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Abstract. Red blood cells undergo substantial shape changes in vivo. Modeled as
a viscoelastic capsule, their deformation and equilibrium behavior has been exten-
sively studied. We consider how 2D capsules recover their shape, after having been
deformed to ’equilibrium’ behavior by shear flow. The fluid-structure interaction is
modeled using the multiple-relaxation time lattice Boltzmann (LBM) and immersed
boundary (IBM) methods. Characterizing the capsule’s shape recovery with the Tay-
lor deformation parameter, we find that a single exponential decay model suffices to
describe the recovery of a circular capsule. However, for biconcave capsules whose
equilibrium behaviors are tank-treading and tumbling, we posit a two-part recovery,
modeled with a pair of exponential decay functions. We consider how these two recov-
ery modes depend on the capsule’s shear elasticity, membrane viscosity, and bending
stiffness, along with the ratio of the viscosity of the fluid inside the capsule to the am-
bient fluid viscosity. We find that the initial recovery mode for a tank-treading bicon-
cave capsule is dominated by shear elasticity and membrane viscosity. On the other
hand, the latter recovery mode for both tumbling and tank-treading capsules, depends
clearly on shear elasticity, bending stiffness, and the viscosity ratio.

AMS subject classifications: 74F10

Key words: Fluid-structure interaction, shape recovery, lattice Boltzmann method, immersed
boundary method.

1 Introduction

The shape change of viscoelastic, fluid-filled capsules has received considerable attention
by researchers in recent years. This attention has particularly centered on its application
to red blood cells, which may be modeled in such a way. The passage of blood through
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small capillaries requires significant deformation by red blood cells, from the normal
biconcave discoid to a bullet-like shape [30]. Upon reaching larger blood vessels, the red
blood cells recover their normal shape. In blood diseases, such as sickle-cell anemia, the
ability of red blood cells to deform and subsequently recover their shape is reduced. As
a result, they may block capillaries and oxygen delivery may be adversely impacted [28].
To aid the development of treatments for such blood diseases, and to better understand
the mechanical structure of red blood cells, it is important to study the manner in which
their shape is deformed and recovered.

Extensive study has been made of the deformation of viscoelastic, fluid-filled capsules
under shear flow. Blood flow in vivo is not archetypal shear flow, but this has become a
standard venue for considering the shape change of red blood cells. Experimental and
theoretical work [8,21,22] has been recently complemented by significant computational
simulations [5, 30, 31]. Among studies focusing on a single capsule, the constitutive law
governing the elastic character of the membrane has been investigated [2]. The role of
the membrane’s bending stiffness has been studied by boundary integral [18] and lat-
tice Boltzmann methods [25]. The effect of different capsule and ambient viscosities on
deformation has been discussed [20, 26], and considered in concert with membrane vis-
cosity [29]. Recently, a strikingly novel volume-of-fluid method was introduced which
has the advantage of doing without a separate structural grid [11].

Conversely, investigations into the shape recovery of capsules from deformation have
been largely limited to experimental and theoretical avenues. These studies primarily
aimed at measuring the time course of shape recovery and determining the dominant
mechanisms by which it occurred. Micropipette aspiration has been used to induce a
large deformation in part of the red blood cell membrane and allow that deformation
to relax [7]. Complementing their experimental work with a theoretical analysis of mi-
cropipette aspiration, Evans and Hochmuth characterized the time course of this recov-
ery with the exponential decay function e−t/tc. Their work concluded that the time con-

stant is given as tc= 2ηe

Es
, where ηe is the capsule’s membrane viscosity constant and Es is

the capsule shear elasticity modulus [7]. More recently, optical tweezing has been applied
to study the relaxation of red blood cell membranes and showed behavior consistent with
the exponential decay function characterization [4]. In their associated theoretical model
of optical tweezing, similar to that for micropipette aspiration, Dao et al. also character-
ized tc as a ratio of ηe to Es. Lastly, red blood cells have been placed in shear flow and
deformed until reaching an equilibrium state. After abruptly stopping the shear flow,
the time course of the shape recovery has been measured by the same exponential decay
function [3]. Among other shear flow studies, Fischer showed that red blood cells pos-
sess a shape memory [8] and Sutera et al. suggested that the time constant tc may also
depend on the ambient viscosity [27].

