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Abstract. We study extensions of the energy and helicity preserving scheme

for the 3D Navier-Stokes equations, developed in [23], to a more general class of

problems. The scheme is studied together with stabilizations of grad-div type

in order to mitigate the effect of the Bernoulli pressure error on the velocity

error. We prove stability, convergence, discuss conservation properties, and

present numerical experiments that demonstrate the advantages of the scheme.
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1. Introduction

This paper extends the methodology of the enhanced-physics based scheme for
the 3D Navier-Stokes equations (NSE) proposed in [23] (defined in Section 2) from
its original derivation for space-periodic problems to a more general class of prob-
lems. This scheme is referred to as enhanced-physics because it is the only scheme
that conserves both discrete energy and discrete helicity for the full 3D NSE. The
key ingredient for the dual conservation scheme is using the rotational form of
the nonlinearity with a projected vorticity, which allows the discrete nonlinearity
to preserve both of the quantities. Since the (continuous) NSE nonlinearity con-
serves both energy and helicity, and jointly cascades them from the large scales
through the inertial range to small viscosity dominated scales [3, 5], if the discrete
nonlinearity does not also conserve energy and helicity it will introduce numerical
error into the cascade, and bring into question the physical relevance of computed
approximations.

It is a widely held belief in computational fluid dynamics (CFD) that the more
physically correct a numerical scheme is, the more accurate its predictions will
be, especially over long time intervals. In systems of conservation laws for fluids
there is typically a second integral invariant in addition to energy, and its accurate
treatment in a numerical scheme generally produces more accurate simulations
than do schemes that do not specifically conserve this quantity. Beginning with
Arakawa’s energy and enstrophy conserving scheme for the 2D NSE [1] and related
extensions [8], to energy and potential enstrophy schemes pioneered by Arakawa and
Lamb, and Navon, [2, 19, 20], and most recently to an energy and helicity conserving
scheme for 3D axisymmetric flow by J.-G. Liu and W. Wang [16], enhanced physics
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based schemes have provided more accurate simulations, especially over longer time
intervals.

The fundamental challenge in extending the scheme of [23] to non-periodic prob-
lems is to avoid the large errors often present when the rotational form of the
nonlinearity and the Bernoulli pressure is used. In the usual a priori error analysis
for the velocity approximation for the NSE, a consequence that the discrete diver-
gence free velocity is not exactly divergence free, is a pressure error contribution

(1.1)
C

ν
inf

qh∈Qh

‖p− qh‖

where ν = 1/Reynolds number denotes the kinematic viscosity [9, 15]. For prob-
lems whose pressure gradients are small this term is often negligible. However, using
the rotational form of the NSE, and introducing the Bernoulli pressure p + 1

2 |u|
2

can bring prominence to this term, since the gradient of the Bernoulli pressure may
be large due to boundary layers in the velocity field.

Following recent work in [14, 17, 4], a natural way to mitigate the pressure’s
error influence on the velocity approximation is to introduce grad-div stabilization.
As we show, this reduces the effect of the Bernoulli pressure error. In the interest
of physical fidelity, we also introduce a modified grad-div stabilization having the
same effect on the error, but with less impact on the energy balance. Computational
results show a slight improvement when this altered stabilization is used instead of
usual grad-div stabilization.

This paper is arranged as follows. Section 2 presents mathematical preliminaries
and notation, and defines the scheme studied in the remainder of the article. Section
3 is a study of stability and conservation laws for the scheme, and Section 4 presents
a rigorous convergence analysis. Section 5 shows a numerical example which clearly
illustrates the advantage of the scheme. Concluding remarks are given in Section
6.

2. Mathematical Preliminaries

We assume that Ω denotes a polyhedral domain in R
3. The L2(Ω) norm and

inner product are denoted by ‖·‖ and (·, ·). Likewise, the Lp(Ω) norms and the
Sobolev W k

p (Ω) norms are denoted ‖ · ‖Lp and ‖ · ‖Wk
p
, respectively. For the semi-

norm in W k
p (Ω) we use | · |Wk

p
. Hk is used to represent the Sobolev space W k

2 (Ω),

and ‖ · ‖k denotes the norm in Hk. For functions v(x, t) defined on the entire time
interval [0, T ], we define (1 ≤ m < ∞)

‖v‖∞,k := ess sup
[0,T ]

‖v(t, ·)‖k , and ‖v‖m,k :=

(

∫ T

0

‖v(t, ·)‖mk dt

)1/m

.

For the analysis in this paper, we assume no slip (i.e. homogeneous Dirichlet)
boundary conditions for velocity and therefore use as our velocity and pressure
spaces

X := (H1
0 (Ω))

d, Q := L2
0(Ω) ,

where Q is denoting the mean zero subspace of L2(Ω).
We use as the norm on X the H1 seminorm which, because of the boundary

condition, is a norm, i.e. for v ∈ X , ‖v‖X := ‖∇v‖. We denote the dual space of
X by X⋆, with the norm ‖ · ‖⋆. The space of divergence free functions is defined by

V := {v ∈ X : (∇ · v, q) = 0 ∀q ∈ Q} .
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We denote conforming velocity, pressure finite element spaces based on a regular
tetrahedralization, Th, of Ω (with maximum tetrahedron diameter h) by

Xh ⊂ X, Qh ⊂ Q.

We assume that Xh, Qh satisfy the usual inf-sup condition necessary for the sta-
bility of the pressure, i.e.

(2.1) inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)

‖qh‖ ‖vh‖X
.

Specifically, we assume that (Xh, Qh) is made of (Pk, Pk−1), k ≥ 2 velocity pressure
elements. Thus we have, for a given regular tetrahedralization Th,

Xh :=
{

vh : vh|e ∈ Pk(e), ∀e∈Th
, vh ∈ [C0(Ω)]3, vh|∂Ω = 0

}

,

Qh :=
{

qh : qh|e ∈ Pk−1(e), ∀e∈Th
, qh ∈ C0(Ω), qh ∈ L2

0(Ω)
}

.

The discretely divergence free subspace of Xh is

Vh = {vh ∈ Xh : (∇ · vh, qh) = 0 ∀qh ∈ Qh} .

We also use a more general space for the discrete vorticity space. Even though
the velocity satisfies homogeneous Dirichlet boundary conditions, it is believed to
be inappropriate to enforce homogeneous Dirichlet boundary conditions for the
vorticity. A more physically consistent boundary condition is instead a no-slip
boundary condition along the boundary, and hence we define the space

Wh :=
{

vh : vh ∈ [C0(Ω)]3, ∀e∈Th
(vh)|e ∈ Pk(e), vh × n|∂Ω = 0

}

⊃ Xh .

