
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 5, No. 3, pp. 269-308

DOI: 10.4208/aamm.12-m1211
June 2013

A Matrix-Vector Operation-Based Numerical Solution

Method for Linear m-th Order Ordinary Differential

Equations: Application to Engineering Problems

M. Aminbaghai1, M. Dorn1,2, J. Eberhardsteiner1 and B. Pichler1,∗

1 Institute for Mechanics of Materials and Structures, Vienna University of Technology
(TU Wien), Karlsplatz 13/202, A-1040 Vienna, Austria
2 Linnaeus University, Department of Building and Energy Technology, Lückligs Plats
1, S-35195 Växjö, Sweden

Received 17 February 2012; Accepted (in revised version) 8 February 2013

Available online 30 April 2013

Abstract. Many problems in engineering sciences can be described by linear, inhomo-
geneous, m-th order ordinary differential equations (ODEs) with variable coefficients.
For this wide class of problems, we here present a new, simple, flexible, and robust
solution method, based on piecewise exact integration of local approximation poly-
nomials as well as on averaging local integrals. The method is designed for modern
mathematical software providing efficient environments for numerical matrix-vector
operation-based calculus. Based on cubic approximation polynomials, the presented
method can be expected to perform (i) similar to the Runge-Kutta method, when ap-
plied to stiff initial value problems, and (ii) significantly better than the finite difference
method, when applied to boundary value problems. Therefore, we use the presented
method for the analysis of engineering problems including the oscillation of a modu-
lated torsional spring pendulum, steady-state heat transfer through a cooling web, and
the structural analysis of a slender tower based on second-order beam theory. Related
convergence studies provide insight into the satisfying characteristics of the proposed
solution scheme.

AMS subject classifications: 34A30, 34B60

Key words: Numerical integration, polynomial approximation, ODE, variable coefficients, initial
conditions, boundary conditions, stiff equation.

1 Introduction

Many problems in engineering sciences can be described by linear, inhomogeneous, m-th
order, ordinary differential equations (ODEs) with variable coefficients

∗Corresponding author.
Email: mehdi.aminbaghai@tuwien.ac.at (M. Aminbaghai), michael.dorn@tuwien.ac.at (M. Dorn),
josef.eberhardsteiner@tuwien.ac.at (J. Eberhardsteiner), bernhard.pichler@tuwien.ac.at (B. Pichler)

http://www.global-sci.org/aamm 269 c©2013 Global Science Press

270 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

m

∑
i=0

ai(x)y(i)(x)= r(x), y(i)(x)
def
=

diy(x)

dxi
. (1.1)

This includes problems such as oscillations, one-dimensional heat transfer, or beam bend-
ing. Classical numerical solution methods for related initial value problems and bound-
ary value problems, respectively, include the backward Euler method, the Runge-Kutta
method, Adams-Bashforth-Moulton methods [1–3], backward differentiation formulas
(BDFs) [4], Rosenbrock methods [5, 6], as well as the finite difference method.

During the last decades, quite a number of new methods have been presented for
specific classes of problems. For stiff first-order initial value problems, numerical differ-
entiation formulas (NDFs) and a modified Rosenbrock method were presented in [7].
Meshless local Petrov-Galerkin methods [8, 9] have become popular for solving thin
beam problems in the framework of the first-order theory. Discontinuous Galerkin meth-
ods [10] were shown to be efficient for second-order ODEs with periodic coefficient
functions and periodic perturbation functions. Piecewise linearized methods [11] have
turned out to be useful for non-stiff initial value problems. The differential quadra-
ture method [12, 13] has gained interest of researchers dealing with dynamic problems,
including three-dimensional vibration of functionally graded circular plates analyzed
based on the one-dimensional differential quadrature method [14]. Also integration
schemes based on approximations provided by radial basis functions have become pop-
ular [15, 16].

When selecting a specific method out of the variety of available approaches capable
to solve problems subsumable under (1.1), there is typically a trade-off between numer-
ical efficiency and versatility. There exist highly efficient methods which are designed
for specific classes of problems, i.e., for ODEs with a specific order of differentiation m,
for specific types of coefficient functions ai(x), for specific perturbation functions r(x),
and for specific types of boundary conditions; but such specialized methods frequently
exhibit a limited utilizability for other specific problems. Methods designed for initial
value problems, for instance, may lack user friendliness when applying them to general
boundary value problems which include boundary conditions referring to the end of the
integration interval. Highly robust and flexible methods, in turn, which are generally
applicable to virtually all problems subsumable under (1.1), commonly cannot compete
with the aforementioned, highly efficient methods, when a specific problem at hand has
to be solved.

This is the motivation to present a new, simple, flexible, and robust method for the
solution of ordinary differential equations such as (1.1), based on piecewise exact inte-
gration of local approximation polynomials as well as on averaging local integrals. The
method is designed to comply with the following requirement profile:

• The method should be applicable to any linear, inhomogeneous, m-th order ODE
with variable coefficients – either associated with an initial value problem, or with a

M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308 271

boundary value problem – without raising the need to adapt the method for specific
properties of the underlying differential equation.

• The method should be easy to implement into modern mathematical software pro-
viding efficient environments for numerical matrix-vector operation-based calcu-
lus.

• Extensions of the method towards higher-order integration schemes with increased
order of accuracy should be straightforward.

The paper is structured as follows. Inspired by [17], Section 2 presents a numerical in-
tegration method for smooth functions, based on piecewise exact integration of cubic
approximation polynomials. Section 3 builds on this method to derive a numerical solu-
tion method for linear m-th order ODEs with smooth perturbation function and smooth
coefficient functions. After comparing the proposed method with classical methods, by
applying them to a stiff initial value problem and to a benchmark boundary value prob-
lem (Section 4), we use the presented method to analyze engineering problems including
the oscillation of a modulated torsional spring pendulum (Section 5), steady-state heat
transfer through a cooling web (Section 6), and structural analysis of a slender tower
based on second-order beam theory (Section 7). In Section 8 we discuss the results, lead-
ing to conclusions and to a future outlook.

2 Approximation polynomial-based numerical integration of

smooth functions

Herein, we first briefly recall and then extend the numerical integration method used
in [17]. This method allows for integrating smooth functions f (x), based on piecewise
exact integration of local quadratic approximation polynomials as well as on averaging
such local integrals. To this end, the domain of interest xa ≤ x ≤ xb is subdivided into
(n−1) intervals of identical size

λ=
xb−xa

n−1
. (2.1)

At the n interval boundaries xa = x1, x2, x3, ··· , xn−1, and xn = xb, the function f (x) is
evaluated, delivering the function values f1 = f (x1), f2 = f (x2), ···, fn−1 = f (xn−1), and
fn = f (xn). In the next step, quadratic polynomials are used to approximate the function
f (x) in all subdomains consisting of two neighboring intervals. This results in (n−2)
local approximation polynomials. In more detail, in the first interval [x1;x2], the function
f (x) is approximated by the quadratic polynomial which is defined in the subdomain
[x1;x3], and which exactly reproduces the function values f1, f2, and f3. Similarly, in
the last interval [xn−1;xn], the function f (x) is approximated by the quadratic polyno-
mial which is defined in the subdomain [xn−2;xn], exactly reproduces the function values
fn−2, fn−1, and fn. In all other intervals in between, two local approximation polynomi-
als are available, e.g., in the second interval [x2;x3], the function f (x) is approximated

272 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

by the aforementioned quadratic polynomial defined in subdomain [x1;x3] and exactly
reproducing the function values f1, f2, and f3, as well as, independently, by the quadratic
polynomial defined in subdomain [x2;x4] and exactly reproducing the function values
f2, f3, and f4. Next, all approximation polynomials are integrated exactly over the two
intervals in which they were designed to approximate f (x). This implies that, in the first
and in the last interval, f (x) is approximately integrated only once, while in all other in-
tervals, f (x) is approximately integrated twice, and the values of these two integrals are
averaged in each of these intervals. This strategy allows for expressing the approximate
integration of f (x) in the interval from x1 to xk as simple as [17]

∫ xk

x1

f (x) dx≈
k

∑
s=1

A1
ks fs with A1

ks
def
=

λ

24
Aks, (2.2)

where Aks is a matrix of real numbers, which reads, e.g., for maxk=maxs=6, as [17]

Aks=

0 0 0 0 0 0
10 16 −2 0 0 0
8 32 8 0 0 0
9 27 27 9 0 0
9 28 22 28 9 0
9 28 23 23 28 9

. (2.3)

For larger values of maxk = maxs, additional components of Aks can be found easily,
considering the following rules

∀k≤7, ∀s≥7 : Aks=0, (2.4a)

∀k≥7 : Ak1=Akk =9, Ak2=Akk−1=28, Ak3=Akk−2=23,

Ak4= ···=Akk−3=24, Akk+1=Akk+2= ···=Akn =0. (2.4b)

It will turn out to be useful for the ODE solution method proposed in Section 3, to extend
the definition of the integration matrix introduced in [17], see (2.2), towards

Ai
ks

def
=

δks, i=0,

λ

24
Aks, i=1,

k

∑
t=1

A1
kt A

i−1
ts , i≥2,

(2.5)

where δks stands for the Kronecker delta, i.e., δks=1 for k=s and δks=0 for k 6=s. Integration
matrices Ai

ks, namely, allow for straightforward i-fold numerical integration of a smooth
function f (x) as

∫ xk

x1

∫

···
∫

︸ ︷︷ ︸

i integrals

f (x)dxi ≈
n

∑
s=0

Ai
ks fs. (2.6)

M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308 273

fk+2

fk

fk+1

fk+3

x

ξ

f̃k(ξ)

xk xk+1 xk+2

λ0

Fk|
k+1

k

2λ 3λ

Fk|
k+2

k+1

Fk|
k+3

k+2

xk+3

Figure 1: Cubic polynomial f̃k(ξ) approximating the function f (x) in the interval [xk,xk+3].

As for (2.6), we note that all the integration constants, which are to be introduced when
performing the (i−1) indefinite integrations, were set equal to zero, for the sake of sim-
plicity. Finally, we mention a formal similarity between the integration matrices intro-
duced in (2.5) and differentiation matrices used in the framework of differential quadra-
ture methods [18].

In order to provide more insight into the philosophy of the described integration
method, and in order to further increase the accuracy of integration, we now extend
the approach towards piecewise exact integration of cubic approximation polynomials.
To this end, the domain of interest xa ≤ x≤ xb is again subdivided into (n+1) intervals
of identical size λ, see (2.1). Within each subdomain consisting of three neighboring
intervals, the function f (x) is approximated by a cubic polynomial. Focusing on three
neighboring intervals covering the domain [xk;xk+3λ], we introduce a local coordinate
ξ with origin at xk, reading as: ξ = x−xk (Fig. 1). The cubic approximation polynomial
f̃k(ξ) satisfying f̃k(ξ = 0) = fk, f̃k(ξ = λ) = fk+1, f̃k(ξ = 2λ) = fk+2, and f̃k(ξ = 3λ) = fk+3

reads as:

f̃k(ξ)=−
(fk−3 fk+1+3 fk+2− fk+3

6λ3

)

ξ3+
(2 fk−5 fk+1+4 fk+2− fk+3

2λ2

)

ξ2

−
(11 fk−18 fk+1+9 fk+2−2 fk+3

6λ

)

ξ+ fk . (2.7)

Integrating the cubic approximation polynomial f̃k(ξ) exactly from xk to xk+1, from xk+1

to xk+2, and from xk+2 to xk+3, respectively, yields

Fk|
k+1
k =

∫ xk+1

xk

f̃k(x)dx=
∫ λ

0
f̃k(ξ)dξ=

λ

24
(9 fk+19 fk+1−5 fk+2+ fk+3), (2.8a)

Fk|
k+2
k+1=

∫ xk+2

xk+1

f̃k(x)dx=
∫ 2λ

λ
f̃k(ξ)dξ=

λ

24
(− fk+13 fk+1+13 fk+2− fk+3), (2.8b)

Fk|
k+3
k+2=

∫ xk+3

xk+3

f̃k(x)dx=
∫ 3λ

2λ
f̃k(ξ)dξ=

λ

24
(fk−5 fk+1+19 fk+2+9 fk+3), (2.8c)

274 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

see also Fig. 1. Based on (2.8), integration of f (x) from x=x1 to xk=2,3,4,···,n is expressed as

∫ xk

x1

f (x)dx≈

F1|
2
1, for k=2,

F1|
2
1+F1|

3
2, for k=3,

F1|
2
1+F1|

3
2+F1|

4
3, for k=4,

F1|
2
1+

1

2
(F1|

3
2+F2|

3
2)+

1

2
(F1|

4
3+F2|

4
3)+F2|

5
4, for k=5,

F1|
2
1+

1

2
(F1|

3
2+F2|

3
2)+

1

3
(F1|

4
3+F2|

4
3+F3|

4
3)

+
1

2
(F2|

5
4+F3|

5
4)+F3|

6
5, for k=6,

F1|
2
1+

1

2
(F1|

3
2+F2|

3
2)+

1

3
(F1|

4
3+F2|

4
3+F3|

4
3)

+
1

3
(F2|

5
4+F3|

5
4+F4|

5
4)+

1

2
(F3|

6
5+F4|

6
5)+F4|

7
6, for k=7,

F1|
2
1+

1

2
(F1|

3
2+F2|

3
2)+

1

3

k−5

∑
s=1

(
Fs|

s+3
s+2+Fs+1|

s+3
s+2+Fs+2|

s+3
s+2

)

+
1

2
(Fk−4|

k−1
k−2Fk−3|

k−1
k−2)+Fk−3|

k
k−1, for k≥6.