While relaxation from micropipette aspiration or optical tweezing may be a primarily
solid mechanical process, as modeled in [4] and [7], the shape recovery from cell deforma-
tion in shear flow suggests that a similar characterization may be used to describe a more
complex case of shape recovery [3]. Red blood cell deformation in shear flow having been
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modeled as a fluid-structure interaction, as discussed above, implies that a comparable
model and methodology would be appropriate to study the shape recovery from such
a deformation. While the equations describing the fluid-structure interaction in shape
recovery are not amenable to analytic solutions, a computational approach may be used
to confirm the experimental behavior observed and better understand the parameters –
potentially both structural and fluidic – on which tc depends.

In this work, we introduce a 2D model of capsule deformation in, and shape recovery
from, shear flow. Our fluid-structure interaction model belongs to what Hou et al. denote
the ”partitioned” paradigm, with separate fluid and capsule meshes and algorithms [10].
A lattice Boltzmann method (LBM) is used to solve the fluid flow, while the immersed
boundary method (IBM) is chosen to simulate the fluid-structure interaction. Validation
of the model for the shear flow induced deformation of a circular capsule is given by com-
parison to previous models of capsule deformation. Subsequently, the model is used to
simulate shape recovery after the abrupt stop of shear flow for various fluid and capsule
parameters, for both circular and biconcave capsules. We find that while a exponential
decay function e−t/tc fits the data very well for circular capsules, the recovery of bicon-
cave capsules is best described by a pair of exponential decay functions, with different tc
values.

2 Modeling and methodology

2.1 Model

We consider initially circular and biconcave fluid-filled 2D capsules in shear flow. A red
blood cell has shear and isotropic elasticity, bending stiffness, and membrane viscosity
[6, 7, 22]. The isotropic elasticity is not explicitly modeled here; the area increase in our
simulations does not exceed 0.2% for circular capsules and falls in the range of 6−8%
for biconcave capsules. We model the shear elasticity of the capsule with Hooke’s law.
Expressed as

τe =Es(λ−1), (2.1)

τe is given in terms of shear elasticity modulus Es and non-dimensional membrane stretch

ratio λ(t) = ℓ(t)
ℓ0

, for arc length ℓ at time t and initial arc length ℓ0 [25]. For the sake of
comparison, we also considered neo-Hookean elasticity [2], as

τe =
2

3
Es(λ

3/2−λ−3/2). (2.2)

Additionally, the membrane viscosity is accounted for by the tension τν with a Kelvin-
Voigt model, as

τν=ηe
1

λ

∂λ

∂t
, (2.3)
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for membrane viscosity constant ηe [29]. The time derivative of λ is calculated using an
explicit one-sided second order finite difference method. Consequently, the total in-plane
tension is

τ=τe+τν. (2.4)

Further, the bending stiffness creates transverse shear tension,

q=
∂m

∂ℓ
=EB

∂

∂ℓ
(κ−κ0), (2.5)

in which we have bending modulus EB, bending moment m, initial curvature κ0, curva-
ture κ(t) at time t, and differentiation with respect to the arc length ℓ [18]. We calculate κ
with periodic cubic spline interpolation. Consequently, the membrane stress at the inter-
face is T=τt+qn and the corresponding tension jump is

∆F=−
∂T

∂ℓ
=−

∂

∂ℓ

(

τt+qn
)

, (2.6)

for unit vectors t and n which are tangent and normal to the interface, respectively. The
necessary first and second derivatives with respect to arc length ℓ are calculated using
five point centered finite difference methods for arbitrarily spaced grid points.

We focus our attention on four dimensionless parameters which affect deformation
in and shape recovery from shear flow. First, the dimensionless shear rate G is the ratio
of the fluid’s shearing force to the capsule’s elastic force and is calculated as

G=
µau0a

Es
, (2.7)

in which µa is the viscosity of the ambient fluid, u0 is the characteristic velocity, and a is
the equivalent capsule radius.