We use tn := n∆t, and for both continuous and discrete functions of time

vn+
1
2 :=

v((n+ 1)∆t) + v(n∆t)

2
.

2.1. Enhanced-physics based numerical schemes. We study three variations
of the enhanced-physics based scheme of [23] extended to homogeneous Dirichlet
boundary conditions for velocity. The first is a direct extension of the scheme to
homogeneous boundary conditions. The second scheme adds usual grad-div sta-
bilization (see [22]), that is, it adds the term γ(∇ · (un+1

h + un
h)/2,∇ · vh) to a

Crank-Nicolson scheme. This term is derived from adding the (identically zero)
term −γ∇(∇ · u) at the continuous level. Discretely, this term penalizes for lack of
mass conservation, and is known to reduce the effect of the pressure error on the
velocity error for large Reynolds number problems [14, 17, 22]. In finite element
computations of rotational form models the (Bernoulli) pressure error tends to be
the dominant error source because it is as complex as the velocity but is approxi-
mated with lower degree polynomials, and its effect on the velocity error is amplified
by the Reynolds number. The potential downside from using this stabilization is a
change in the energy balance. However, in practice this tradeoff is worthwhile.

In the interest of physical fidelity to the energy balance, in the third scheme we
introduce an alternative stabilization that provides the same effect on reducing the
effect of the pressure error on the velocity error, but with minimal impact on the
physical energy balance (Section 3). The added stabilization term arises by adding
the (also identically zero) term −γ∇(∇ · ut) at the continuous level, leading to the
term γ 1

∆t (∇ · (un+1
h − un

h),∇ · vh) in the FEM formulation. The computational
results (Section 5) from using this stabilization show an improvement in accuracy
over the usual grad-div stabilization for our test problem. However, we note that for
steady problems this term will not have a stabilizing effect since it will be trivially
zero.
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There has been recent work done to optimally choose the constant γ that scales
the stabilization term. Herein, we simply choose γ = 1 in the computations, which
the analysis suggests is an appropriate choice. However, one could also choose this
parameter element-wise, which would lead to better results [21]. We leave optimal
parameter choice for these schemes as an interesting topic of future study.

Algorithm 2.1 (Enhanced-physics based schemes for homogeneous Dirichlet bound-
ary conditions). Given a time step ∆t > 0, finite end time T := M∆t, and initial
velocity u0

h ∈ Vh, find w0
h ∈ Wh and λ0

h ∈ Qh satisfying ∀(χh, rh) ∈ (Wh, Qh)

(w0
h, χh) + (λ0

h,∇ · χh) = (∇× u0
h, χh),(2.2)

(∇ · w0
h, rh) = 0.(2.3)

Then for n = 0, 2, ...,M − 1, find (un+1
h , wn+1

h , pn+1
h , λn+1

h ) ∈ (Xh,Wh, Qh, Qh)
satisfying
∀(vh, χh, qh, rh) ∈ (Xh,Wh, Qh, Qh)

(
un+1
h − un

h

∆t
, vh) + STAB− (pn+1

h ,∇ · vh)

+(w
n+ 1

2

h × u
n+ 1

2

h , vh) + ν(∇u
n+ 1

2

h ,∇vh) = (f(tn+
1
2 ), vh)(2.4)

(∇ · un+1
h , qh) = 0(2.5)

(w
n+ 1

2

h , χh) + (λn+1
h ,∇ · χh) = (∇× u

n+ 1
2

h , χh)(2.6)

(∇ · w
n+ 1

2

h , rh) = 0.(2.7)

where

STAB =







0 Scheme 1

γ(∇ · u
n+ 1

2

h ,∇ · vh) Scheme 2
γ
∆t(∇ · (un+1

h − un
h),∇ · vh) Scheme 3

Remark 2.1. We have found it computationally advantageous to decouple the 4
equation system (2.4)-(2.7) into a velocity-pressure system (2.4)-(2.5) and a pro-
jection system (2.6)-(2.7), then solve (2.4)-(2.7) by iterating between the two sub-
systems. This typically requires more iterations and linear solves to converge than
solving the fully-coupled system using a Newton method. However the linear solves
are much easier in the decoupled system. Note also that for the decoupled system
the work required is only slightly more than a usual implicit Crank-Nicolson method
(i.e. without vorticity projection) since the extra work is (relatively inexpensive)
projection solves. Moreover, for nonhomogeneous boundary conditions, this decou-
pling leads to a simplified boundary condition for the vorticity: wh = Ih(∇ × uh)
on the boundary, where Ih is an appropriate interpolation operator.

3. Stability, conservation laws, and existence of solutions

In this section we prove fundamental mathematical and physical properties of
the 3 schemes: unconditional stability, solution existence and conservation laws.
We begin with stability.

Lemma 3.1. Solutions to Algorithm 2.1 are nonlinearly stable. That is, they
satisfy:
Scheme 1:

(3.1)
∥

∥uM
h

∥

∥

2
+ ν∆t

M−1
∑

n=0

∥

∥

∥
∇u

n+ 1
2

h

∥

∥

∥

2

≤
∆t

ν

M−1
∑

n=0

‖f‖
2
∗ +

∥

∥u0
h

∥

∥

2
= C(data) .
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Scheme 2:

(3.2)
∥

∥uM
h

∥

∥

2
+∆t

M−1
∑

n=0

(

2γ
∥

∥

∥
∇ · u

n+ 1
2

h

∥

∥

∥

2

+ ν
∥

∥

∥
∇u

n+ 1
2

h

∥

∥

∥

2
)

≤
∆t

ν

M−1
∑

n=0

‖f‖
2
∗ +

∥

∥u0
h

∥

∥

2
= C(data) .

Scheme 3:

∥

∥uM
h

∥

∥

2
+ γ

∥

∥∇ · uM
h

∥

∥

2
+ ν∆t

M−1
∑

n=0

∥

∥

∥
∇u

n+ 1
2

h

∥

∥

∥

2

≤
∆t

ν

M−1
∑

n=0

‖f‖
2
∗ +

∥

∥u0
h

∥

∥

2
+ γ

∥

∥∇ · u0
h

∥

∥ = C(data) .(3.3)

Schemes 1,2,3:

(3.4) ∆t
M−1
∑

n=0

∥

∥

∥
w

n+ 1
2

h

∥

∥

∥

2

≤ ∆t
M−1
∑

n=0

∥

∥

∥
∇u

n+ 1
2

h

∥

∥

∥

2

= C(data) .