(2.9)

Eq. (2.9) implies that if f (x) is to be integrated from x1 to x2, from x1 to x3, or from x1

to x4, respectively, then the method sums up exact integrals related to the approximation
polynomial defined in subdomain [x1;x4], see the definitions for k = 2, k = 3, and k = 4
in (2.9). Next we consider that f (x) is to be integrated from x1 to x5. In this case, exact
integrals of the two approximation polynomials defined in the subdomains [x1;x4] and
[x2;x5] are considered. The second and third interval ([x2;x3] and [x3;x4]) are both within
the domain of definition of the two approximation polynomials. The related integrals
are averaged in these two intervals, see the terms (F1|

3
2+F2|32)/2 and (F1|

4
3+F2|43)/3 in

definition for k = 5 in (2.9). Integration in the first and the fourth interval ([x1;x2] and
[x4;x5]), in turn, is based on first and the second approximation polynomial, respectively,
see the terms F1|

2
1 and F2|54 in the definition for k=5 in (2.9). In the general case, where f (x)

is to be integrated over the first five (or more) intervals, three (or more) approximation
polynomials are considered, whereby two intervals are lying within the domain of two
approximation polynomials, and one (or more) intervals is (are) lying within the domain
of definition of three approximation polynomials. In these intervals, the exact integrals of
the individual approximation polynomials are again averaged, see definitions for k= 6,
k=7, and k≥6 in (2.9).

In order to provide more detailed insight into the properties of the described integra-
tion method, we consider the following illustrative example which refers to integration
of the function

y(x)=sin(x)exp
(

−
x

10

)

(2.10)

in the interval [xa,xb]= [0,3π] based on seven grid points (n=7) with coordinates

xk =(k−1)
π

2
, k={1,2,3,4,5,6,7}. (2.11)

M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308 275

Denoting the primitive of y(x) as Y(x), and using the initial condition Y(x= 0), we es-
timate the function values of Y(x) at the grid point positions (2.11) using the described
integration method, see (2.2),

Yk =
∫ xk

x1

y(x)dx≈
k

∑
s=1

λ

24
Aksys, k={1,2,3,4,5,6,7}. (2.12)

The grid point distance follows from (2.1) as λ=π/2, the values of the integration matrix
Aks from (2.3) and (2.4), and the function values of (2.10) at all grid points positions (2.11)
read as

y1 =0, y2=0.8546, y3=0, y4=−0.6242, y5=0, y6=0.4559, y7=0. (2.13)

According to (2.12), estimates for the sought function values of Y(x) follow from the
following simple matrix-vector multiplication:

Y1

Y2

Y3

Y4

Y5

Y6

Y7

≈
π/2

24

0 0 0 0 0 0 0
10 16 −2 0 0 0 0
8 32 8 0 0 0 0
9 27 27 9 0 0 0
9 28 22 28 9 0 0
9 28 23 23 28 9 0
9 28 23 24 23 28 9

·

0
0.8546

0
−0.6242

0
0.4559

0

=

0
0.8950
1.7899
1.1426
0.4222
0.8951
1.4212

. (2.14)

The obtained results (2.14) turn out to be of satisfactory quality, when comparing with the
available analytical solution, see Fig. 2, and considering the very coarse discretization of
the integration interval.

The integration method turns out to be surprisingly simple, see (2.14), given the rather
advanced underlying integration concept which is illustrated next. The given function

0
0

0.5

1

1.5

2

2.5

π/2 π 3π/2 2π 5π/2 3π
x

Y
(x

)

exact solution
numerical result

Figure 2: Comparison of function values Yk with k= {1,2,3,4,5,6,7} obtained with the described integration

method, see (2.10) to (2.14) and points marked with squares, with the analytical result Y(x)= 100
101−

[
100
101 cos(x)+

10
101 sin(x)

]
exp

(
− x

10

)
illustrated by a solid line.

276 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

0

−1

−0.5

0

0.5

1

π/2 π 3π/2 2π 5π/2 3π
x

y
(x

),
f̃
1
(x

)

F1|
2
1

F1|
3
2

F1|
4
3

(a)

y(x)

f̃1(x)

0

−1

−0.5

0

0.5

1

π/2 π 3π/2 2π 5π/2 3π
x

y
(x

),
f̃
2
(x

)

F2|
3
2

F2|
4
3

F2|
5
4

(b)

y(x)

f̃2(x)

0

−1

−0.5

0

0.5

1

π/2 π 3π/2 2π 5π/2 3π
x

y
(x

),
f̃
3
(x

)

F3|
4
3

F3|
5
4

F3|
6
5

(c)

y(x)

f̃3(x)

0

−1

−0.5

0

0.5

1

π/2 π 3π/2 2π 5π/2 3π
x

y
(x

),
f̃
4
(x

)

F4|
5
4

F4|
6
5 F4|

7
6

(d)

y(x)

f̃4(x)

Figure 3: Concept of the described integration method: the function y(x) is approximated, in all subintervals
containing four neighboring grid points, by means of cubic polynomials, see (a) for approximation polynomial

f̃1(x), (b) for f̃2(x), (c) for f̃3(x), and (d) for f̃4(x).

y(x) is approximated, in all subintervals containing four neighboring grid points, by
means of cubic polynomials, see Fig. 3. The approximation polynomials are analytically
integrated between the grid points, see shaded areas in Fig. 3. Since the subintervals are
overlapping each other, also the computed integrals refer to overlapping domains and,
therefore, they are averaged arithmetically, according to (2.9).

Based on exactly integrating local approximation polynomials and on averaging such
local integrals, see (2.7) to (2.9), an integration method for i-fold numerical integration of
a smooth function f (x) can be expressed by analogy to (2.5) and (2.6) as

∫ xk

x1

∫

···
∫

︸ ︷︷ ︸

i integrals

f (x)dxi ≈
k

∑
s=0

Ai
ks fs, Ai

ks =

δks, i=0,

λ

144
Aks, i=1,

n

∑
t=0

A1
kt Ai−1

ts , i≥2.

(2.15)

As for (2.15), we note that all the integration constants, which are to be introduced when
performing the (i−1) indefinite integrations, were set equal to zero, for the sake of sim-

M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308 277

plicity. Aks in (2.15) is a matrix of real numbers, which follows from specifying (2.9) for
(2.8) and from setting the result equal to (2.15) specified for i=1; e.g., for maxk=maxs=10,
Aks reads as

Aks =

0 0 0 0 0 0 0 0 0 0
54 114 −30 6 0 0 0 0 0 0
48 192 48 0 0 0 0 0 0 0
54 162 162 54 0 0 0 0 0 0
54 168 132 168 54 0 0 0 0 0
53 171 136 136 171 53 0 0 0 0
53 170 139 140 139 170 53 0 0 0
53 170 138 143 143 138 170 53 0 0
53 170 138 142 146 142 138 170 53 0
53 170 138 142 145 145 142 138 170 53

. (2.16)

For larger values of maxk=maxs, additional entries of Aks can be found easily, consider-
ing the rules

∀k≤11, ∀s≥11 : Ak,s =0, (2.17a)

∀k≥11 : Ak,1=Ak,k=53, Ak,2=Ak,k−1=170, Ak,3=Ak,k−2=138,

Ak,4=Ak,k−3=142, Ak,5=Ak,k−4=145,

Ak,6= ···=Ak,k−5=144, Ak,k+1= ···=Ak,n =0. (2.17b)

Finally, we compare the method based on quadratic approximation polynomials with
the method based on cubic approximation polynomials, and we note that single and mul-
tiple integration of a pointwisely defined function is formally based on (2.5), independent
of the used order of local approximation, compare (2.5) with (2.15). The integration matri-
ces Ai

ks depend on the degree of the used approximation polynomials; for quadratic poly-
nomials, see (2.3)-(2.5), and for cubic polynomials, see (2.15)-(2.17). Further extensions of
the integration matrices Ai

ks towards locally quartic or even higher-order approximation
polynomials is straightforward and follows the line described above.

3 Numerical solution of linear m-th order ODEs with smooth

perturbation function and smooth coefficient functions

For the sake of clarity of presentation, we start with index notation, followed by the tran-
sition to matrix-vector operation-based calculus, which allows for straightforward imple-
mentation of the solution method into contemporary software for numerical mathemat-
ical computations. The proposed solution method consists (i) of discretizing the ODE in
the domain of interest, (ii) of integrating it numerically, which involves introduction of m
integration constants, and (iii) of identifying these m integration constants.

278 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

3.1 Derivation of the proposed method in index notation

As for presentation in index notation, it is useful to rewrite the ordinary differential equa-
tion (1.1) as

m

∑
i=0

a[i](x)y(i)(x)= r(x), y(i)(x)
def
=

diy(x)

dxi
, (3.1)

such that superscripts without brackets represent exponents, superscripts in round brack-
ets indicate derivatives, and superscripts in squared brackets stand simply for indices.

Assuming that both the perturbation function r(x) and the coefficient functions a[i](x),
i=0,1,2,··· ,m, are smooth functions in the integration interval xa ≤ x≤ xb, we subdivide
the latter into (n−1) intervals of identical size λ, see (2.1). The governing differential
equation (3.1) is evaluated at all n interval boundaries xa=x1, x2, x3, ··· , xn−1, and xn=xb,
delivering n equations of the form

m

∑
i=0

a
[i]
k y

(i)
k = rk, k=1,2,··· ,n, (3.2)

where

a
[i]
k

def
= a[i](xk), y

(i)
k

def
=

diy(x)

dxi

∣
∣
∣

x=xk

, rk
def
= r(xk). (3.3)

Eqs. (3.2) contain (m+1)×n unknowns y
(i)
k with i=0,1,2,··· ,m and k=1,2,··· ,n.