Second, we define the ratio of the membrane viscosity constant ηe to the viscosity of
the fluid inside the capsule µc as

M=
ηe

aµc
. (2.8)

Third, the reduced ratio of bending to elasticity represents the relative impact of these
two factors, as

Eb=
EB

a2Es
. (2.9)

Additionally, the fluid inside the capsule may have different properties than the ambient
fluid. For the case of red blood cells, the densities of the two fluids are nearly the same.
However, the viscosity of the fluid inside the capsule is approximately five times the
ambient viscosity. Consequently, the fourth dimensionless parameter investigated is the
ratio of the viscosity of the fluid inside the capsule µc, to the ambient fluid viscosity µa,
as the viscosity jump V, where

V=
µc

µa
. (2.10)
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2.2 Numerical methods

Our numerical methodology combines the lattice Boltzmann and immersed boundary
methods. Derived from the Boltzmann equation of statistical mechanics, the lattice Boltz-
mann method considers the fluid to be sets of particles that move between lattice nodes
in discrete timesteps. The expression fi(xj,tn) represents the distribution of particles at xj

with velocity ci at time tn. The discrete velocities c are from the D2Q9 lattice model and
we set δx= δt. Using the multiple relaxation time (MRT) approximation of the collision
integral, we have the lattice Boltzmann equation

f(xj+cδt,tn+δt)−f(xj,tn)=−M−1Ŝ[m(xj,tn)−m(eq)(xj,tn)], (2.11)

in which f, m, and m(eq) represent the vectors whose components are the distribution
functions with each particle velocity c, the velocity moments, and the equilibrium mo-
ments, respectively [16]. Additionally, the matrix M maps from probability distribution
space into moment space, and Ŝ is the diagonal matrix of relaxation rates [s1,s2,··· ,s9] [13].
The relaxation rates s1,s4 and s6 for the conserved moments have no effect for the model.
For D2Q9 model, the shear viscosity ν is ν= 1

3(
1
s8
− 1

2)cδx. It is required that s8 = s9 and
s5=s7. The relaxation rates s5=s7 can affect the accuracy of the boundary conditions and
are determined by s5 = s7 = 82−s8

8−s8
[9]. The other relaxation rates s2 and s3 do not affect

the hydrodynamics in the lowest order approximation and only affect the small scale be-
haviour of the model. Usually they are determined by the linear stability analysis. We
use s2= s3 =1.64 [12].

The immersed boundary method was developed by Peskin [17] and integrated into
the MRT lattice Boltzmann method by Peng and Luo [16]. Keeping the Eulerian fluid
domain constant, a Lagrangian mesh is used to describe the motion of the capsule. The
interaction of the fluid and structure is performed by using the local fluid velocity to
update the location of the capsule boundary, while forces created by capsule deformation
are distributed to the nearby fluid nodes. We employ a 2D version of the discrete delta
function, which is defined as

δh(x)=δh(x1)δh(x2)···δh(xd), x∈Rd, (2.12)

δh(x)=

{

1
4h

[

1+cos(πx
2h )

]

, |x|≤2h,

0, |x|>2h
(2.13)

to transfer data between the two grids. Denoting a Lagrangian capsule node position as
Xc, Eulerian grid points by xj, and the Eulerian fluid velocities as uj, then we determine
the capsule velocity U at Xc by

U(Xc)=∑
j

δ(Xc−xj)uj, (2.14)

and update its location using the forward Euler method,

Xc(t+∆t)=Xc(t)+U(Xc(t))∆t. (2.15)
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Conversely, the capsule forces F(Xc) are distributed so that the fluid forces f(xj) are

f(xj)=∑
c

δ(Xc−xj)(F(Xc)). (2.16)

For dealing with the fluid viscosity jump across the capsule interface, we adopt the
strategy of [30]. To determine the viscosity of a fluid node at a given timestep, we select
the Lagrangian node nearest to the fluid node. The dot product of the vector between
these two points and the unit outward normal from the Lagrangian node is calculated
and the sign of this dot product produces a reliable indication of whether the fluid node
is inside or outside of the capsule. Next, we approximate the shortest (normal) distance
d from the fluid node to the capsule boundary. The sign of d is set to be positive if located
outside of the capsule, or negative if inside of the capsule. Subsequently, we introduce a
Heaviside function of d from [30],

H(d)=











0, d<−2h,
1
2

(

1+ d
2h +

1
π sin πd

2h

)

, −2h≤d≤2h,

1, d>2h.