Schemes 1,2,3:

(3.5) ∆t
M
∑

n=1

(

‖pnh‖
2 + ‖λn

h‖
2
)

≤ C(data) .

C(data) is a constant dependent on T, ν, γ, f, u0
h and Ω.

Proof. To prove the bounds on velocity for each of the schemes, choose vh = u
n+ 1

2

h

in (2.4). The nonlinear and pressure terms are then zero. The triangle inequality,
and summing over time steps then completes the proofs of (3.1),(3.2),(3.3).

To prove (3.4) choose χh = w
n+ 1

2

h in (2.6) and rh = λn+1
h in (2.7). After

combining the equations we obtain
∥

∥

∥
w

n+ 1
2

h

∥

∥

∥

2

= (∇× u
n+ 1

2

h , w
n+ 1

2

h ) ≤
∥

∥

∥
∇× u

n+ 1
2

h

∥

∥

∥

∥

∥

∥
w

n+ 1
2

h

∥

∥

∥

≤
1

2

∥

∥

∥
∇× u

n+ 1
2

h

∥

∥

∥

2

+
1

2

∥

∥

∥
w

n+ 1
2

h

∥

∥

∥

2

≤
∥

∥

∥
∇u

n+ 1
2

h

∥

∥

∥

2

+
1

2

∥

∥

∥
w

n+ 1
2

h

∥

∥

∥

2

.

Rearranging, and summing over time steps we obtain (3.4).
To obtain the stated bound for λn

h , we begin with the inf-sup condition satisfied
by Xh (⊂ Wh) and Qh and use (2.6) to obtain

‖λn
h‖ ≤

1

β
sup

χh∈Xh

(λn
h ,∇ · χh)

‖χh‖X
≤

1

β
sup

χh∈Xh

(∇× u
n− 1

2

h , χh)− (w
n− 1

2

h , χh)

‖χh‖X

≤
1

β

(

‖∇× u
n− 1

2

h ‖+ ‖w
n− 1

2

h ‖
)

≤
2

β

(

‖∇u
n− 1

2

h ‖+ ‖w
n− 1

2

h ‖
)

.

Using the bounds for ∇u
n+ 1

2

h (see (3.1)-(3.3)) and w
n+ 1

2

h (see (3.4)) we obtain the
bound for λn

h. The bound for the pressure is established in an analogous manner.
�

Lemma 3.2. Solutions exist to each of the three schemes presented in Algorithm
2.1.
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Proof. For each of the schemes, this is a straight-forward extension of the existence
proof given for the periodic case in [23]. The result is a consequence of the Leray-
Schauder fixed point theorem, and the stability bounds of Lemma 3.1. �

We now study the conservation laws for energy and helicity in the schemes. It is
shown in [23] that, when restricted to the periodic case, the non-stabilized scheme of
Algorithm 2.1 (Scheme 1) conserves energy and helicity. In the case of homogeneous
boundary conditions for velocity, this physically important feature for energy is still
preserved. However, as one might expect, the stabilization terms in Schemes 2 and
3 alter the energy balance. Lemma 3.3 shows these energy balances.

The energy balance of Scheme 1, the unstabilized scheme, is analogous to that
for the continuous NSE. However, for Scheme 2, we see the effect of the stabilization

on the energy balance in the term γ∆t
∑M−1

n=0

∥

∥

∥
∇ · u

n+ 1
2

h

∥

∥

∥

2

on the left hand side of

(3.7). For most choices of elements, one may have that each term in this sum is
small, but over a long time interval this sum can grow to significantly (and non-
physically) alter the balance. The energy balance for Scheme 3 differs from Scheme
1’s energy balance in the addition of only two small terms, instead of a sum. Hence
this indicates that the modified grad-div stabilization, for problems over a long time
interval, offers a more physically relevant energy balance than the usual grad-div
stabilization (Scheme 2).

Lemma 3.3. The schemes of Algorithm 2.1 admit the following energy conserva-
tion laws.

(3.6) Scheme 1:

1

2

∥

∥uM
h

∥

∥

2
+ ν∆t

M−1
∑

n=0

∥

∥

∥
∇u

n+ 1
2

h

∥

∥

∥

2

= ∆t

M−1
∑

n=0

(f(tn+
1
2 ), u

n+ 1
2

h ) +
1

2

∥

∥u0
h

∥

∥

2
.

(3.7) Scheme 2:

1

2

∥

∥uM
h

∥

∥

2
+ ν∆t

M−1
∑

n=0

∥

∥

∥
∇u

n+ 1
2

h

∥

∥

∥

2

+ γ∆t
M−1
∑

n=0

∥

∥

∥
∇ · u

n+ 1
2

h

∥

∥

∥

2

= ∆t

M−1
∑

n=0

(f(tn+
1
2 ), u

n+ 1
2

h ) +
1

2

∥

∥u0
h

∥

∥

2
.

(3.8) Scheme 3:

1

2
(
∥

∥uM
h

∥

∥

2
+ γ

∥

∥∇ · uM
h

∥

∥

2
) + ν∆t

M−1
∑

n=0

∥

∥

∥
∇u

n+ 1
2

h

∥

∥

∥

2

= ∆t

M−1
∑

n=0

(f(tn+
1
2 ), u

n+ 1
2

h )

+
1

2
(
∥

∥u0
h

∥

∥

2
+ γ

∥

∥∇ · u0
h

∥

∥

2
) .

Proof. The proofs of these results follow from choosing vh = u
n+ 1

2

h in Algorithm
2.1 for each of the schemes. The key point is that the nonlinear term vanishes with
this choice of test function, and thus does not contribute to the energy balance
equations. �

We now consider the discrete helicity conservation in Algorithm 2.1. We begin
with the case of imposing Dirichlet boundary conditions on the projected vorticity,
i.e. Wh = Xh. Although this case is nonphysical, analysis of it is the first step in
understanding more complex boundary conditions.
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In this case, the schemes’ discrete nonlinearity preserves helicity, however the
stabilization terms do not. We state the precise results in the next lemma. De-
note the discrete helicity at time level n by Hn

h := (un
h,∇ × un

h). Note that from
(2.5),(2.6), Hn

h := (un
h, w

n
h).

Lemma 3.4. If Wh := Xh, the schemes of Algorithm 2.1 admit the following
helicity conservation laws.