In order to reduce the number of unknowns in the discretized version of the ODE
(3.2), we start with formal integration of the unknown function y(m)(x) representing the
highest-order derivative of the sought function y(x). Integrating y(m)(x) first symboli-
cally from x= x1(= xa) to x= xk, applying then also the integration method (2.6) to this
problem, and setting the two resulting expressions equal to each other yields

∫ xk

xa

y(m)(x)dx=y(m−1)(x)
∣
∣
∣

xk

xa

=y
(m−1)
k −y

(m−1)
a =

k

∑
s=1

A1
ksy

(m)
s . (3.4)

Rearranging terms allows for expressing y
(m−1)
k as

y
(m−1)
k =y

(m−1)
a +

k

∑
s=1

A1
ksy

(m)
s , (3.5)

where y
(m−1)
a may be interpreted as an integration constant which is equal to the function

value of y(m−1)(x) at the left boundary of the integration interval, i.e., at x= xa. Double
and triple integration of y(m)(x) from x= xa to x= xk yield by analogy to (3.4) and (3.5):

y
(m−2)
k =y

(m−2)
a +y

(m−1)
a (xk−xa)+

k

∑
s=1

A2
ksy

(m)
s , (3.6a)

y
(m−3)
k =y

(m−3)
a +y

(m−2)
a (xk−xa)+y

(m−1)
a

(xk−xa)2

2!
+

k

∑
s=1

A3
ksy

(m)
s . (3.6b)

M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308 279

Eqs. (3.5) and (3.6) imply that function values of all lower-order derivatives can be ex-
pressed as

y
(m−i)
k =

i−1

∑
j=0

x
[j]
k y

(m−i+j)
a +

k

∑
s=1

Ai
ksy

(m)
s , i=1,2,··· ,m, k=1,2,··· ,n, (3.7)

where

x
[j]
k

def
=

(xk−xa)j

j!
. (3.8)

Insertion of (3.7) into the discretized version of the ODE (3.2) results in the sought reduc-
tion of unknowns. Rearranging terms in the obtained expression can be shown to deliver
the following system of n linear, algebraic equations with n unknown function values

y
(m)
s (s=1,2,··· ,n) and m integration constants y

(m−i)
a (i=1,2··· ,m):

k

∑
s=0

Dksy
(m)
s +

m−1

∑
i=0

d
[i]
k y

(i)
a = rk, k=1,2,··· ,n. (3.9)

In (3.9), Dks and d
[i]
k , respectively, denote the a-priori computable coefficients of one n×n

matrix D and m different vectors ~d[i], with i=0,1,··· ,m−1, reading as:

Dks=
m

∑
i=0

a
[m−i]
k Ai

ks and d
[i]
k =

i

∑
j=0

a
[j]
k x

[i−j]
k . (3.10)

Definitions (3.10) and the quadratic approximation polynomial-related Eqs. (2.5) and (2.3)
imply Dks to be a lower triangular matrix, except for coefficient D23 which is also not

equal to zero, unless a
[i]
2 =0 for all i=0,1,··· ,m. If integration is based on piecewise exact

integration of cubic approximation polynomials, see (2.15), then Dks is a lower triangular
matrix, except for coefficients D23 and D24, which are both not equal to zero.

Solving the discretized version of the ODE (3.9) for the unknown function values

y
(m)
k , with k= 1,2,··· ,n involves inversion of the D matrix, i.e., D has to have full rank.

This requires, in particular, that the first coefficient of the D matrix, D11, is not equal to
zero. Definitions (3.10) and (2.5) together with (2.3) imply that D11 6= 0 corresponds to

the condition a
[m]
1 6=0, i.e., a[m](xa) 6=0. Restricting our considerations to cases where this

condition is satisfied, the solution of (3.9) for the unknown function values y
(m)
k reads as

y
(m)
k =wk+

m

∑
i=1

v
[m−i]
k y

(m−i)
a , k=1,2,··· ,n, (3.11)

where the vector ~w and the m different vectors ~v[m−i] with i = 1,2,··· ,m contain again
a-priori computable coefficients defined as

wk=
k

∑
s=1

D−1
ks rs and v

[m−i]
k =−

k

∑
s=1

D−1
ks d

[m−i]
s . (3.12)

280 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

(3.11) provides access to function values of the sought function y(m)(x). Back-substitution
of (3.11) into (3.7) results in expressions for the function values of the lower-order deriva-

tives y(m−i)(x), i.e., expressions for y
(m−i)
k with i=1,2,··· ,m. We are left with determina-

tion of the m integration constants y
(m−i)
a with i=1,2,··· ,m. This is described next.

The m integration constants y
(m−i)
a with i=1,2,··· ,m are identified from m boundary

conditions. Considering initial value problems, all m boundary conditions are formulated
in the sought integration constants, providing direct access to them. Considering general
boundary value problems, however, the boundary conditions refer to both boundaries of
the interval of interest. The conditions referring to xa provide direct access to sought in-
tegration constants, and the remaining constants have to be identified from the boundary
conditions referring to xb. To come up with a related system of algebraic equations, we
specify (3.7) first for (3.11) and then for k= n, which delivers, when considering xn = xb

as well as y
(m−i)
n =y

(m−i)
b ,

y
(m−i)
b =

i−1

∑
j=0

x
[j]
b y

(m−i+j)
a +

n

∑
s=1

Ai
ns

[

ws+
m

∑
j=1

v
[m−j]
s y

(m−j)
a

]

, i=1,2,··· ,m. (3.13)

Eq. (3.13) together with the m boundary conditions represents m equations for the m

integration constants y
(m−i)
a with i=1,2,··· ,m.

3.2 Matrix-vector operation-based implementation

Herein, we describe the transition from the index notation to the matrix-vector operation-
based outline of the proposed solution method. The structogram of the proposed solution
method reads as:

1. Specify xa and xb, the two boundaries of the integration interval.

2. Specify n, the number of grid points within the integration interval.

3. Compute λ, the grid point distance, as λ=(xb−xa)/(n−1).

4. Compute coordinates of grid points: xk (k=1,2,··· ,n)

xk =xa+(k−1)λ. (3.14)

5. Compute vectors ~x[i] (i=0,1,··· ,m−1), with coordinates defined as

x
[i]
k =

(xk−xa)i

i!
. (3.15)

6. Since Eqs. (3.10) cannot be directly related to standard matrix-vector operations, the coefficient

functions a[i](x) (i=0,1,··· ,m) are evaluated at the n grid point positions, and the obtained val-

ues are put into the main diagonals of corresponding n×n diagonal matrices M[i] (i=0,1,··· ,m)
such that the components of the latter matrices read as

M
[i]
kk = a

[i]
k , k=1,2,··· ,n; all other M

[i]
ks =0. (3.16)

M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308 281

7. Evaluate perturbation function r(x) at all n grid points, in order to assemble vector ~r with
coordinates rk = r(xk).

8. Assemble matrices A, A0, and A1 according to Eqs. (2.3), (2.4) and (2.5), or according to
Eqs. (2.16), (2.17) and (2.15), respectively. Compute matrices Ai (i=2,3,··· ,m) based on the
following matrix multiplications:

Ai=A1 Ai−1. (3.17)

9. Compute matrix D and vectors ~d[i] (i=0,1,··· ,m−1), using matrix multiplications and matrix-
vector multiplications, respectively, based on the following matrix-vector representations of
Eqs. (3.10)

D=
m

∑
i=0

M[m−i]Ai and ~d[i]=
i

∑
j=0

M[j]
~x[i−j]. (3.18)

10. Invert matrix D and compute vectors ~w and ~v[i] (i=0,1,··· ,m−1):

~w=D−1
~r, ~v[i]=−D−1~d[i]. (3.19)

11. Only for boundary value problems: Determine unknown integration constants (= state variables
at xa) from boundary conditions formulated at the end of the integration interval, using the
following system of algebraic equations:

y
(m−i)
b =

i−1

∑
j=0

x
[j]
b y

(m−i+j)
a +(~u[i])T

[

~w+
m

∑
j=1

~v[m−j]y
(m−j)
a

]

, i=1,2,··· ,m, (3.20)

where the row vector (~u[i])T stands for the transpose of the column vector ~u[i] with coordinates

u
[i]
k =Ai

nk. (3.21)

12. Compute solution vectors

~y(m)=~w+
m

∑
i=1

~v[m−i]y
(m−i)
a , ~y(m−i)=

i−1

∑
j=0

~x[j]y
(m−i+j)
a +Ai

~y(m). (3.22)

4 Comparison of the presented method with other methods

4.1 First-order initial value problem: comparison with backward Euler
scheme and Runge-Kutta method

Herein, we solve the initial value problem

dy(x)

dx
+15y(x)=0, y(x=0)=1 (4.1)

by means of (i) the backward Euler method (”bEM”) see Appendix B.1, of (ii) the Runge-
Kutta method (”RK4”), see Appendix B.2, and of (iii) the presented solution method

282 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

based on piecewise exact integration of quadratic approximation polynomials and on
piecewise exact integration of cubic approximation polynomials, respectively, see Sec-
tion 2. Solutions, computed in the interval x ∈ [0,1], are compared with the analytical
solution of (4.1), reading as

y(x)=exp(−15x). (4.2)

Since (4.2) is a strongly decaying exponential function, (4.1) is mathematically classified
as a ”stiff” initial value problem.

We investigate the accuracy of numerical results as a function of the chosen method
and of the number of chosen grid points n, i.e., we repeatedly solve problem (4.1), based
on many different choices for grid point number n. In this context, the following pre-
diction error is evaluated at every grid point position and for every numerical solution
scheme mentioned above:

Ek= |yk−y(xk)|, k=1,2,··· ,n, (4.3)

where yk stands for numerical results referring to position xk and where y(xk) stands for
the analytical solution (4.2) evaluated at x= xk. To compare the four solution methods,
we focus on the maximum prediction error Emax, on the mean prediction error Emean, and
on the prediction error at the end of the integration interval Eb, defined as

Emax=max
k

Ek, Emean=
1

n

n

∑
k=1

Ek, Eb =En, (4.4)

respectively.
Properties of the proposed method observed with small discretization densities (n≤

30) are discussed next. Numerical results at the end of the integration interval, obtained
with increasing grid point number n, ”oscillate” with decreasing amplitude around the
analytical solution, see Fig. 4.

5 6 7 8 9 10

−0.05

0

0.05

0.1

0.15

number of grid points n [-]

p
re

ic
ti

on
fo

r
y

b
[-
]

yb(n)
exp(–15xb)

11 12 13 14 15 16 17 18 19 20

0

2

4

6

8
x 10

−6

number of grid points n [-]

p
re

ic
ti

on
fo

r
y

b
[-
]

yb(n)
exp(–15xb)

20 30 40 50

3.05

3.1

3.15

3.2

3.25

3.3

3.35
x 10

−7

number of grid points n [-]

p
re

ic
ti

on
fo

r
y b

[-
]

yb(n)
exp(–15xb)

(a) (b) (c)

Figure 4: Convergence study for stiff initial value problem (4.1): function value at the end of the integration
interval (xb = 1) obtained with the presented solution method based on piecewise exact integration of cubic
approximation polynomials (crosses) and exact solution (solid line), see (4.2); notably, the ordinates of (a), (b),
and (c) refer to different intervals.

M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308 283

0 10 20 30 40 50 60 70 80 90 100
1e−11
1e−10
1e−09
1e−08
1e−07
1e−06
1e−05
0.0001
0.001
0.01
0.1

1

number of grid points n [-]

er
ro

rs
E

m
a
x
,
E

m
e
a
n
,
E

b
[-
]

Emax(n)
Emean (n)
Eb(n)

0 10 20 30 40 50 60 70 80 90 100
1e−11
1e−10
1e−09
1e−08
1e−07
1e−06
1e−05
0.0001
0.001
0.01
0.1

1

number of grid points n [-]

er
ro

rs
E

m
a
x
,
E

m
e
a
n
,
E

b
[-
]

Emax(n)
Emean (n)
Eb(n)

(a) (b)

0 10 20 30 40 50 60 70 80 90 100
1e−11
1e−10
1e−09
1e−08
1e−07
1e−06
1e−05
0.0001
0.001
0.01
0.1

1

number of grid points n [-]

er
ro

rs
E

m
a
x
,
E

m
e
a
n
,
E

b
[-
]

Emax(n)
Emean (n)
Eb(n)

0 10 20 30 40 50 60 70 80 90 100
1e−11
1e−10
1e−09
1e−08
1e−07
1e−06
1e−05
0.0001
0.001
0.01
0.1

1

number of grid points n [-]

er
ro

rs
E

m
a
x
,
E

m
e
a
n
,
E

b
[-
]

Emax(n)
Emean (n)
Eb(n)

(c) (d)

Figure 5: Convergence study for stiff initial value problem (4.1): errors (4.4) as a function of the grid point
number n: (a) backward Euler method (”bEM”) see B.1, (b) classical Runge-Kutta method (”RK4”), see B.2,
(c) presented solution method based on piecewise exact integration of quadratic approximation polynomials,
and (d) presented solution method based on piecewise exact integration of cubic approximation polynomials.

This results in non-smooth shapes of Eb(n), see, e.g., the kink at n= 28 in Fig. 5(d),
resulting from the fact that numerical results at the end of the integration interval are
(i) larger than the analytical solution for 14≤ n≤ 28, but (ii) smaller than the analytical
solution for n≤29, see Fig. 4.

The proposed method performs significantly better than the backward Euler method
(”bEM”), independent of the chosen grid point number, see Fig. 5. For grid point num-
bers around 10, the proposed scheme using quadratic approximation polynomials per-
forms similar to the Runge-Kutta method (”RK4”), while the proposed scheme using
cubic approximation polynomials performs even better than the classical RK4 method.
For grid point numbers around 100, the proposed scheme using cubic approximation
polynomials performs similar to the Runge-Kutta method, while the proposed scheme
using quadratic approximation polynomial results in smaller accuracies.