(2.17)

Finally, the viscosity µ at the node is given in terms of H(d) by the equation

µ(x)=µc+(µa−µc)H[d(x)]. (2.18)

2.3 Validation

To validate the model and methods used, we compared our results with an existing 2D
model for deformation of circular capsules. The comparison was made with respect to
the Taylor deformation parameter

Dxy=
L−W

L+W
, (2.19)

for capsule length L and width W. In our work, L and W were measured as the longest
and shortest axes of the capsule at the given timestep. We also compared the capsule’s
angle of inclination θ, measured with respect to the horizontal direction of flow.

The comparison was made with Sui and coworkers [24, 25], who used a multiblock
BGK-LBM model in concert with the immersed boundary method. These works used
Hookean elasticity and included membrane stiffness, but did not address membrane vis-
cosity or the viscosity jump. In Figs. 1(a) and 1(b), we consider different shear rates in the
absence of bending resistance. Although our simulations somewhat overshot the equi-
librium Dxy values for higher shear rates, there was consistent agreement between the
two methods. Additionally, we considered the shear rate G=0.04 with various bending
to elasticity ratios in Figs. 2(a) and 2(b). Our results for the impact of bending stiffness
matched quite well, excepting a slight wobble in the angle of inclination for Eb=0.2.
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(a) Dxy for various G (b) θ
π for various G

Figure 1: The Taylor deformation parameter and inclination angle are graphed against time, where circles
represent data points from [24] and the solid lines are the results of our simulations. Figs. 1(a) and 1(b) show
G=0.0125, 0.04, 0.125, and 0.4, where Eb=0, V=1, and M=0.

(a) Dxy for various Eb (b) θ
π for various Eb

Figure 2: The Taylor deformation parameter and inclination angle are graphed against time, where circles
represent data points from [25] and the solid lines are the results of our simulations. Figs. 2(a) and 2(b) show
Eb=0, 0.05, 0.1, and 0.2, where G=0.04, V=1, and M=0.

2.4 Setup

We considered a rectangular domain, with 321 nodes in the dimension of the shear flow
and 241 nodes in the transverse direction. The uniform lattice size was h=0.25µm and the
timestep ∆t=0.25µs, and a Reynolds number of 0.05 was used. The capsule boundary is
discretized into 140 Lagrangian nodes, such that each segment is initially of equal length.
The initial shear flow, continuously enforced on the domain boundaries, is ~u=(ky,0), for
shear rate k= 10s−1 and y ∈ [−H,H] where H is half of the transverse length. Capsule
deformation and shape recovery are studied in terms of the Taylor deformation param-
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eter. Our choice of the Taylor deformation parameter was guided by two factors: (1) its
widespread use in computational studies of capsule deformation and (2) that it charac-
terizes (however imperfectly) the entire capsule shape.

3 Circular capsules

An initially unstressed circular capsule was placed in the center of the shear flow do-
main. The capsule was deformed by the flow until the system reached a clear equilib-
rium. Initially zero, the Taylor deformation parameter Dxy increases during this process
to a constant equilibrium value, as shown in Figs. 1(a) and 2(a), which we denote D0. At
this point, the boundary conditions driving the shear flow were stopped and the capsule
gradually relaxed toward its initial shape, corresponding to D∞=0. This simulation was
performed for a variety of four dimensionless parameters: G, M, Eb, and V.

We found that, as suggested by [3], the decay in the Taylor deformation parameter
was approximately exponential. For each set of simulation parameters, the exponential

curve e−
t
tc which best fit the decay in Dxy from D0 was calculated using a least squares

method. Fig. 3 shows examples of simulation data points plotted against e−
t
tc for their

respective values of tc and suggests that the exponential decay function is suffices to
describe the recovery.

Analysis of our results showed that the time constant tc clearly depended not only on
the shear rate G and membrane to fluid viscosity ratio M, but also on the reduced bending
modulus Eb and viscosity jump V. We found that G, M, and V had linear relationships

Figure 3: Simulation data points plotted against exponential decay curves for calculated values of tc. Other
parameters were Eb =0.05, V=1, and M=0.
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(a) Other parameters are Eb =0.05, V=1, and
M=0

(b) Other parameters are G = 0.04, Eb = 0.05,
and V=1

(c) Other parameters are G = 0.04, Eb = 0.05,
and M=0

(d) Other parameters are G= 0.04, V = 1, and
M=0

Figure 4: Circles represent tc values from simulations varying (a) shear rate G, (b) membrane to fluid viscosity
ratio M, (c) viscosity jump V, and (d) bending stiffness Eb. Squares in (a) represent tc values for neo-Hookean
elasticity.

with tc, while Eb was inversely proportional with it, as illustrated in Fig. 4. Despite this
common linearity, the relative importance of the three linear parameters differed widely:
tc varies directly with G, while increases in M have minimal impact on tc and the role
of V is somewhere between these two. Bending stiffness also has a large role for small
values of Eb.