(3.9) Scheme 1:

HM
h + 2ν∆t

M−1
∑

n=0

(∇u
n+ 1

2

h ,∇w
n+ 1

2

h ) = 2ν∆t

M−1
∑

n=0

(f(tn+
1
2 ),∇w

n+ 1
2

h ) +H0
h .

(3.10) Scheme 2:

HM
h + 2ν∆t

M−1
∑

n=0

(∇u
n+ 1

2

h ,∇w
n+ 1

2

h ) + 2γ∆t

M−1
∑

n=0

(∇ · u
n+ 1

2

h ,∇ · w
n+ 1

2

h )

= 2∆t
M−1
∑

n=0

(f(tn+
1
2 ),∇w

n+ 1
2

h ) +H0
h .

(3.11) Scheme 3:

HM
h + 2ν∆t

M−1
∑

n=0

(∇u
n+ 1

2

h ,∇w
n+ 1

2

h ) + 2γ

M−1
∑

n=0

(∇ · (un+1
h − un

h),∇ · w
n+ 1

2

h )

= 2∆t

M−1
∑

n=0

(f(tn+
1
2 ),∇w

n+ 1
2

h ) +H0
h .

Proof. Choosing vh = w
n+ 1

2

h eliminates the nonlinear term and the pressure term
from (2.4) for each of the 3 schemes, and reduces the time difference term to

(3.12)
1

∆t
(un+1

h − un
h, w

n+ 1
2

h ) =
1

∆t
(un+1

h − un
h,∇× u

n+ 1
2

h )

=
1

2∆t

(

(un+1
h ,∇× un+1

h ) + (un+1
h ,∇× un

h) − (un
h,∇× un+1

h ) − (un
h,∇× un

h)
)

=
1

2∆t

(

Hn+1
h −Hn

h

)

,

as, for v, w ∈ H1
0 (Ω), (v,∇× w) = (w,∇× v).

Using (3.12) Scheme 1 becomes,

(3.13)
1

2∆t

(

Hn+1
h −Hn

h

)

+ ν(∇u
n+ 1

2

h ,∇w
n+ 1

2

h ) = (f(tn+
1
2 ), w

n+ 1
2

h )

Multiplying by 2∆t and summing over time steps completes the proof of (3.9).
The proofs of (3.10) and (3.11) follow the same way, except they will contain

their respective stabilization terms. �

Lemma 3.4 shows that if we impose Dirichlet boundary conditions on the vor-
ticity, then the nonlinearity is able to preserve helicity. Hence for Scheme 1, we see
a helicity balance analogous to that of the true physics. However, the stabilization
terms do not preserve helicity, and thus appear in the helicity balances for Schemes
2 and 3.

Interestingly, if the term γ(∇ · wn+1
h ,∇ · χh) is added to the left hand side of

the vorticity projection equation (2.6), one can show that Scheme 3 conserves both
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helicity and energy. This results from the cancellation of the stabilization term in

Scheme 3’s momentum equation when vh is chosen to be w
n+ 1

2

h and χh is chosen as

un+1
h and un

h respectively. However, computations using this additional term with
Scheme 3 were inferior to those of Scheme 3 defined above.

Similar conservation laws for helicity, even for Scheme 1, do not appear to hold
for the nonhomogeneous boundary condition for vorticity, i.e. Xh 6= Wh. Due to
the definitions of these spaces, extra terms arise in the balance that correspond
to the difference between the projection of the curl into discretely divergence-free
subspaces of Wh and Xh. These extra terms will be small except at strips along the
boundary, but nonetheless global helicity conservation will fail to hold. However,
more typical schemes, e.g. usual trapezoidal convective form or rotational form
[13], introduce nonphysical helicity over the entire domain and thus the schemes of
Algorithm 2.1 still provide a better treatment of helicity than such schemes.

4. Convergence

Three numerical schemes are described in Algorithm 2.1. We prove in detail
convergence of solutions of Scheme 3 to an NSE solution. Convergence results for
Schemes 1 and 2 can be established in an analogous manner.

We define the following additional norms:

‖|v|‖∞,k := max
0≤n≤M

‖vn‖k , ‖|v1/2|‖∞,k := max
1≤n≤M

‖vn−1/2‖k,

‖|v|‖m,k :=

(

M
∑

n=0

‖vn‖mk ∆t

)1/m

, ‖|v1/2|‖m,k :=

(

M
∑

n=1

‖vn−1/2‖mk ∆t

)1/m

.

We also let PVh
: L2 → Vh denote the projection of L2 onto Vh, i.e. PVh

(w) :=
sh where

(sh, vh) = (w, vh) , ∀vh ∈ Vh .

For simplicity in stating the a priori theorem we summarize here the regularity
assumptions for the solution u(x, t) to the NSE.

u ∈ L2(0, T ;Hk+1(Ω)) ∩ L∞(0, T ;H1(Ω)),(4.1)

u(·, t) ∈ H1
0 (Ω), ∇× u ∈ L2(0, T ;Hk+1(Ω)) ,(4.2)

ut ∈ L2(0, T ;Hk+1(Ω)) ∩ L∞(0, T ;Hk+1(Ω)),(4.3)

utt ∈ L2(0, T ;Hk+1(Ω)) ,(4.4)

uttt ∈ L2(0, T ;L2(Ω))(4.5)

(u× (∇× u))tt ∈ L2(0, T ;L2(Ω)) .(4.6)

Theorem 4.1. For u, p solutions of the NSE with p ∈ L2(0, T ;Hk(Ω)), u satisfying
(4.1)-(4.6), f ∈ L2(0, T ;X∗(Ω), and u0 ∈ Vh, (un

h, w
n
h) given by Scheme 3 of

Algorithm 2.1 for n = 1, ...,M and ∆t sufficiently small, we have that
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(4.7)

∥

∥u(T )− uM
h

∥

∥+
∥

∥∇ · (u(T )− uM
h )
∥

∥+

(

ν∆t

M−1
∑

n=0

∥

∥

∥
∇(un+ 1

2 − u
n+ 1

2

h )
∥

∥

∥

2
)1/2

≤

C(γ, T, ν−3, u)
(

hk‖u(T )‖k+1 + hk‖|u|‖2,k+1 + hk‖|p|‖2,k + hk‖|ut|‖2,k+1

+ hk‖|ut|‖∞,k+1 + hk‖|ut|‖∞,1 ‖|u|‖2,k+1 + (∆t)1/2 hk‖utt‖2,k+1+ (∆t)2 ‖uttt‖2,0

+ (∆t)2 ‖utt‖2,1 + (∆t)2 ‖(u× (∇× u))tt‖2,0 + hk+1‖|u|‖∞,1 ‖|∇ × u|‖2,k+1 .
)

Proof of Theorem. Since (u, p) solves the NSE, we have ∀vh ∈ Xh that

(4.8) (ut(t
n+ 1

2 ), vh)− (u(tn+
1
2 )× (∇× u(tn+

1
2 )), vh)− (p(tn+

1
2 ),∇ · vh)

+ ν(∇u(tn+
1
2 ),∇vh) = (f(tn+

1
2 ), vh).