4.2 Second-order boundary value problem: comparison with finite
difference method

Herein, we solve the benchmark boundary value problem of [19]

d2y(x)

dx2
−

dy(x)

dx
=−exp(x−1)−1,

{
y(x=0)=0,
y(x=1)=0,

(4.5)

284 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

by means of (i) the finite difference method, see Appendix B.3 and of (ii) the presented
solution method based on piecewise exact integration of quadratic approximation poly-
nomials and on piecewise exact integration of cubic approximation polynomials, respec-
tively, see Section 2. Solutions, computed in the interval x∈ [0,1], are compared with the
analytical solution of (4.5), reading as

y(x)= x
[
1−exp(x−1)

]
. (4.6)

When solving the problem at hand according to the outline of the presented solution

method described in Subsection 3.2, two integration constants are introduced: y
(0)
a and

y
(1)
a . This provides the motivation to reformulate the boundary conditions given in (4.5)

using the notation of Subsection 3.2; this yields

y
(0)
a =0, y

(0)
b =0. (4.7)

While the first boundary condition (4.7) provides direct access to the first integration con-

stant, the second integration constant y
(1)
a is to be identified from the boundary condition

at the end of the integration interval, see the second condition (4.7). We are left with

establishing a relation between the boundary value y
(0)
b appearing in (4.7), and the inte-

gration constant y
(1)
a . To this end, we focus on point 11 of the listing in Subsection 3.2,

where relations between boundary values of y(x) and its derivatives with respect to x are

established. Evaluating y
(0)
b according to (3.20) yields in the present context:

y
(0)
b =(~u[2])T

~w+
[

x
[0]
b +(~u[2])T

~v[0]
]

y
(0)
a +

[

x
[1]
b +(~u[2])T

~v[1]
]

y
(1)
a . (4.8)

y
(1)
a is the only unknown on the right-hand side of Eq. (4.8), i.e., all other quantities can be

computed after having completed the first 10 points of the listing of Subsection 3.2. We
now specify Eq. (4.8) for the first equation (4.7), and we insert the resulting expression

for y
(0)
b into the second boundary condition (4.7) which results in an algebraic equation

for the sought integration constant y
(1)
a , with the solution:

y
(1)
a =−

(~u[2])T~w

x
[1]
b +(~u[2])T~v[1]

. (4.9)

Now, all integration constants are identified (see the first equation (4.7) and (4.9)), such
that the further evaluation of the solution is the same as the one described for initial
value problems, see point 12 of the listing of Subsection 3.2, providing access to y(x) and
its derivatives with respect to x.

We investigate the accuracy of numerical results as a function of the chosen method
and the number of chosen grid points n, i.e., we repeatedly solve problem (4.1), based
on many different choices for grid point number n. In this context, prediction error (4.3)

M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308 285

0 10 20 30 40 50 60 70 80 90 100
1e−11
1e−10
1e−09
1e−08
1e−07
1e−06
1e−05
0.0001
0.001
0.01

number of grid points n [-]

er
ro

rs
E

m
a
x
,
E

m
e
a
n

[-
] Emax(n)

Emean (n)

0 10 20 30 40 50 60 70 80 90 100
1e−11
1e−10
1e−09
1e−08
1e−07
1e−06
1e−05
0.0001
0.001
0.01

number of grid points n [-]

er
ro

rs
E

m
a
x
,
E

m
e
a
n

[-
] Emax(n)

Emean (n)

0 10 20 30 40 50 60 70 80 90 100
1e−11
1e−10
1e−09
1e−08
1e−07
1e−06
1e−05
0.0001
0.001
0.01

number of grid points n [-]

er
ro

rs
E

m
a
x
,
E

m
e
a
n

[-
] Emax(n)

Emean (n)

(a) (b) (c)

Figure 6: Convergence study for boundary value problem (4.5): errors (4.4) as a function of the grid point
number n: (a) finite difference method, see Appendix B.3, (b) presented solution method based on piecewise
exact integration of quadratic approximation polynomials, and (c) presented solution method based on piecewise
exact integration of cubic approximation polynomials.

is evaluated at every grid point position and for every numerical solution scheme. To
compare the three solution methods, we focus on the maximum prediction error Emax

and on the mean prediction error Emean defined in (4.4). The proposed methods performs
better than the finite difference method, see Fig. 6. For a fixed grid point number, cubic
approximation polynomials provide more accurate results than quadratic approximation
polynomials.

5 Oscillation of a modulated torsional spring pendulum

5.1 Statement of the problem

In order to check the performance of the proposed method in the framework of a chal-
lenging initial value problem, we consider a linear mechanical system comprising a mass-
less, straight, and rigid rod which is supported in its middle such that the rod can rotate
around an axis which is normal to the rod axis, see Fig. 7.

The rod is fixed to one end of a linear torsional spring (with spring stiffness= c̄), and
the other end of the spring is fixed in space. Two identical point masses Mp are mounted
to the rod in an axisymmetric fashion with respect to the axis of rotation. They are forced
to move simultaneously along the rod in opposite directions such that at any time t the
distance of both masses from the center of rotation is the same and given through the
following mathematical expression

ℓ(t)= ℓ0(1+mdsin(ωt)). (5.1)

In Eq. (5.1), ℓ0, md, and ω, respectively, denote the mean distance of the point masses
from the center of rotation, the modulation depth [20], and the angular frequency of
the modulation. As the masses move closer to the center of rotation, the moment of
inertia of the system, J, decreases, while its eigenfrequency increases, and vice versa. In
mathematical terms, the moment of inertia reads at time t as [20]

J(t)=2Mpℓ
2(t). (5.2)

286 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

of in-plane
direction

rod rotation

of in-plane
center

rod rotation

direction of mass translation
along rotating rod

point mass Mp

torsional spring with
spring stiffness c̄rigid rod

of point mass from
center of rotation

ℓ(t) . . . distance

Figure 7: Modulated torsional spring pendulum analyzed by Butikov [20].

Considering a friction-free system, and formulating the dynamic torque equilibrium for
the oscillating pendulum, delivers the following governing differential equation:

d

dt

[
J(t)ϕ̇(t)

]
=−c̄ϕ(t). (5.3)

In Eq. (5.3), J(t)ϕ̇(t) denotes the angular momentum of the rotating structure, and the
right-hand side of (5.3) implies that the restoring torque acting from the spring on the
rod is proportional to the angular displacement ϕ of the rod, where ϕ is measured rela-
tive to the natural (stress-free) position of the spring. Following Butikov [20] who con-
sidered that the oscillation is damped proportionally to the angular velocity of the rod,

i.e., adding −4Mpℓ
2
0γϕ̇ to the right-hand side of Eq. (5.3), defining ω0

def
=

√

c̄/(2Mpℓ
2
0),

combining Eqs. (5.1) to (5.3), and simplifying yields the following second-order ODE for
ϕ(t)

(1+md sin(ωt))ϕ̈(t)+
[
2mdωcos(ωt)(1+md sin(ωt))+2γ

]
ϕ̇(t)+ω2

0 ϕ(t)=0, (5.4)

see Fig. 8 for an illustration of the involved non-linear coefficient functions.

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

time t [s]

co
effi

ci
en

t
fu

n
ct

io
n
s

a
2
(t

)
[–

]
an

d
a

1
(t

)
[1

/s
]

a2(t)
a1(t)

Figure 8: Coefficient functions a2(t)=1+mdsin(ωt) and a1(t)=2mdωcos(ωt)(1+mdsin(ωt))+2γ, evaluated
for the input values listed in (5.5).

M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308 287

5.2 Solution by means of the presented method

Because no analytical solution exists for the linear and homogeneous ODE with variable
coefficients, (5.4), we solve it numerically within the time interval ranging from t=0s to
t=10s, considering the following numerical inputs

md=0.2, ω=2π[s−1], γ=
π

36
[s−1], ω0=π[s−2], (5.5)

and the initial conditions
ϕ(0)=10◦, ϕ̇(0)=0. (5.6)

This problem was analyzed by Butikov [20, pp. 538]. We note for later reference that the
size of the integration interval tb−ta = 10 s together with the angular frequency of the
modulation ω=2π (corresponding to an modulation period T=1s) imply that the time
interval of interest comprises ten sinusoidal modulation cycles. The numerical solution,
obtained with a grid point number n = 2001 (2000 intervals) and with the integration
method based on piecewise exact integration of quadratic approximation polynomials,
satisfactorily reproduces the benchmark solution described in [20], i.e., the obtained func-
tions ϕ(t), ϕ̇(t), and ϕ̈(t) exhibit pronounced nonlinearities, see Fig. 9.

0 2 4 6 8 10

−20

−10

0

10

20

ϕ̈(t)

an
gu

la
r

ac
ce

le
ra

ti
on

ϕ̈
[r

ad
/s

2
]

time t [s]
0 2 4 6 8 10

−5

0

5

ϕ̇(t)

an
gu

la
r

v
el

o
ci

ty
ϕ̇

[r
ad

/s
]

time t [s]

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

ϕ(t)

an
gu

la
r

d
is

p
la

ce
m

en
t

ϕ
[r

ad
]

time t [s]

Figure 9: Solution for ODE (5.4) specified for input values (5.5), with initial conditions (5.6), computed based
on the proposed solution method with grid point number n=2001 and piecewise exact integration of quadratic
approximation polynomials, see Section 2; for details on numerical results see also Table 1.

In order to gain more insight into the characteristics of the proposed solution scheme,
we investigate the accuracy of our results as a function of the number of chosen grid
points n, i.e., we repeatedly solve the ODE (5.4), based on many different choices for
grid point number n. In the context of defining meaningful prediction errors for the
computed state variables ϕ(t), ϕ̇(t), and ϕ̈(t), we recall that no analytical solution exists
for the problem at hand. Hence, we treat the results obtained with n= 2001 (see Fig. 9)
as the reference solution, and we compare the computed state variables ϕ(t), ϕ̇(t), and
ϕ̈(t) at the end of the integration interval (t= 10s) with the corresponding values of the
reference solution, based on the following definitions for the prediction errors:

Eα=
∣
∣
∣
α(t=10s;n)−α(t=10s;n=2001)

α(t=10s;n=2001)

∣
∣
∣, α= ϕ, ϕ̇, ϕ̈. (5.7)

288 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

Table 1: Numerical results for pendulum problem obtained with grid point number n=2001 and piecewise exact
integration of quadratic approximation polynomials, see also Fig. 9.

t [s] ϕ(t) [rad] ϕ̇(t) [rad/s] ϕ̈(t) [rad/s2]
0 +0.17453293 ±0.00000000 −1.7225709
1 −0.21779263 +0.07666806 +1.9434582
2 +0.27161429 −0.14664899 −2.2865614
3 −0.33862976 +0.21682313 +2.7593630
4 +0.42210886 −0.29292147 −3.3787311
5 −0.52611988 +0.38019098 +4.1707151
6 +0.65572848 −0.48390759 −5.1711305
7 −0.81724486 +0.60980455 +6.4268465
8 +1.01853127 −0.76446596 −7.9977637
9 −1.26938494 +0.95572338 +9.9595272
10 +1.58201503 −1.19308784 −12.4070726

Errors (5.7) are evaluated for both integration methods: quadratic and cubic approxima-
tion polynomials. Numerical results at the end of the integration interval, obtained with
increasing grid point number n, ”oscillate” with decreasing amplitude around the refer-
ence solution, see the kinks in Figs. 10 (a) and (b). In addition, the convergence study
implies that both approaches have a similar quantitative performance in the range of
engineering relevance, compare Figs. 10 (a) and (b).

0 50 100150200250300350400450500
1e−06

1e−05

0.0001

0.001

0.01

0.1

1

number of grid points n [-]

er
ro

rs
E

ϕ
,
E

ϕ̇
,
an

d
E

ϕ̈
[-
]

Eϕ̈(n)

Eϕ̇(n)
Eϕ(n)

0 50 100150200250300350400450500
1e−06

1e−05

0.0001

0.001

0.01

0.1

1

number of grid points n [-]

er
ro

rs
E

ϕ
,
E

ϕ̇
,
an

d
E

ϕ̈
[-
]

Eϕ̈(n)

Eϕ̇(n)
Eϕ(n)

(a) (b)

errors < 10−1 n≥70 n≥74

errors < 10−2 n≥115 n≥109

errors < 10−3 n≥182 n≥141

errors < 10−4 n≥286 n≥291

errors < 10−5 n≥447 n≥460

(a) (b)

Figure 10: Convergence study for pendulum problem: errors (5.7) as a function of the number of used grid
points n: (a) for piecewise exact integration of quadratic approximation polynomials, and (b) for piecewise
exact integration of cubic approximation polynomials.