One might write an approximate function for the time constant as tc= ρ
G(V+φ)

Eb
, for

constants ρ and φ. Yet the simplifications due to the capsule’s circularity are clear, in the
near-irrelevance of membrane viscosity and the shape recovery of a capsule which lacked
bending stiffness and, therefore, a preferred curvature. The largely linear course of shape
recovery of a circular capsule seems the mirror image of its deformation.
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4 Biconcave capsules

We contrast our results for a simple circular capsule with a biconcave capsule, described
by the equation

x= aαsinχ, (4.1)

y= a
α

2
(0.207+2.003sin2 χ−1.123sin4 χ)cosχ, (4.2)

for cell radius ratio α=1.29, characteristic length 1.48a, and χ ranging from −0.5π to 1.5π.
When deformed in shear flow, a biconcave capsule has been shown in computational

and experimental studies to have (at least) two distinct ’equilibrium’ behaviors: tum-
bling and tank-treading [1, 8, 23]. In tumbling, the capsule continuously tumbles for-
ward, with its shape undergoing periodic changes but retaining its biconcavity. Con-
versely, tank-treading involves deformation of the capsule to a near constant shape and
angle of inclination, with a near-periodic rotation of the membrane around the internal
fluid. Simulations have shown that the shear rate, bending stiffness, membrane viscos-
ity, and the viscosity jump all play some role in determining the capsule’s equilibrium
behavior [15, 23, 25]. Given the very different deformations involved, we consider the
recoveries of tank-treading and tumbling capsules separately.

After deformation to equilibrium behavior, we found that both tank-treading and
tumbling capsules returned to their initial shapes, presuming Eb>0. The only mechanism
by which a 2D capsule may express a shape preference is bending stiffness, as opposed to
a 3D capsule in which shear elasticity is an additional mechanism. For Eb =0, we found
that after stopping the shear flow, capsules briefly changed to a slightly more circular
shape, but underwent no further shape change, as illustrated in Fig. 5.

Figure 5: For capsule with no bending stiffness, we compare shapes when undeformed (solid line), when flow
stops (dashed line), and after recovery (dotted line).
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4.1 Tank-treading

Our results suggest that there are two separate modes in the shape recovery process of
a tank-treading capsule. First, there is a brief period of relaxation, in which energy is
quickly dissipated and the Taylor deformation parameter sharply decreases from D0 to
Dmin. Second, there follows a much slower period of relaxation, in which the Taylor
deformation parameter increases from Dmin to its initial value D∞. We illustrate the com-
plete recovery process in Fig. 6(a), in which A, B, and C denote the positions of D0, Dmin,
and D∞, respectively. The corresponding capsule shapes are shown in Fig. 6(b), with
the solid curve representing D0 (the initial shape), the dashed curve for Dmin (the shape
with the minimum Dxy), and the dotted curve denoting D∞ (the final, recovered shape).
We see that the initial recovery from the oblong tank-treading shape shortens the capsule,
though it is only starting to exhibit biconcavity. Conversely, the latter part of the recovery
process involves major changes in curvature and a large decrease in the capsule’s width,
to return to its biconcave shape.

(a) (b)

Figure 6: Recovery from tank-treading in terms of (a) Dxy and (b) capsule shape.

To consider the dominant mechanisms of these two modes, we fitted the curves from
D0 to Dmin, and from Dmin to D∞, with exponential decay functions e−

t
tc . Calculations

for the initial and latter tc values were found to be O(10−1) and O(10), respectively.
Subsequently, the dependence of the resulting tc values on G, M, V, and Eb was studied.

We found that, for both the initial and latter recovery modes, tc was again directly
proportional with G. A similar direct proportionality prevailed for the dependence of
the latter tc on V, while increasing V produced only modest linear increases in the initial
tc. Alternately, the initial tc has a strong dependence on M, while the latter tc was nearly
independent of the M value. Finally, Eb has no clear relationship with the initial tc, but
the latter tc has a clear inverse dependence on Eb. Data illustrating these results is found
in Fig. 7.