Adding (u
n+1−un

∆t , vh) and ν(∇un+ 1
2 ,∇vh) to both sides of (4.8) we obtain

(4.9)
1

∆t
(un+1 − un, vh) +

(

(∇× u(tn+
1
2 )× u(tn+

1
2 )), vh

)

− (p(tn+
1
2 ),∇ · vh)

+ ν(∇un+ 1
2 ,∇vh) = (f(tn+

1
2 ), vh) +

(

un+1 − un

∆t
− ut(t

n+ 1
2 ), vh

)

+ ν(∇un+ 1
2 −∇u(tn+

1
2 ),∇vh).

Next, subtracting (2.4) from (4.9), label en := un−un
h, and adding the identically

zero term γ(∇ · (u
n+1−un

∆t ),∇ · vh) to the LHS gives

(4.10)
1

∆t
(en+1 − en, vh) + ν(∇en+

1
2 ,∇vh) +

γ

∆t
(∇ · (en+1 − en,∇ · vh))

= −
(

∇× u(tn+
1
2 )× u(tn+

1
2 ), vh

)

+
(

w
n+ 1

2

h × u
n+ 1

2

h , vh

)

+
(

p(tn+
1
2 )− pn+1

h ,∇ · vh

)

+

(

un+1 − un

∆t
− ut(t

n+ 1
2 ), vh

)

+ ν
(

∇un+ 1
2 −∇u(tn+

1
2 ),∇vh

)

.

We split the error into two pieces Φh and η: en = un − un
h = (un −Un) + (Un −

un
h) := ηn +Φn

h, where Un denotes the interpolant of un in Vh, yielding

(4.11)
1

∆t
(Φn+1

h − Φn
h, vh) + ν(∇Φ

n+ 1
2

h ,∇vh) +
γ

∆t
(∇ · (Φn+1

h − Φn
h),∇ · vh)

= −
1

∆t
(ηn+1 − ηn, vh)− ν(∇ηn+

1
2 ,∇vh)−

γ

∆t
(∇ · (ηn+1 − ηn),∇ · vh)

−
(

(∇× u(tn+
1
2 ))× u(tn+

1
2 ), vh

)

+ (w
n+ 1

2

h × u
n+ 1

2

h , vh)

+ (p(tn+
1
2 )− pn+1

h ,∇ · vh) +

(

un+1 − un

∆t
− ut(t

n+ 1
2 ), vh

)

+ ν(∇un+ 1
2 −∇u(tn+

1
2 ),∇vh).
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Choosing vh = Φ
n+ 1

2

h yields

(4.12)
1

2∆t

(

∥

∥Φn+1
h

∥

∥

2
− ‖Φn

h‖
2
)

+ ν
∥

∥

∥
∇Φ

n+ 1
2

h

∥

∥

∥

2

+
γ

2∆t

(

∥

∥∇ · Φn+1
h

∥

∥

2
− ‖∇ · Φn

h‖
2
)

= −
1

∆t
(ηn+1 − ηn,Φ

n+ 1
2

h ) − ν(∇ηn+
1
2 ,∇Φ

n+ 1
2

h )

−
γ

∆t

(

∇ · (ηn+1 − ηn),∇ · Φ
n+ 1

2

h

)

−
(

∇× u(tn+
1
2 )× u(tn+

1
2 ),Φ

n+ 1
2

h

)

+ (w
n+ 1

2

h × u
n+ 1

2

h ,Φ
n+ 1

2

h ) + (p(tn+
1
2 )− pn+1

h ,∇ · Φ
n+ 1

2

h )

+

(

un+1 − un

∆t
− ut(t

n+ 1
2 ),Φ

n+ 1
2

h

)

+ ν(∇un+ 1
2 −∇u(tn+

1
2 ),∇Φ

n+ 1
2

h ).

We have the following bounds for the terms on the RHS (see [6]).

(4.13) −ν(∇ηn+
1
2 ,∇Φ

n+ 1
2

h ) ≤
ν

12

∥

∥

∥
∇Φ

n+ 1
2

h

∥

∥

∥

2

+ 3ν
∥

∥

∥
∇ηn+

1
2

∥

∥

∥

2

(4.14)
1

∆t
(ηn+1 − ηn,Φ

n+ 1
2

h ) ≤
1

2

∥

∥

∥

∥

ηn+1 − ηn

∆t

∥

∥

∥

∥

2

+
1

2

∥

∥

∥
Φ

n+ 1
2

h

∥

∥

∥

2

=
1

2

∫

Ω

(

1

∆t

∫ tn+1

tn
ηt dt

)2

dΩ +
1

2

∥

∥

∥
Φ

n+ 1
2

h

∥

∥

∥

2

≤
1

2

∫

Ω

(

2|ηt(t
n+1)|2 + 2

∫ tn+1

tn
|ηtt|

2 dt

)

dΩ +
1

2

∥

∥

∥
Φ

n+ 1
2

h

∥

∥

∥

2

=
∥

∥ηt(t
n+1)

∥

∥

2
+

∫ tn+1

tn
‖ηtt‖

2
dt +

1

2

∥

∥

∥
Φ

n+ 1
2

h

∥

∥

∥

2

.

Similarly,

(4.15)
γ

∆t

(

∇ · (ηn+1 − ηn),∇ · Φ
n+ 1

2

h

)

≤ γ
∥

∥∇ · ηt(t
n+1)

∥

∥

2
+ γ

∫ tn+1

tn
‖∇ · ηtt‖

2 dt +
γ

2

∥

∥

∥
∇ · Φ

n+ 1
2

h

∥

∥

∥

2

.