For errors smaller than 1%, both approaches require practically 120 grid points. While
141 grid points allow for reducing prediction errors down to 0.1%, if integration is based
on piecewise cubic approximation polynomials, the same accuracy requires 182 grid
points, if quadratic approximation polynomials are used (Fig. 10). For even more accurate
results in terms of prediction errors amounting to less than 0.01%, however, quadratic
approximation polynomials turn out to perform a little more efficient that their cubic
counterparts.

M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308 289

5.3 Multi-subinterval solution by means of the presented method

Inversion of the D-matrix defined in (3.18) is – for large values of n – the most time-
consuming part of the solution scheme, since the time required for numerical inversion
of D increases overlinearly with increasing grid point number n. Reduction of compu-
tation time requires reduction of the grid point number. In order to maintain a high
accuracy level, it is beneficial to subdivide the integration domain into several subinter-
vals, and to apply the proposed solution method each of these subintervals separately.
To obtain results with errors as small as the ones given for n=401 in Fig. 10, for instance,
one could use 10 integration subintervals covering time periods of one second each (one
subinterval per modulation cycle), and discretize each subinterval by 41 grid points only.
After having applied the presented solution method to the first subinterval t ∈ [0s,1s],

the state variables obtained at the end of this first subinterval, i.e., y
(0)
b = ϕ(t= 1s) and

y
(1)
b = ϕ̇(t=1s) would be available and serve as initial values for solving the problem in

the second subinterval t∈ [1s,2s], and so on. This way, Fig. 10 implies that only 30 grid
points per modulation cycle are sufficient to reduce prediction errors to values smaller
than 0.01%.

6 Steady-state heat transfer through a cooling web

6.1 Statement of the problem

In order to describe the performance of the proposed method in the framework of an en-
gineering second-order boundary value problem involving boundary conditions which
are more complex that the ones given in Subsection 4.2, we study stationary heat transfer
through a cooling web with width t, length ℓ, and a rectangular cross-section, see Fig. 11.

Since the surfaces at the top and the bottom are only slightly inclined with respect to
the mid-plane of the cooling web (tanβ ≪ 1, see Fig. 11), we follow [21] and assume a
one-dimensional heat conduction problem in x-direction, governed by

q(x)=−η
dT(x)

dx
, (6.1)

where q(x) is the heat flux in x-direction per unit cross-sectional area of the cooling web,
η is the thermal conductivity of the cooling web material, and T(x) is the temperature
distribution.

In order to derive the governing differential equation for T(x), we deal with the en-
ergy balance of an elementary cooling web volume (see Fig. 11(b)). Since there are no
heat sources or heat sinks within a cooling web, and because we envision a stationary
(time-independent) problem, conservation of energy implies simply that the heat con-
ducted into the elementary volume is equal to the heat conducted out of the element.
The heat entering the element through the cross-section at x (see Fig. 11(a)) follows from

290 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

h(x)

x

ℓ

t

h(x) dx

t
dx

cos β

βh(x) h(x + ∆x)

t

dx

x ∆x

(a) (b)

Figure 11: Cooling web typically used in electronic devices [21] (a) geometric dimensions, (b) elementary volume.

multiplying (6.1) with the cross-sectional area A(x)= th(x) as

Q(x)=−η
dT(x)

dx

∣
∣
∣
x
th(x). (6.2)

By analogy, the heat leaving the element through the cross-section at x+∆x (see Fig. 11(b))
follows as

Q(x+∆x)=−η
dT(x)

dx

∣
∣
∣

x+∆x
th(x+∆x). (6.3)

The heat loss through the four lateral (ℓat) surfaces of the element, Qℓat, is governed by
the heat transfer coefficient αh, the temperature difference between these surfaces and
the surrounding air, and the area of the solid-air interface. Integrating over the latter (see
Fig. 11(b)), we find

Qℓat=
∫ x+∆x

x
αh

[

T(ξ)−Tair

]

2
[t

cosβ
+h(ξ)

]

dξ. (6.4)

Formulating, based on (6.2), (6.3), and (6.4), the elementary energy balance condition as
Q(x) = Q(x+∆x)+Qℓat, rearranging terms, dividing the resulting expression by ∆x =
xj−xi, and taking the limit ∆x→0, delivers†

ηt
d

dx

[dT(x)

dx
h(x)

]

−αh

[

T(x)−Tair

]

2
[t

cosβ
+h(x)

]

=0. (6.5)

Rearranging terms in (6.5) finally yields the following second-order ODE for the temper-
ature distribution T(x):

ηth(x)
d2T(x)

dx2
+ηt

dh(x)

dx

dT(x)

dx
−2αh

[t

cosβ
+h(x)

]

T(x)=−2αh

[t

cosβ
+h(x)

]

Tair. (6.6)

†Use is made of lim∆x→0
1

∆x

∫ x+∆x
x f (ξ)dξ= f (x).

M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308 291

As boundary conditions, a constant temperature is prescribed at the position x=0, where
the cooling web is fixed to the medium which is to be cooled [21]

T(x=0)=Ta =const (6.7)

and at the other end (x= ℓ), a free-surface condition applies

−η
dT(x)

dx

∣
∣
∣

x=ℓ

th(x= ℓ)=αh

[

T(x= ℓ)−Tair

]

th(x= ℓ). (6.8)

Eq. (6.8) is an energy balance condition formulated for the rectangular surface at x = ℓ,
expressing that the heat which is transported inside the cooling web to this surface is
equal to the energy lost from that surface towards the ambient air.

6.2 Solution by means of the presented method

The governing differential equation (6.6), together with the boundary conditions (6.7) and
(6.8), is ready to be solved by the presented solution method, provided that function h(x)
and constants t, ℓ, αh, η, Ta, and Tair are specified numerically. The height of the cooling
web h(x) is considered to decrease linearly with increasing distance from the medium
which is to be cooled (see Fig. 11(a)), and geometric dimensions typical for cooling webs
in electronic equipment are adopted [21]:

h(x)=ha+(hb−ha)
x

ℓ
with

{
ha =2mm,
hb =1mm,

and

{
ℓ=40mm,
t=200mm.

(6.9)

Furthermore, we consider the cooling web to consist of aluminum, the surrounding air
to exhibit room temperature, and the body to be cooled to exhibit 50◦C, i.e.,

{
η=200W m−1◦C−1,
αh =15W m−2◦C−1,

{
Ta =50◦C,
Tair =25◦C.

(6.10)

When solving the problem at hand according to the outline of the presented solu-
tion method described in Subsection 3.2, the temperature distribution T(x) is denoted

as y(x), and two integration constants are introduced: y
(0)
a and y

(1)
a . This provides the

motivation to reformulate the boundary conditions (6.7) and (6.8) using the notation of
Subsection 3.2; this yields

y
(0)
a =Ta, −ηy

(1)
b =αh

[

y
(0)
b −Tair

]

. (6.11)

While the first boundary condition (6.11) together with numerical input (6.10) provides

direct access to the first integration constant as y
(0)
a =50◦C, the second integration constant

y
(1)
a is to be identified from the boundary condition at the end of the cooling web, see the

second condition (6.11). We are left with establishing a relation between the boundary

292 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

values y
(1)
b and y

(0)
b appearing in (6.11), and the integration constant y

(1)
a . To this end,

we focus on point 11 of the listing in Subsection 3.2, where relations between boundary

values of y(x) and its derivatives with respect to x are established. Evaluating y
(0)
b and

y
(1)
b according to (3.20) yields in the present context:

y
(0)
b =(~u[2])T

~w+
[

x
[0]
b +(~u[2])T

~v[0]
]

y
(0)
a +

[

x
[1]
b +(~u[2])T

~v[1]
]

y
(1)
a , (6.12a)

y
(1)
b =(~u[1])T

~w+(~u[1])T
~v[0]y

(0)
a +

[

x
[0]
b +(~u[1])T

~v[1]
]

y
(1)
a . (6.12b)

y
(1)
a is the only unknown on the right-hand sides of Eqs. (6.12), i.e., all other quantities

are either specified by means of boundary conditions (see (6.11)1) or they can be com-
puted after having completed the first 10 points of the listing of Subsection 3.2. We now
insert Eqs. (6.12) into the second boundary condition (6.11) which results in an algebraic

equation for the sought integration constant y
(1)
a , with the solution:

y
(1)
a =

αh

{

Tair−(~u[2])T~w−
[

x
[0]
b +(~u[2])T~v[0]

]

Ta

}

−η
[

(~u[1])T~w+(~u[1])T~v[0]Ta

]

αh

[

x
[1]
b +(~u[2])T~v[1]

]

+η
[

x
[0]
b +(~u[1])T~v[1]

] . (6.13)

Now, all integration constants are identified (see the first equation (6.11) and (6.13)), such
that the further evaluation of the solution is the same as the one described for initial
value problems, see point 12 of the listing of Subsection 3.2, providing access to y(x) and
its derivatives with respect to x, i.e., to the temperature field T(x) and its derivatives with
respect to x.

In order to investigate the accuracy of our results as a function of the number of cho-
sen grid points n, we repeatedly solve the ODE (6.6), based on many different choices for
grid point number n. In the context of defining meaningful prediction errors, we set our
focus on boundary values which were not specified through boundary conditions, i.e.,
on the heat fluxes at the integration boundaries Qa and Qb, as well as on the temperature
at the free end of the cooling web, Tb. We treat the results obtained with n= 2001 (see
Fig. 12) as the reference solution, and we compare the computed state variables Qa, Qb,
and Tb with the corresponding values of the reference solution, based on the following
definitions for the prediction errors:

Eα=
∣
∣
∣
α(n)−α(n=2001)

α(n=2001)

∣
∣
∣, α=Qa,Qb,Tb. (6.14)

Errors (6.14) are evaluated for both integration methods: quadratic and cubic approxi-
mation polynomials (see Fig. 13).

The convergence study implies that piecewise exact integration of cubic approxima-
tion polynomials based on a specific grid point number results in a slightly higher preci-
sions than piecewise exact integration of quadratic approximation polynomials and the

M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308 293

0 0.01 0.02 0.03 0.04
48

48.5

49

49.5

50
T (x)

te
m

p
er

a
tu

re
T

[◦
C

]

coordinate x [m]

0 0.01 0.02 0.03 0.04
0

5000

10000

15000
Q(x)

h
ea

t
fl
ow

Q
[W

/m
2
]

coordinate x [m]

(a) (b)

Figure 12: Solution for the cooling web problem (6.6) specified for input values (6.9) and (6.10), with boundary
conditions (6.7) and (6.8), computed based on the proposed solution method with grid point number n=2001
and piecewise exact integration of quadratic approximation polynomials, see Section 2: (a) solution function
T(x), (b) heat flow distribution Q(x) according to (6.1); for details on numerical results see also Table 2.

0 5 10 15 20 25 30 35 40 45 50
1e−07

1e−06

1e−05

0.0001

0.001

0.01

number of grid points n [-]

er
ro

rs
E

Q
a
,
E

Q
b
,
an

d
E

T
b

[-
]

EQa
(n)

EQb
(n)

ETb
(n)

0 5 10 15 20 25 30 35 40 45 50
1e−07

1e−06

1e−05

0.0001

0.001

0.01

number of grid points n [-]

er
ro

rs
E

Q
a
,
E

Q
b
,
an

d
E

T
b

[-
]

EQa
(n)

Eqb
(n)

ETb
(n) (a) (b)

errors < 10−3 n≥5 n≥6

errors < 10−4 n≥10 n≥9

errors < 10−5 n≥17 n≥15

errors < 10−6 n≥29 n≥26

(a) (b)

Figure 13: Convergence study for cooling web problem: errors (6.14) as a function of the number of used grid
points n: (a) for piecewise exact integration of quadratic approximation polynomials, and (b) for piecewise
exact integration of cubic approximation polynomials.

same grid point number. With the former integration method, 5, 10, and 20 grid point
deliver results with errors (6.14) smaller than 1.12×10−3, 5.08×10−5, and 2.70×10−6, re-
spectively.

