λ, u) and (yhp, λhp, uhp) be the solutions of (6)-(8) and
(10)-(12), ζ2α;τU , ξα;Bτ

, ξα;Eτ
, ηα;Bτ

and ηα;Eτ
be defined by (64)-(68), α ∈ [0, 1], and

ǫ be an arbitrary small positive number. Assume that g(·) is Lipschitz continuous.
Then there exists a constant C(ǫ) > 0, which is dependent on ǫ but independent of
h, p and τ ∈ T (τU ∈ TU ), such that

ζ2α;τU 6 C(ǫ)

(

p2(1−α)
τU (‖u− uhp‖2L2(τU ) + ‖B∗(λ− λhp)‖2L2(τU ))

+pmax{1+2ǫ−2α,0}
τU

h2τU
p2τU

(‖B∗(λhp − λ)‖2H1(τU ) + ‖πpτU
+1(B

∗λ)−B∗λ‖2H1(τU ))

)

,

ξ2α;Bτ
6 C(ǫ)

(

p2(1−α)
τ ‖λ− λhp‖2H1(τ) + pmax{1+2ǫ−2α,0}

τ

h2τ
p2τ

(‖y − yhp‖2L2(τ)

+‖πpτ
g′(yhp)− g′(yhp)‖2L2(τ))

)

,

η2α;Bτ
6 C(ǫ)

(

p2(1−α)
τ ‖y − yhp‖2H1(τ) + pmax{1+2ǫ−2α,0}

τ

h2τ
p2τ

(‖B(u − uhp)‖2L2(τ)

+‖πpτ
f − f‖2L2(τ) + ‖πpτ

(Bu)−Bu‖2L2(τ))

)

,

ξ2α;Eτ
6 C(ǫ)pmax{1+2ǫ−2α,0}

τ

(

pτ‖λ− λhp‖2H1(ωτ )
+ p2ǫτ

h2τ
p2τ

‖y − yhp‖2L2(ωτ )

+p2ǫτ
h2τ
p2τ

∑

τ ′⊂ωτ

‖πpτ′
g′(yhp)− g′(yhp)‖2L2(τ ′)

)

,
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η2α;Eτ
6 C(ǫ)pmax{1+2ǫ−2α,0}

τ

(

pτ‖y − yhp‖2H1(ωτ )
+ p2ǫτ

h2τ
p2τ

‖B(u− uhp)‖2L2(ωτ )

+p2ǫτ
h2τ
p2τ

∑

τ ′⊂ωτ

(‖πpτ′
f − f‖2L2(τ ′) + ‖πpτ′

(Bu)−Bu‖2L2(τ ′))

)

,

where πpτ
and πpτU

+1 are the L2-project operators defined in Theorem 6.

Theorem 6.3. Let (y, λ, u) and (yhp, λhp, uhp) be the solutions of (6)-(8) and
(10)-(12), respectively. Let ξα, ηα and ζα be defined by (62)-(69). Assume that all
the conditions in Lemma 5.1 are all valid. Then we have

ξ2α + η2α + ζ2α

6 C(ǫ)
∑

τ∈T

pmax{1+2ǫ−2α,0}
τ pτ (‖λ− λhp‖2H1(ωτ )

+ ‖y − yhp‖2H1(ωτ )
)(71)

+C(ǫ)
∑

τU∈TU

p2(1−α)
τU (‖u− uhp‖2L2(τU ) + ‖B∗(λ − λhp)‖2L2(τU )) + C(ǫ)E2

α,

where

E2
α =

∑

τ∈T

pmax{1+2ǫ−2α,0}
τ p2ǫτ

h2τ
p2τ

∑

τ ′⊂ωτ

(

‖πpτ′
f − f‖2L2(τ ′)

+‖πpτ′
g′(yhp)− g′(yhp)‖2L2(τ ′) + ‖πpτ′

(Bu)−Bu‖2L2(τ ′)

)

+
∑

τU∈TU

pmax{1+2ǫ−2α,0}
τU

h2τU
p2τU

‖πpτU+1
(B∗λ)− B∗λ‖2H1(τU ).

Remark 6.4. It follows from Theorems 6.1-6.3 that ξ20 + η20 + ζ20 provides an a
posteriori error upper bound, while

∑

τ∈T

(ξ21;Bτ
+ η21;Bτ

) +
∑

τ∈T

p−1
τ (ξ21

2
+ǫ;Eτ

+ η21
2
+ǫ;Eτ

) +
∑

τU∈TU

ζ21;τU

provides an a posteriori error lower bound, if the higher order terms can be ignored.
The estimator ξ2α+η

2
α+ ζ

2
α also provides an a posteriori error lower bound with the

factors p
1+max{1+2ǫ−2α,0}
τ and p

2(1−α)
τU . But as pointed in Remark 5.5, there is still

a gap between the upper and lower bounds.

7. Discussions

In this paper, we discussed a posteriori error estimates of the hp-finite element
method for distributed convex optimal control problem governed by the elliptic
partial differential equation. It is shown that the a posteriori error estimators
derived in this paper provide both upper and lower bounds for the approximation
errors, although the lower bound is suboptimal in the sense that there is a gap of
order p2 between the upper and lower bounds.

In this area there are many important issues that still need to be addressed.
For example, studies for more complicated control problems and constraint sets
are needed. Also it is interesting to explore the Jacobi-weighted Sobolev space to
improve the a posteriori error estimates of the hp-finite element method for optimal
control problems. Furthermore many computational issues have to be addressed.
For example, adaptive refinement strategy should be investigated for efficiently
implementing adaptive hp-finite element method for optimal control problems.
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