(

un+1 − un

∆t
− ut(t

n+ 1
2 ),Φ

n+ 1
2

h

)

≤
1

2

∥

∥

∥

∥

un+1 − un

∆t
− ut(t

n+ 1
2 )

∥

∥

∥

∥

2

+
1

2

∥

∥

∥
Φ

n+ 1
2

h

∥

∥

∥

2

=
(∆t)3

2560

∫ tn+1

tn
‖uttt‖

2
dt +

1

2

∥

∥

∥
Φ

n+ 1
2

h

∥

∥

∥

2

(4.16)

ν(∇un+ 1
2 −∇u(tn+

1
2 ),∇Φ

n+ 1
2

h ) ≤ 3ν
∥

∥

∥
∇un+ ν

12 −∇u(tn+
1
2 )
∥

∥

∥

2

+
ν2

2

∥

∥

∥
Φ

n+ 1
2

h

∥

∥

∥

2

=
ν(∆t)3

16

∫ tn+1

tn
‖∇utt‖

2
dt +

ν

12

∥

∥

∥
Φ

n+ 1
2

h

∥

∥

∥

2

(4.17)

For the pressure term, since Φ
n+ 1

2

h ∈ Vh, for any qh ∈ Qh,

(p(tn+
1
2 )− pn+1

h ,∇ · Φ
n+ 1

2

h ) = (p(tn+
1
2 )− qh,∇ · Φ

n+ 1
2

h ),(4.18)

which implies

(4.19) (p(tn+
1
2 )− pn+1

h ,∇ ·Φ
n+ 1

2

h ) ≤
1

2γ
inf

qh∈Qh

∥

∥

∥
p(tn+

1
2 )− qh

∥

∥

∥

2

+
γ

2

∥

∥

∥
∇ · Φ

n+ 1
2

h

∥

∥

∥

2

.
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Utilizing (4.13)-(4.19) we now have

(4.20)
1

2∆t

(

∥

∥Φn+1
h

∥

∥

2
− ‖Φn

h‖
2
)

+
γ

2∆t

(

∥

∥∇ · Φn+1
h

∥

∥

2
− ‖∇ · Φn

h‖
2
)

+
5ν

6

∥

∥

∥
∇Φ

n+ 1
2

h

∥

∥

∥

2

≤ 3ν
∥

∥

∥
∇ηn+

1
2

∥

∥

∥

2

+
γ

∆t

∥

∥∇ · ηt(t
n+1)

∥

∥

2

+
γ

∆t

∫ tn+1

tn
‖∇ · ηtt‖

2
dt +

1

2γ
inf

qh∈Qh

∥

∥

∥
p(tn+

1
2 )− qh

∥

∥

∥

2

+ C(1 + ν)∆t3

(

∫ tn+1

tn
‖uttt‖

2
dt +

∫ tn+1

tn
‖∇utt‖

2
dt

)

+
ν2 + 1

2

∥

∥

∥
Φ

n+ 1
2

h

∥

∥

∥

2

+ γ
∥

∥

∥
∇ · Φ

n+ 1
2

h

∥

∥

∥

2

+ (w
n+ 1

2

h × u
n+ 1

2

h ,Φ
n+ 1

2

h )

−
(

(∇× u(tn+
1
2 ))× u(tn+

1
2 ),Φ

n+ 1
2

h

)

∥

∥ηt(t
n+1)

∥

∥

2
+

∫ tn+1

tn
‖ηtt‖

2
dt .

For the nonlinear terms we have

(4.21) (w
n+ 1

2

h × u
n+ 1

2

h ,Φ
n+ 1

2

h )−
(

(∇× u(tn+
1
2 ))× u(tn+

1
2 ),Φ

n+ 1
2

h

)

+
(

(∇× un+ 1
2 )× un+ 1

2 ,Φ
n+ 1

2

h

)

−
(

(∇× un+ 1
2 )× un+ 1

2 ,Φ
n+ 1

2

h

)

=
(

(w
n+ 1

2

h −∇× un+ 1
2 )× un+ 1

2 ,Φ
n+ 1

2

h

)

+
(

w
n+ 1

2

h × (u
n+ 1

2

h − un+ 1
2 ),Φ

n+ 1
2

h

)

+
(

(∇× un+ 1
2 )× un+ 1

2 − (∇× u(tn+
1
2 ))× u(tn+

1
2 ),Φ

n+ 1
2

h

)

=
(

(w
n+ 1

2

h −∇× un+ 1
2 )× un+ 1

2 ,Φ
n+ 1

2

h

)

−
(

w
n+ 1

2

h × ηn+
1
2 ,Φ

n+ 1
2

h

)

+
(

(∇× un+ 1
2 )× un+ 1

2 − (∇× u(tn+
1
2 ))× u(tn+

1
2 ),Φ

n+ 1
2

h

)

We bound the second to last and last terms in (4.21) by

(w
n+ 1

2

h × ηn+
1
2 ,Φ

n+ 1
2

h ) ≤ C
∥

∥

∥
w

n+ 1
2

h

∥

∥

∥

∥

∥

∥
∇ηn+

1
2

∥

∥

∥

∥

∥

∥
∇Φ

n+ 1
2

h

∥

∥

∥

≤
ν

12

∥

∥

∥
∇Φ

n+ 1
2

h

∥

∥

∥

2

+ 3ν−1
∥

∥

∥
w

n+ 1
2

h

∥

∥

∥

2 ∥
∥

∥
∇ηn+

1
2

∥

∥

∥

2

(4.22)

(4.23) (u(tn+
1
2 )× (∇× u(tn+

1
2 ))− un+ 1

2 × (∇× un+ 1
2 ),Φ

n+ 1
2

h )

≤
ν

12

∥

∥

∥
∇Φ

n+ 1
2

h

∥

∥

∥

2

+ 3ν−1
∥

∥

∥
u(tn+

1
2 )× (∇× u(tn+

1
2 ))− un+ 1

2 × (∇× un+ 1
2 )
∥

∥

∥

2

≤
ν

12

∥

∥

∥
∇Φ

n+ 1
2

h

∥

∥

∥

2

+
3

48
ν−1(∆t)3

∫ tn+1

tn
‖(u× (∇× u))tt‖

2
dt.