Table 2: Numerical results for cooling web problem obtained with grid point number n= 2001 and piecewise
exact integration of quadratic approximation polynomials, see also Fig. 12.

x [mm] T(x) [◦C] Q(x) [W/m2]
0 50.000000 14608.945
4 49.715876 13792.518
8 49.448774 12904.759
12 49.200253 11931.795
16 48.972186 10856.156
20 48.766839 9655.5509
24 48.586987 8301.1055
28 48.436071 6754.7769
32 48.318412 4965.4568
36 48.239535 2862.9208
40 48.206634 348.09951

294 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

7 Structural analysis of a slender tower

7.1 Statement of the problem

Next, the presented solution method is applied to a more complex boundary value prob-
lem associated with a fourth-order ODE, namely the determination of the internal forces
and of the displacements of a slender tower made up of reinforced concrete. The tower
exhibits a height of ℓ=150 m and an annular cross-section (see Fig. 14), and it is loaded, at
the top, by two forces acting in axial and transversal direction, as well as by a distributed
transversal loading q(x) along the entire height, and by dead and life load acting in ax-
ial direction (not illustrated in Fig. 14 since force vectors would coincide with the tower
axis).

The structural analysis is carried out within the framework of second-order beam
theory, by solving the following set of differential equations: two equilibrium conditions

dR(x)

dx
=−q(x),

dM(x)

dx
=R(x)−N(x)

[dyini(x)

dx
+

dy(x)

dx

]

, (7.1)

as well as the following three equations, comprising one constitutive and the two geo-
metric relations

κ(x)=
M(x)

EI(x)
,

dϕ(x)

dx
=−κ(x),

dy(x)

dx
= ϕ(x). (7.2)

In Eqs. (7.1) and (7.2), x denotes the axial coordinate, M stands for the bending moment,
R for the transversal force, N for the axial force, yini for the (initial) deflection in the
stress-free configuration, y for the (additional) force-induced deflection, q the transversal
loading per unit length; κ is the curvature of the tower’s axis, EI the bending stiffness,
and ϕ the force-induced angel of cross-sectional rotation. The bending stiffness is a cubic

20 MN

q(x) ρ(x)

t = 0.5m

0.25 MN qb

qa

cross-section
annular

y

x

b

a

ℓ
=

15
0

m

Figure 14: Benchmark problem for structural analysis within the framework of second-order beam theory: slender
tower with annular cross-section analyzed by Rubin [22].

M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308 295

function of the tower’s radius ρ(x) reading as [22]:

EI(x)=Eπρ(x)t
[

ρ2(x)+
t2

4

]

, (7.3)

where E and t denote Young’s modulus of the tower material and the wall-thickness of
the tower (see Fig. 14), respectively. At the clamped bottom of the tower, the two force-
induced deformation variables (y and ϕ) vanish; and at the free top of the tower, the
internal force variables (M and R) are a priori known, as expressed by the following four
boundary conditions

y(x=0)=0, ϕ(x=0)=0, M(x= ℓ)=0, R(x= ℓ)=0.25MN. (7.4)

Combining Eqs. (7.1) and (7.2), with the aim to eliminate the state variables ϕ(x), κ(x),
M(x), and R(x), delivers the following governing fourth-order differential equation for
the force-induced deflection y(x)

EI(x)
d4y(x)

dx4
+2

dEI(x)

dx

d3y(x)

dx3
+
[d2EI(x)

dx2
−N(x)

]d2y(x)

dx2

−
dN(x)

dx

dy(x)

dx
=q(x)+

dN(x)

dx

dyini(x)

dx
+N(x)

d2yini(x)

dx2
. (7.5)

Eq. (7.5) provides the motivation to express the boundary conditions (7.4) through
the function y(x) and its derivatives with respect to x. While the first condition (7.4) is
already formulated in the governing variable y(x), the second condition (7.4) together
with the third Eq. (7.2) imply that the first derivative of y(x) vanishes at the beginning of
the integration interval. Hence, we reformulate the first two boundary conditions (7.4)
by replacing the label ”(x=0)” by index a, and by adapting the notation defined in (1.1),
resulting in

y
(0)
a =0, y

(1)
a =0. (7.6)

We are left with reformulating the boundary conditions at the top of the tower. To this
end, we first combine Eqs. (7.2) in order to eliminate the state variables ϕ(x) and κ(x),
and we solve the resulting expression for M(x) delivering

M(x)=−EI(x)
d2y(x)

dx2
. (7.7)

Specifying (7.7) for the top of the tower, i.e., for x = ℓ, replacing the label ”(x = ℓ)” by
index b, considering the notation defined in (1.1), and formulating the third boundary
condition (7.4) yields

Mb =−EIby
(2)
b =0. (7.8)

Finally, we combine Eqs. (7.2) and the second Eq. (7.1) in order to eliminate the state
variables ϕ(x), κ(x), and M(x). Solving the resulting expression for R(x) delivers:

R(x)=−
dEI(x)

dx

d2y(x)

dx2
−EI(x)

d3y(x)

dx3
+N(x)

[dyini(x)

dx
+

dy(x)

dx

]

. (7.9)

296 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

Specifying (7.9) for the top of the tower, i.e., for x=ℓ, replacing the label ”(x=ℓ)” by index
b, considering the notation defined in (1.1), and formulating the last boundary condition
(7.4) yields

Rb =−EI
(1)
b y

(2)
b −EIby

(3)
b +Nb

[

y
(1)
ini,b+y

(1)
b

]

=0.25MN. (7.10)

7.2 Solution by means of the presented method

The governing differential equation (7.5) together with the boundary conditions (7.6),
(7.8), and (7.10) are ready to be solved by the presented solution method, provided that
functions ρ(x), q(x), yini(x), and N(x) as well as constants E and t are specified numer-
ically. The radius ρ(x) of the tower and the transversal loading q(x) are considered to
decrease linearly with increasing tower height (see Fig. 14):

ρ(x)=ρa+(ρb−ρa)
x

ℓ
with

{
ρa =4.0m,
ρb =2.5m,

(7.11a)

q(x)=qa+(qb−qa)
x

ℓ
with

{
qa=0.017MN/m,
qb =0.011MN/m.

(7.11b)

Young’s modulus E of reinforced concrete and the width t of the annular cross-section
are given as

E=30000MNm2 and t=0.5m. (7.12)

As for the initial (stress-free) deflection of the tower, we consider a linear inclination
(angle ψ0=0.001), resulting in the following definition of yini(x)

yini(x)=0.001x. (7.13)

Considering (i) an axial force amounting to 20 MN at the top of the tower (see Fig. 14)
and (ii) a distributed normal force per unit length of the tower, reading as n(x) = na+
(nb−na)x/ℓ with na =0.48MN/m and nb =0.30MN/m, results in the following solution
for the axial force distribution [22]:

N(x)=−78.5MN+nax+(nb−na)
x2

2ℓ
. (7.14)

When solving the problem at hand according to the outline of the presented solu-

tion method described in Subsection 3.2, four integration constants are introduced: y
(0)
a ,

y
(1)
a , y

(2)
a , and y

(3)
a . While boundary conditions (7.6) provide direct access to the first two

integration constants, the remaining two integration constants y
(2)
a and y

(3)
a are to be iden-

tified from the boundary conditions at the top of the tower, see (7.8) and (7.10). We are left

with establishing relations between the boundary values y
(1)
b , y

(2)
b , and y

(3)
b , appearing in

(7.8) and (7.10), and the two integration constants y
(2)
a and y

(3)
a . To this end, we focus

on point 11 of the listing in Subsection 3.2, where relations between boundary values of

M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308 297

y(x) and its derivatives with respect to x are established. Evaluating y
(1)
b , y

(2)
b , and y

(3)
b

according to (3.20) yields, under consideration of y
(0)
a =0 and y

(1)
a =0 (see (7.6)),

y
(1)
b =(~u[3])T

~w+
[

x
[1]
b +(~u[3])T

~v[2]
]

y
(2)
a +

[

x
[2]
b +(~u[3])T

~v[3]
]

y
(3)
a , (7.15a)

y
(2)
b =(~u[2])T

~w+
[

x
[0]
b +(~u[2])T

~v[2]
]

y
(2)
a +

[

x
[1]
b +(~u[2])T

~v[3]
]

y
(3)
a , (7.15b)

y
(3)
b =(~u[1])T

~w+
[

(~u[1])T
~v[2]

]

y
(2)
a +

[

x
[0]
b +(~u[1])T

~v[3]
]

y
(3)
a . (7.15c)

y
(2)
a and y

(3)
a are the only unknowns on the right-hand sides of Eqs. (7.15). The coefficients

of (7.15), i.e.,

c
[1]
c =(~u[3])T

~w, c
[1]
2 = x

[1]
b +(~u[3])T

~v[2], c
[1]
3 = x

[2]
b +(~u[3])T

~v[3], (7.16a)

c
[2]
c =(~u[2])T

~w, c
[2]
2 = x

[0]
b +(~u[2])T

~v[2], c
[2]
3 = x

[1]
b +(~u[2])T

~v[3], (7.16b)

c
[3]
c =(~u[1])T

~w, c
[3]
2 =(~u[1])T

~v[2], c
[3]
3 = x

[0]
b +(~u[1])T

~v[3], (7.16c)

can be computed after having completed the first 10 points of the listing of Subsection 3.2.
We now insert Eqs. (7.15) into the boundary conditions (7.8) and (7.10) which results in

two algebraic equations for the two sought integration constants y
(2)
a and y

(3)
a , with the

solution:

y
(2)
a =

(
c
[2]
3 c

[3]
c −c

[2]
c c

[3]
3

)
EIb+

(
c
[2]
c c

[1]
3 −c

[2]
3 c

[1]
c −c

[2]
3 y

(1)
ini,b

)
Nb+c

[2]
3 Rb

(
c
[3]
3 c

[2]
2 −c

[3]
2 c

[2]
3

)
EIb+

(
c
[1]
2 c

[2]
3 −c

[1]
3 c

[2]
2

)
Nb

, (7.17a)

y
(3)
a =

(
c
[3]
2 c

[2]
c −c

[3]
c c

[2]
2

)
EIb+

(
c
[1]
c c

[2]
2 −c

[1]
2 c

[2]
c +c

[2]
2 y

(1)
ini,b

)
Nb−c

[2]
2 Rb

(
c
[3]
3 c

[2]
2 −c

[3]
2 c

[2]
3

)
EIb+

(
c
[1]
2 c

[2]
3 −c

[1]
3 c

[2]
2

)
Nb

. (7.17b)

Now, all integration constants are identified (see (7.6) and (7.17)), such that the further
evaluation of the solution is the same as the one described for initial value problems, see
point 12 of the listing of Subsection 3.2, providing access to y(x) and to its derivatives
with respect to x. The beam theory-related state variables ϕ(x), M(x), and R(x) are
accessible by means of post-processing based on the second of the Eqs. (7.2), as well as
on (7.7) and (7.9).

The numerical solution, obtained with a grid point number n=2001 and with the in-
tegration method based on piecewise exact integration of quadratic approximation poly-
nomials, satisfactorily reproduces the benchmark solution described in [22], see Fig. 15.

Next, we investigate the accuracy of our results as a function of the number of chosen
grid points n, i.e., we repeatedly solve the ODE (7.5), based on many different choices for
grid point number n. In the context of defining meaningful prediction errors, we set our
focus on beam theory-related boundary values which were not given by boundary con-
ditions, i.e., on yb, ϕb, Ma, and Ra. In addition, we note that the solution provided in [22]

298 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

y(x)

fo
rc

e-
in

d
u
ce

d
d
efl

ec
ti

on
y

[m
]

axial coordinate x [m]

0 50 100 150

−200

−150

−100

−50

0
M (x)

b
en

d
in

g
m

om
en

t
M

[M
N

m
]

axial coordinate x [m]
0 50 100 150

0

0.5

1

1.5

2

2.5
R(x)

tr
an

sv
er

sa
l
fo

rc
e

R
[M

N
]

axial coordinate x [m]

(a) (b) (c)

Figure 15: Solution for the slender tower problem (7.5) specified for input values (7.11)-(7.14), and t= 0.5m,
with boundary conditions (7.6), (7.8), and (7.10), computed based on the proposed solution method with grid
point number n=2001 and piecewise exact integration of quadratic approximation polynomials, see Section 2:
(a) solution function y(x), (b) bending moment distribution M(x) according to (7.7), (c) transversal force
distribution R(x) according to (7.9); for details on numerical results see also Table 3.

0 5 10 15 20 25 30 35 40 45 50
1e−07

1e−06

1e−05

0.0001

0.001

0.01

number of grid points n [-]

er
ro

rs
E

M
a
,
E

R
a
,
E

ϕ
b
,
E

y
b

[-
]

EMa
(n)

ERa
(n)

Eϕb
(n)

Eyb
(n)

0 5 10 15 20 25 30 35 40 45 50
1e−07

1e−06

1e−05

0.0001

0.001

0.01

number of grid points n [-]

er
ro

rs
E

M
a
,
E

R
a
,
E

ϕ
b
,
E

y
b

[-
]

EMa
(n)

ERa
(n)

Eϕb
(n)

Eyb
(n)

(a) (b)

errors < 10−2 n≥4 n≥4

errors < 10−3 n≥6 n≥6

errors < 10−4 n≥11 n≥10

errors < 10−5 n≥19 n≥17

errors < 10−6 n≥34 n≥29

(a) (b)

Figure 16: Convergence study for tower problem: errors (7.18) as a function of the number of used grid points
n: (a) for piecewise exact integration of quadratic approximation polynomials, and (b) for piecewise exact
integration of cubic approximation polynomials.

is numerically precise up to six significant digits. In order to investigate even higher pre-
cisions, we treat the results obtained with n=2001 (see Fig. 15) as the reference solution,
and we compare the computed state variables yb, ϕb, Ma and Ra with the correspond-
ing values of the reference solution, based on the following definitions for the prediction
errors:

Eα=
∣
∣
∣
α(n)−α(n=2001)

α(n=2001)

∣
∣
∣, α=yb,ϕb,Ma,Ra. (7.18)

Errors (7.18) are evaluated for both integration methods: quadratic and cubic approxi-
mation polynomials (see Fig. 16).

Given a fixed grid point number, piecewise exact integration of cubic approxima-
tion polynomials results again in higher precisions than piecewise exact integration of
quadratic approximation polynomials. With the former integration method, 5, 10, and
20 grid point deliver results with errors (7.18) smaller than 1.95×10−3, 8.68×10−5, and
4.65×10−6, respectively.

M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308 299

Table 3: Numerical results for tower problem obtained with grid point number n= 2001 and piecewise exact
integration of quadratic approximation polynomials, see also Fig. 15.

x [m] y(x) [m] ϕ(x) [mrad] M(x) [MNm] R(x) [MN]
0 0.00000000 0.0000000 −213.47556 2.3500

15 0.00777161 1.0251168 −178.41800 2.0995
30 0.03039607 1.9787338 −146.19708 1.8580
45 0.06672598 2.8508139 −116.93984 1.6255
60 0.11546156 3.6311097 −90.747720 1.4020
75 0.17514929 4.3094239 −67.694674 1.1875
90 0.24418547 4.8760118 −47.825588 0.9820
105 0.32082731 5.3221969 −31.154847 0.7855
120 0.40321547 5.6413116 −17.665266 0.5980
135 0.48941430 5.8301408 −7.3074773 0.4195
150 0.57747914 5.8911576 ±0.0000000 0.2500

8 Discussions

We have presented a numerical solution method for linear, inhomogeneous, m-th order,
ordinary differential equations with variable coefficients. The method is applicable for
both initial value problems and boundary value problems, without raising the need to
be adapted to specific properties of the underlying differential equation. In addition,
the method can be easily implemented into modern software providing environments
for numerical matrix-vector operation-based calculus, see Subsection 3.2, and the exten-
sion towards higher-order integration schemes is straightforward, see Section 2. Hence,
the presented method complies with the requirement profile listed in the introductory
section.

The major difference between the proposed solution scheme and other existing meth-
ods is that it is not only based on local approximation by means of polynomials and on
their exact integration, but also on averaging these integrals. In more detail, local approx-
imation by cubic polynomials and their exact integration is carried out within all existing
subintervals containing four neighboring grid points, moving from the beginning of the
overall integration interval to its end. Since these subintervals are overlapping each other,
also the computed integrals refer to overlapping domains and, therefore, they are aver-
aged arithmetically. This averaging is the reason why the proposed method based on
third-order approximation polynomials could be shown to perform similarly to a fourth-
order Runge-Kutta scheme (Subsection 4.1). When applying the presented method to a
second-order boundary value problem (Subsection 4.2), it outperformed significantly the
finite difference method.

Although the derivation of the method is non-trivial, the finally obtained solution
concept can be simply implemented, see, e.g., Appendix C for the MATLAB solution of
the stiff initial value problem (4.1) based on cubic approximation polynomials. In this
context, the proposed method turns out to be user-friendly, because the formal mode
of implementation is always the same (see, e.g., Appendix C), i.e., it is independent of

300 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

the chosen order of the local approximation polynomials. The only difference regarding
different approximation orders concerns the integers in the integration matrices A1, and
they can be computed beforehand, such as described in Section 2.

The stability of the proposed concept, the influence of non-linear coefficient functions
on the accuracy of a numerical solution, and numerical efficiency are discussed next.

• Up to the best of the authors’ knowledge, the differential equation (4.1) represents a
benchmark problem regarding stability of a numerical integration method. Since no
stability problem was encountered when applying the proposed method to (4.1), it
appears to be suitably robust. We conclude that the proposed method is well-suited
for solving so-called stiff differential equations without stability problems.

• When applying the proposed method to a problem involving highly non-linear per-
turbation functions, see the pendulum problem (5.4) and Fig. 8, we obtain again
satisfactory results. We conclude that the proposed method delivers – based on a
suitable number of grid points – results which are accurate enough for engineering
purposes. In order to find a suitable number of grid points, convergence stud-
ies are recommended. In this context, it is noteworthy that numerical results ob-
tained with a monotonously increasing grid point number can be expected to os-
cillate around the exact solution, whereby the error amplitude decreases and the
zero-error crossing-distance increases with increasing grid point number (see, e.g.,
Fig. 4).

• Regarding computational efficiency, we note that numerical efforts increase over-
linearly with the grid point number (Fig. 17) because the inversion of the D matrix
(see (3.19)) is a more and more demanding task given an increasing grid point num-
ber. Still, computation of a solution based on a reasonable number of grid points
takes only a few milliseconds on a standard PC, and this is negligible with respect
to the time required to choose and implement any solution scheme. We conclude
that the proposed method is sufficiently efficient in order to represent an interesting
alternative to traditional methods.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

number of grid points n [-]

co
m

p
u
ta

ti
on

ti
m

e
[m

s]

Figure 17: Computational efficiency of the proposed method regarding solution of the stiff initial value problem
(4.1): average computation time as a function of grid point number (for each grid point number the problem
was solved 10000 times on a standard Linux PC, and the required time was averaged).

M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308 301

Another main advantage of the presented solution concept over the here-discussed
competing approaches is that the proposed method is not only applicable to initial value
problems, but also to boundary value problems, no matter whether complicated bound-
ary conditions refer to the beginning or to the end of the integration interval. This turned
out to be beneficial for studying steady-state heat transfer through a cooling web (Sec-
tion 6), and the structural analysis of a slender tower based on second-order beam theory
(Section 7).

All problems considered herein were characterized by a smooth perturbation function
and smooth coefficient functions within the interval of interest, but this is not a restriction
of the presented method. Considering that the perturbation function and the coefficient
functions are only piecewise continuous, the solution method should be applied within
subintervals in which the aforementioned functions are indeed smooth, and the total
solution could be composed from these elementary solutions, similar to the procedure
described in Subsection 5.3. In such a case, generally speaking, transition conditions
(jump conditions) for the state variables will have to be considered at the subinterval
boundaries. While we note that the presented method provides a framework for uncom-
plicated formulation of such transition conditions, further details are beyond the scope
of the present paper. The latter statement also holds for potential extensions towards
consideration of sets of linear ordinary differential equations, linear partial differential
equations, or nonlinear ordinary differential equations. These current limitations repre-
sent motivation for future work.

Appendix

A List of nomenclature

ai(x) coefficient function multiplied with i-th derivative of y(x)

a[i](x) identical with ai(x)

a
[i]
k value of a[i](x) at x= xk

c̄ torsional spring stiffness

c
[i]
1 coefficient, see (7.16)

c
[i]
2 coefficient, see (7.16)

c
[i]
c coefficient, see (7.16)
~d[j] vector of coefficients, see (3.10)

d
[j]
k k-th component of ~d[j]

f (x) function to be integrated
fs value of f (x) at position x= xs

f̃k(ξ) approximation function for f (x) referring to ξ with origin at xk

h(x) height of cooling web
ha boundary value of h(x) at x= xa

302 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

hb boundary value of h(x) at x= xb

i index related to order of derivation
j index related to the order of derivation
k index related to positions of x-axis

ℓ distance of point mass from center of rotation (in Section 5), length of cooling
web (in Section 6), and height of tower (in Section 7)

ℓ0 mean distance of point mass from center of rotation
m order of underlying ordinary differential equation
md modulation depth
n number of equidistant points used to discretize the domain of interest
n(x) distributed normal loading of tower
na boundary value of n(x) at x= xa

nb boundary value of n(x) at x= xb

q(x) heat flux per unit area (in Section 5) and transversal loading of tower (in Sec-
tion 7)

qa boundary value of q(x) at x= xa

qb boundary value of q(x) at x= xb

r(x) perturbation function
~r vector with components rk, k=1,2,··· ,n
rk value of r(x) at position x= xk

s index related to positions of x-axis

t time (in Section 5), width of cooling web (in Section 6), and thickness of annu-
lar cross-section of tower (in Section 7)

~u[i] vector containing components of matrix Ai, see (3.21)

~u
[i]
k k-th component of vector ~u[i]

~v[i] vector of coefficients, see (3.12)

v
[i]
k k-th component of ~v[i]

~w vector of coefficients, see (3.12)

wk k-th component of ~d

x variable
xa value of x at the beginning of the domain of interest
xb value of x at the end of the domain of interest
xk value of x at k-th point used to discretize the domain of interest

x
[j]
k =(xk−xa)j/j!, see (3.8)

y(x) sought function (force-induced deflection of tower in Section 7)

y(i)(x) i-th derivative of y(x) with respect to x

~y(m)(x) vector with components y
(m)
k , k=1,2,··· ,n

y
(m)
k value of y(m)(x) at position x= xk

y
(i)
a boundary value of y(i) at x= xa

M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308 303

y
(i)
b boundary value of y(i) at x= xb

y
(i)
k value of y(i)(x) at position x= xk

y
(i)
s value of y(i)(x) at position x= xs

yini(x) initial deflection of tower, in the stress-free configuration
yini,b boundary values of yini(x) at x= xb

A integration matrix

A1 integration matrix for single integration

Ai integration matrix for i-fold integration

Aks ks-th component of A
Ak,s ks-th component of A

A1
ks ks-th component of A1

Ai
ks ks-th component of Ai

A(x) cross-sectional area of cooling web
D matrix of coefficients, see (3.10)
Dks ks-th component of D
Eb prediction error at position x= xb

Ek prediction error at position x= xk

En prediction error at position x= xn

Emax maximum prediction error out of Ek evaluated at all grid points
Emean prediction error averaged over Ek evaluated at all grid points
E Young’s modulus of the tower material
EI(x) bending stiffness of tower
EIb boundary value of EI(x) at x= xb

J moment of inertia
N(x) axial force of tower

M[i] matrix of coefficients, see (3.16)

M
[i]
ks ks-th component of matrix M[i]

Mp point mass
M(x) bending moment of tower
Mb boundary value of M(x) at x= xb

Q(x) heat flux through the cooling web, in x-direction
Qa boundary value of Q(x) at x= xa

Qb boundary value of Q(x) at x= xb

Qℓat heat loss through the four lateral surfaces of the cooling web
R(x) transversal force of tower
T modulation period (Section 5)
Ta boundary value of T(x) at x= xa

Tair temperature of air surrounding the cooling web
T(x) temperature distribution in cooling web (Section 6)