For the first term in (4.21), we first need a bound on
∥

∥

∥
∇× un+ 1

2 − w
n+ 1

2

h

∥

∥

∥
. This

is obtained by restricting χh to Vh in (2.6) and then subtracting (∇ × un+ 1
2 , χh)

from both sides of (2.6), which gives us

(∇× un+ 1
2 − w

n+ 1
2

h , χh) = (∇× (un+ 1
2 − u

n+ 1
2

h ), χh)

= (∇× ηn+
1
2 , χh) + (∇× Φ

n+ 1
2

h , χh) .
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By the definition of PVh
,

(PVh
(∇× un+ 1

2 )− w
n+ 1

2

h , χh) = (∇× un+ 1
2 − w

n+ 1
2

h , χh)

= (∇× (un+ 1
2 − u

n+ 1
2

h ), χh)

= (∇× ηn+
1
2 , χh) + (∇× Φ

n+ 1
2

h , χh)

Choose χh = PVh
(∇× un+ 1

2 )− w
n+ 1

2

h we obtain

∥

∥

∥
PVh

(∇× un+ 1
2 )− w

n+ 1
2

h

∥

∥

∥

2

≤ 2

(

∥

∥

∥
∇ηn+

1
2

∥

∥

∥

2

+
∥

∥

∥
∇Φ

n+ 1
2

h

∥

∥

∥

2
)

.(4.24)

Now using (4.24) and, from Poincare’s inequality,
∥

∥

∥
Φ

n+ 1
2

h

∥

∥

∥
≤ C

∥

∥

∥
∇Φ

n+ 1
2

h

∥

∥

∥
we

obtain

(4.25)
(

(PVh
(∇× un+ 1

2 )− w
n+ 1

2

h )× un+ 1
2 ,Φ

n+ 1
2

h

)

≤ C
∥

∥

∥
∇un+ 1

2

∥

∥

∥

∥

∥

∥
PVh

(∇× un+ 1
2 )− w

n+ 1
2

h

∥

∥

∥

∥

∥

∥
Φ

n+ 1
2

h

∥

∥

∥

1
2
∥

∥

∥
∇Φ

n+ 1
2

h

∥

∥

∥

1
2

≤ C
∥

∥

∥
∇un+ 1

2

∥

∥

∥

(

∥

∥

∥
∇ηn+

1
2

∥

∥

∥

∥

∥

∥
∇Φ

n+ 1
2

h

∥

∥

∥
+
∥

∥

∥
Φ

n+ 1
2

h

∥

∥

∥

1
2
∥

∥

∥
∇Φ

n+ 1
2

h

∥

∥

∥

3
2

)

≤
ν

12

∥

∥

∥
∇Φ

n+ 1
2

h

∥

∥

∥

2

+ Cν−1
∥

∥

∥
∇un+ 1

2

∥

∥

∥

2 ∥
∥

∥
∇ηn+

1
2

∥

∥

∥

2

+
ν

12

∥

∥

∥
∇Φ

n+ 1
2

h

∥

∥

∥

2

+ Cν−3
∥

∥

∥
∇un+ 1

2

∥

∥

∥

4 ∥
∥

∥
Φ

n+ 1
2

h

∥

∥

∥

2

.

Also, we have that

(4.26)
(

(∇× un+ 1
2 − PVh

(∇× un+ 1
2 ))× un+ 1

2 ,Φ
n+ 1

2

h

)

≤ C
∥

∥

∥
∇× un+ 1

2 − PVh
(∇× un+ 1

2 )
∥

∥

∥

∥

∥

∥
∇un+ 1

2

∥

∥

∥

∥

∥

∥
∇Φ

n+ 1
2

h

∥

∥

∥

≤
ν

12

∥

∥

∥
∇Φ

n+ 1
2

h

∥

∥

∥

2

+ C
∥

∥

∥
∇un+ 1

2

∥

∥

∥

2 ∥
∥

∥
∇× un+ 1

2 − PVh
(∇× un+ 1

2 )
∥

∥

∥

2

Combining (4.26) and (4.25) we obtain the required bound for
(

(w
n+ 1

2

h −∇× un+ 1
2 )× un+ 1

2 ,Φ
n+ 1

2

h

)

.

Noting that
∥

∥

∥
∇ · Φ

n+ 1
2

h

∥

∥

∥

2

≤ 1/2 (
∥

∥∇ · Φn+1
h

∥

∥

2
+ ‖∇ · Φn

h‖
2
), substituting the

bounds derived in (4.22), (4.23), (4.25), and (4.26) into (4.20) yields
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(4.27)
1

2∆t

(

∥

∥Φn+1
h

∥

∥

2
− ‖Φn

h‖
2
)

+
γ

2∆t

(

∥

∥∇ · Φn+1
h

∥

∥

2
− ‖∇ · Φn

h‖
2
)

+
ν

2

∥

∥

∥
∇Φ

n+ 1
2
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2

Next multiply by 2∆t, sum over time steps, and using the Gronwall inequality
(from [11]) yields

(4.28)
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Recall the approximation properties of Un ∈ Vh, qh ∈ Qh, and PVh
[13]

‖η(tn)‖s ≤ Chk+1−s ‖u(tn)‖k+1 , s = 0, 1, and

inf
qh∈Qh

‖p(tn)− qh‖ ≤ Chk ‖p(tn)‖k

‖wn − PVh
(wn)‖ ≤ Chk+1 ‖wn‖k+1 .
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Estimate (4.28) then becomes

(4.29)
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Finally, from the boundness estimate for ν∆t
∑M−1

n=0

∥

∥

∥
w

n+ 1
2

h

∥

∥

∥

2

from (3.4), and

an application of the triangle inequality we obtain (4.7).
�

Remark 4.1. As expected, if (Xh, Qh) is chosen to be the inf-sup stable pair
(Pk, Pk−1), k ≥ 2, then with the smoothness assumptions (4.1)-(4.6) and p ∈
L2(0, T ;Hk(Ω)) the H1 convergence for the velocity is

(4.30) ‖|u− uh|‖2,1 ≤ C(∆t2 + hk)

Remark 4.2. The significant computational improvement of Schemes 2 and 3 over
Scheme 1 is somewhat masked in the statement of the a priori error bound for the
velocity (for Scheme 3) given in (4.7). For Scheme 1 the pressure contribution to
the bound is C/ν ‖p− qh‖, whereas for Schemes 2 and 3 the pressure contribution is
given by C ‖p− qh‖, see (4.19). The presence of ν in the denominator for Scheme
1 suggests a superior numerical performance of Schemes 2 and 3 if a large pressure
error is present.

5. Numerical Experiments

This section presents two numerical experiments, the first to confirm convergence
rates and the second to compare the schemes’ accuracies over a longer time interval,
against each other and a commonly used scheme. For both experiments, we will
compute approximations to the Ethier-Steinman exact Navier-Stokes solution on
[−1, 1]3 [7], although we choose different parameters and viscosities for the two
tests. We find in the first numerical experiment, computed convergence rates from
successive mesh and time-step refinements indeed match the predicted rates from
section 4. For the second experiment, the advantage of using the stabilized enhanced
physics based scheme is demonstrated.
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Figure 1. The velocity solution to the Ethier-Steinman problem
with a = 1.25, d = 1 at t = 0 on the (−1, 1)3 domain. The
complex flow structure is seen in the streamribbons in the box and
the velocity streamlines and speed contours on the sides.

For chosen parameters a, d and viscosity ν, the exact Ethier-Steinman NSE so-
lution is given by

u1 = −a (eax sin(ay + dz) + eaz cos(ax+ dy)) e−νd2t(5.1)

u2 = −a (eay sin(az + dx) + eax cos(ay + dz)) e−νd2t(5.2)

u3 = −a (eaz sin(ax+ dy) + eay cos(az + dx)) e−νd2t(5.3)

p = −
a2

2
(e2ax + e2ay + e2az + 2 sin(ax+ dy) cos(az + dx)ea(y+z)

+2 sin(ay + dz) cos(ax+ dy)ea(z+x)

+2 sin(az + dx) cos(ay + dz)ea(x+y))e−2νd2t(5.4)

We give the pressure in its usual form, although our scheme approximates instead
the Bernoulli pressure P = p + 1

2 |u|
2. This problem was developed as a 3d ana-

logue to the Taylor vortex problem, for the purpose of benchmarking. Although
unlikely to be physically realized, it is a good test problem because it is not only
an exact NSE solution, but also it has non-trivial helicity which implies the ex-
istence of complex structure [18] in the velocity field. The t = 0 solution for
a = 1.25 and d = 1 is illustrated in Figure 1. For both experiments below, we use
u0 = (u1(0), u2(0), u3(0))

T as the initial condition and enforce Dirichlet boundary
conditions for velocity to be the interpolant of u(t) on the boundary, while a do-
nothing boundary condition is used for the vorticity projection. All computations
with schemes 2 and 3 use stabilization parameter γ = 1.

5.1. Numerical Test 1: Convergence rate verification. To verify conver-
gence rates predicted in section 4, we compute approximations to (5.1)-(5.4) with
parameters a = d = π/4, viscosity ν = 1, and end-time T = 0.001. Since (P2, P1)
elements are being used, we expect O(h2 + ∆t2) convergence of ‖|uNSE − uh|‖2,1
for each of the three schemes of Algorithm 2.1. Errors and rates in this norm are
shown in table 1, and we find they match those predicted by the theory.
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h ∆t
∥

∥

∣

∣u− uS1

∣

∣

∥

∥

2,1
rate

∥

∥

∣

∣u− uS2

∣

∣

∥

∥

2,1
rate

∥

∥

∣

∣u− uS3

∣

∣

∥

∥

2,1
rate

1 0.001 0.01560 - 0.01556 - 0.01579 -

0.5 0.0005 0.00390 2.00 0.00391 1.99 0.00395 2.00

0.25 0.00025 0.000979 1.99 0.000979 2.00 0.000984 2.01

0.125 0.000125 0.000245 2.00 0.000245 2.00 0.000246 2.00

Table 1. The ‖|uNSE − uh|‖2,1 errors and convergence rates for
each of the three scheme of algorithm 2.1.
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Figure 2. The plot above shows L2 error of the velocity vs
time for the four schemes of test 2. We see in the plot that the
stabilizations add accuracy to the enhanced-physics scheme, and
that the altered grad-div stabilization gives slightly better results
than the usual grad-div stabilization. It can also be seen that the
enhanced-physics scheme is far more accurate in this metric than
the usual Crank-Nicolson scheme.

5.2. Numerical Test 2: Comparison of the schemes. For our second test,
we compute approximations to (5.1)-(5.4) with a = 1.25, d = 1, kinematic viscosity
ν = 0.002, end time T = 0.5, using all 3 schemes from Algorithm 2.1. We use 3,072
tetrahedral elements, which provides 41,472 velocity degrees of freedom, and 46,875
degrees of freedom for the projected vorticity since here there are degrees of freedom
on the boundary. It is important to note that due to the splitting of the projection
equations from the NSE system in the solver and since the projection equation is
well-conditioned, the time spent for assembling and solving the projection equations
is negligible.

In addition to the 3 schemes of Algorithm 2.1, for comparison, we also compute
approximations using the well-known convective form Crank-Nicolson (CCN) FEM
for the Navier-Stokes equations [13, 10, 12]. We run the simulations with time-step
∆t = 0.005. Results of the simulations are shown in figures 2 and 3, where L2(Ω)
error and helicity error are plotted against time. Is clear from the pictures that
the enhanced physics based scheme is superior to the usual Crank-Nicolson scheme,
and its advantage becomes more pronounced with larger time. Also it is seen how
the stabilizations of the enhanced-physics scheme improve accuracy.
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Figure 3. The plot above shows helicity error vs time for the
four schemes of test 2. We see in the plot that helicity is far more
accurate in the enhanced-physics scheme, and even better with
stabilizations, than the usual Crank-Nicolson scheme.

6. Conclusions and future directions

We have extended the methodology of the enhanced-physics based scheme of
[23] to a more general set of problems. This extension required the use of grad-
div type stabilizations since the scheme uses a Bernoulli pressure which can be a
dominant source of error in finite element computations, and we proposed an altered
grad-div stabilization that appears to stabilize in a similar way as the usual grad-
div stabilziation, but provides a more physical solution by not altering the energy
balance. We also provided a numerical example that showed the advantage of the
enhanced physics based scheme as well as for the altered grad-div stabilization that
we use.

As discussed in the Introduction, with the rotational form of the NSE and intro-
duction of the Bernoulli pressure, the pressure term in the a priori error estimate
for the velocity approximation can have a significant impact. An alternative to a
grad-div stabilization method may be to choose the approximation spaces (Xh, Qh)
so that the pressure term does not appear in the a priori error estimate for the veloc-
ity approximation. Recently stable approximation spaces (Xh, Qh), Scott-Vogelius
elements [28] (see [27, 26, 24, 25] for Ω ⊂ R

2), have been introduced for which
[∇ ·Xh] ⊂ Qh, which guarantees that discretly divergence free approximations for
the velocity are also L2 divergence free. These elements require a special mesh, and
are higher order (at least) P3(e)− (discontinuous)P2(e) compared to the commonly
used Taylor-Hood elements P2(e)−P1(e). Future work will include a comparison of
the stabilized methods investigated above with approximations using Scott-Vogelius
elements.
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