Fk|
k+1
k value of integral of f̃k(x) from xk to xk+1

304 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

α index
αh heat transfer coefficient
β angle of inclination of cooling web surface with respect to midsurface
γ damping constant
∆x increment of x
δks Kronecker delta
η thermal conductivity
κ bending-induced curvature of tower axis
λ width of intervals used to discretize the domain of interest
ξ local coordinate which is parallel to x, and integration parameter
ρ(x) radius of cross-section of tower
ρa boundary value of ρ(x) at x= xa

ρb boundary value of ρ(x) at x= xb

ϕ(t) angular coordinate describing position of the pendulum at time t (Section 5)
ϕ(x) cross-sectional rotation of tower (Section 7)
ϕ̇ time-derivative of ϕ(t)
ϕ̈ time-derivative of ϕ̇

ϕb boundary value of y(x) at x= xa

ω angular frequency of the modulation

ω0 constant being equal to
√

c̄/(2Mpℓ
2
0)

B Other numerical solution methods

B.1 Backward Euler method

Considering first-order initial value problems of the form

y′= f (x,y), y(x0)=y0, (B.1)

where y′ stands for the first derivative of y with respect to x, and introducing the grid
point distance λ, such that grid point are located at

xk+1= xk+λ ∀k=1,2,··· ,(n−1), (B.2)

the backward Euler method approximates, at position xk+1, the left-hand side of (B.1) by
means of the following finite difference quotient

y′(xk+1)≈
yk+1−yk

λ
, (B.3)

such that sought function values y(xk+1) follow from knowledge on y(xk) as

yk+1=yk+λ f (xk+1,yk+1). (B.4)

M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308 305

B.2 Runge-Kutta method ”RK4”

Considering the first-order initial value problem (B.1) and introducing the grid point
distance λ, such that nodes are located at positions given in (B.2), the sought function
values y(xk+1) follow from knowledge on y(xk) as

yk+1=yk+
λ
6 (ε1+2ε2+2ε3+ε4), (B.5)

where

ε1= f (xk,yk), ε2= f (xk+
1

2
λ,yk+

1

2
λε1), (B.6a)

ε3= f (xk+
1

2
λ,yk+

1

2
λε2), ε4= f (xk+λ,yk+λε3). (B.6b)

B.3 Finite difference method

Approximating the derivatives in the differential equation

a2(x)
d2y(x)

dx2
+a1(x)

dy(x)

dx
+a0(x)y(x)= r(x) (B.7)

by finite difference expressions, the following discretized version of (B.7) is obtained:

a2(xk)
yk+1−2yk+yk−1

λ2
+a1(xk)

yk+1−yk−1

2λ
+a0(xk)yk = r(xk), (B.8)

∀k=2,3,··· ,(n−1).

C Implementation of proposed solution concept

C.1 MATLAB Code for stiff initial value problem (4.1)

xa = 0 ; % lower bound of i n t e g r a t i o n i n t e r v a l
xb = 1 ; % upper bound of i n t e g r a t i o n i n t e r v a l
ng = 100 ; % number of gr id points
y0a = 1 ; % i n i t i a l value y (x=xa)
lambda = (xb−xa) / (ng−1); % grid point d i s tance
x = (xa : lambda : xb) ’ ; % coor d inates of gr id points
x0 = x . ˆ 0 / f a c t o r i a l (0) ; % vector x ˆ0 / 0 !
x1 = x . ˆ 1 / f a c t o r i a l (1) ; % vector x ˆ1 / 1 !
a1 = ones (s i z e (x)) ; % evaluat ion of c o e f f i c i e n t funct ion a1
a0 = +15∗ones (s i z e (x)) ; % evaluat ion of c o e f f i c i e n t funct ion a0
r = zeros (s i z e (x)) ; % evaluat ion of per tur bat ion funct ion r
M0 = zeros (ng , ng) ; % i n i t i a l i z e M0 matrix
M1 = zeros (ng , ng) ; % i n i t i a l i z e M0 matrix
f o r k = 1 : 1 : ng

M0(k , k) = a0 (k) ; % f i l l diagonal of M0 matrix with a0 values

306 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

M1(k , k) = a1 (k) ; % f i l l diagonal of M1 matrix with a1 values
end
A0 = eye (ng) ; % A0 matrix
A1 = getA1 cubic (ng , lambda) ; % A1 matrix (cubic approximation)
Dinv = (M1∗A0 + M0∗A1) ˆ (− 1) ; % inver se of D matrix
d1 = M0∗x1 + M1∗x0 ; % d1 vector
d0 = M0∗x0 ; % d0 vector
v1 = − (Dinv∗d1) ; % v1 vector
v0 = − (Dinv∗d0) ; % v0 vector
w = (Dinv∗ r) ; % w vector
y1 = v0∗y0a + w ; % s o l u t i o n vector f o r y ’ (x)
y0 = x0∗y0a + A1∗y1 ; % s o l u t i o n vector f o r y (x)

C.2 Subroutine: A1 matrix for cubic approximation

funct ion A1 = getA1 cubic (ng , lambda)
Abasic = [[0 0 0 0 0 0 0 0 0 0 0] ; . . .

[54 114 −30 6 0 0 0 0 0 0 0] ; . . .
[48 192 48 0 0 0 0 0 0 0 0] ; . . .
[54 162 162 54 0 0 0 0 0 0 0] ; . . .
[54 168 132 168 54 0 0 0 0 0 0] ; . . .
[53 171 136 136 171 53 0 0 0 0 0] ; . . .
[53 170 139 140 139 170 53 0 0 0 0] ; . . .
[53 170 138 143 143 138 170 53 0 0 0] ; . . .
[53 170 138 142 146 142 138 170 53 0 0] ; . . .
[53 170 138 142 145 145 142 138 170 53 0] ; . . .
[53 170 138 142 145 144 145 142 138 170 5 3]] ;

i f ng<12
A = Abasic (1 : ng , 1 : ng) ;

e l s e
A = Abasic ;
f o r k = 1 2 : 1 : ng

A(k , 1) = 5 3 ;
A(k , k) = 5 3 ;
A(k , 2) = 1 7 0 ;
A(k , k−1) = 1 7 0 ;
A(k , 3) = 1 3 8 ;
A(k , k−2) = 1 3 8 ;
A(k , 4) = 1 4 2 ;
A(k , k−3) = 1 4 2 ;
A(k , 5) = 1 4 5 ;
A(k , k−4) = 1 4 5 ;
f o r i = 6 : 1 : k−5

A(k , i) = 1 4 4 ;
end

end
end
A1 = lambda/144∗A;

M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308 307

C.3 Subroutine: A1 matrix for quadratic approximation

funct ion A1 = getA1 quadratic (ng , lambda)
Abasic = [[0 0 0 0 0 0] ; . . .

[10 16 −2 0 0 0] ; . . .
[8 32 8 0 0 0] ; . . .
[9 27 27 9 0 0] ; . . .
[9 28 22 28 9 0] ; . . .
[9 28 23 23 28 9]] ;

i f ng < 7
A = Abasic (1 : ng , 1 : ng) ;

e l s e
A = Abasic ;
f o r k = 7 : 1 : ng

A(k , 1) = 9 ;
A(k , k) = 9 ;
A(k , 2) = 2 8 ;
A(k , k−1) = 2 8 ;
A(k , 3) = 2 3 ;
A(k , k−2) = 2 3 ;
f o r i = 4 : 1 : k−3

A(k , i) = 2 4 ;
end

end
end
A1 = lambda/24∗A;

Acknowledgments

Fruitful discussions with Gerhard Höfinger, from Feb 2007 until Dec 2010 research as-
sistant at the Institute for Mechanics of Materials and Structures, Vienna University of
Technology, are gratefully acknowledged.

References

[1] E. HAIRER, S. NØRSETT AND G. WANNER, Solving Ordinary Differential Equations I: Non-
stiff Problems, 2nd edn., Springer Verlag: Berlin, 1993.

[2] E. HAIRER AND G. WANNER, Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems, 2nd edn., Springer Verlag: Berlin, New York, 1996.

[3] SD. COHEN AND AC. HINDMARSH, CVODE, a stiff/nonstiff ODE solver in C, Comput. Phys.,
10(2) (1996), pp. 138–143.

[4] U. ASCHER AND L. PETZOLD, Computer Methods for Ordinary Differential Equations and
Differential-Algebraic Equations, Society for Industrial and Applied Mathematics (SIAM):
Philadelphia, 1998.

[5] H. ROSENBROCK, Some general implicit processes for the numerical solution of differential equa-
tions, The Computer J., 5(4) (1963), pp. 329–330.

308 M. Aminbaghai et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 269-308

[6] A. SANDU, JG. VERWER, JG. BLOM, EJ. SPEE, GR. CARMICHAEL AND FA. POTRA, Bench-
marking stiff ODE solvers for atmospheric chemistry problems II: Rosenbrock solvers, Atmospheric
Environment, 31(20) (1997), pp. 3459–3472.

[7] LF. SHAMPINE AND MW. REICHELT, The MATLAB ODE suite, SIAM J. Sci. Comput., 18(1)
(1997), pp. 1–22.

[8] SN. ATLURI, JY. CHO AND HG. KIM, Analysis of thin beams, using the meshless local Petrov-
Galerkin method, with generalized moving least squares interpolations, Comput. Mech., 24(5)
(1999), pp. 334–347.

[9] YT. GU AND GR. LIU, A local point interpolation method for static and dynamic analysis of thin
beams, Comput. Methods Appl. Mech. Eng., 190(42) (2001), pp. 5515–5528.

[10] PK. GUDLA AND R. GANGULI, Discontinuous Galerkin finite element in time for solving periodic
differential equations, Comput. Methods Appl. Mech. Eng., 196(1-3) (2006), pp. 682–696.

[11] JI. RAMOS, Piecewise-linearized methods for initial-value problems with oscillating solutions, Appl.
Math. Comput., 181(1) (2006), pp. 123–146.

[12] TC. FUNG, Solving initial value problems by differential quadrature method-part 1: first-order equa-
tions, Int. J. Numer. Methods Eng., 50(6) (2001), pp. 1411–1427.

[13] TC. FUNG, Solving initial value problems by differential quadrature method-part 2: second- and
higher-order equations, Int. J. Numer. Methods Eng., 50(6) (2001), pp. 1429–1454.

[14] GJ. NIE AND Z. ZHONG Z, Semi-analytical solution for three-dimensional vibration of functionally
graded circular plates, Comput. Methods Appl. Mech. Eng., 196(49-52) (2007), pp. :4901–4910.

[15] Y. HON AND Z. WU, A quasi-interpolation method for solving stiff ordinary differential equations,
Int. J. Numer. Methods Eng., 48(8) (2000), pp. 1187–1197.

[16] N. MAI-DUY, Solving high order ordinary differential equations with radial basis function net-
works, Int. J. Numer. Methods Eng., 62(6) (2005), pp. 824–852.

[17] H. RUBIN AND M. AMINBAGHAI, Wölbkrafttorsion bei veränderlichem, offenem Querschnitt –
Hat die Biegezugstab-Analogie noch Gültigkeit? [Warping torsion for variable, open cross sections
– Is the analogy for theory of beams with tensile force still valid?], Stahlbau, 76(10) (2007), pp.
747–760. In German.

[18] TC. FUNG, Stability and accuracy of differential quadrature method in solving dynamic problems,
Comput. Methods Appl. Mech. Eng., 191(13-14) (2002), pp. 1311–1331.

[19] J. CHANG, Q. YANG AND C. LIU, B-spline method for solving boundary value problems of linear
ordinary differential equations, Information Computing and Applications, Communications in
Computer and Information Science, 106 (2010), R. Zhu, Y. Zhang, B. Liu and C. Liu (eds.),
Springer Berlin Heidelberg, pp. 326–333.

[20] EI. BUTIKOV, Parametric excitation of a linear oscillator, Euro. J. Phys., 25(4) (2004), pp. 535–554.
[21] A. KRAUS AND A. BAR-COHEN, Thermal Analysis and Control of Electronic Equipment,

Hemisphere Publishing Corporation: Washington, 1983.
[22] H. RUBIN, Lösung linearer Differentialgleichungen beliebiger Ordnung mit Polynomkoeffizienten

und Anwendung auf ein baustatisches Problem [Solution of linear differential equations of arbi-
trary order with polynomial coefficients and application to a structural analysis problem], ZAMM
Zeitschrift für Angewandte Mathematik und Mechanik, 76(2) (1996), pp. 105–117. In Ger-
man.