J. Gounley and Y. Peng / Commun. Comput. Phys., 16 (2014), pp. 56-74 67

(a) Other parameters are Eb=0.0014, V=1,
M=0

(b) Other parameters are G = 0.067, Eb =
0.0014, and M=0

(c) Other parameters are G = 0.067, Eb =
0.0014, and V=1

(d) Other parameters are G= 0.067, V = 1,
and M=0

Figure 7: For a tank-treading capsule, initial tc values (triangles) and latter tc values (squares) are compared
for different G, V, M, and Eb. Solid lines approximate the relationship between the parameter and tc.

In summary, we see that the first mode is dominated by the elasticity and viscosity of
the membrane, which cause the relaxation of the principal stretch ratio λ toward its equi-
librium value of unity. Conversely, the elasticity and bending stiffness of the membrane,
along with dissipation in the fluid, drive the second relaxation mode, which is dominated
by the tank-treading and curvature changes necessary to regain the biconcave shape.

This initial recovery mode is consistent with theoretical and experimental results for
recovery from micropipette aspiration and other deformations. We found that the initial
tc≈ρGM, for constant ρ, as the roles of Eb and (to a lesser extent) V are small enough to
be ignored, as argued in [7]. When stated in terms of the membrane’s elasticity modulus
and viscosity coefficient, this equation takes the form of initial tc ≈ ρ

ηe

Es
, which is the

relationship suggested by Evans and Hochmuth, among others [3, 4, 7]. On the other
hand, an equation for the latter tc might be written as tc≈ρ GV

Eb−φ , with the constant φ≪1
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(a) At stop of shear flow (b) k∗dt=12.5 (c) k∗dt=25

(d) k∗dt=37.5 (e) k∗dt=50 (f) k∗dt=75

Figure 8: We compare the shape recovery of capsules with phase differences of 0.11 (solid line) and 0.49 (dashed
line) radians. Circles are the current location of an element initially at the end of each capsules.

representing the necessity that Eb > 0 for the capsule to recover its shape. In particular,
the larger Eb is, the quicker the cell recovers its shape.

As the tank-treading capsule maintains an approximately constant angle of inclina-
tion, the course of shape recovery was also highly dependent on the position of the
membrane at the time at which shearing was stopped. This was due to what Fischer
denotes shape memory: a given element of the capsule returns to the same (or oppo-
site, homologous) position it held prior to the deformation [8]. Adopting the defini-
tion by Le [14], we quantify the position of the membrane in terms of its phase angle
β(t) = α(t)−θ(t)−[α0−θ0], in which α(t) and θ(t) are the current inclinations with re-
spect to the flow field of the membrane element and capsule’s major axis, respectively,
and α0 and θ0 are the initial values of these angles. If phase angle β is small, then the
capsule will recover its shape more quickly than for a larger phase angle. To control for
this effect, the ensemble of above simulations were conducted with β=0.49 radians.

Fig. 8 considers the recovery of tank-treading capsules with phase angles β of 0.11
and 0.49 radians, but identical parameters otherwise. Note in Fig. 8 that this phase an-
gle determines the capsule’s angle of inclination after shape recovery. In contrast, one
might have envisioned a recovery process consisting largely of tank-treading, in which
the capsule maintained a constant angle of inclination.
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4.2 Tumbling

Unlike initially biconcave tank-treading capsules, the shape recovery process for tum-
bling capsules typically involves the Taylor deformation parameter decreasing or in-
creasing monotonically to its initial value. Whether decreasing or increasing occurs is
determined by the angle of inclination θ of the capsule’s major axis when the shear flow
is stopped. In Fig. 9(a), the solid and dashed lines depict the capsule’s recovery for an-
gles −π

3 and π
6 , respectively. To facilitate comparisons, the following simulations were

conducted with an angle of −π
3 when the shear flow is stopped.

(a) (b)

Figure 9: In (a), we compare shape recovery in terms of Dxy for stopping flow at differing angles of inclination,
− π

3 (time D) and π
6 (time G), with solid and dashed lines, respectively. Time E denotes the transition between

initial and latter recovery modes for the capsule stopped at − π
3 . In (b), we consider the capsule shapes when

flow is stopped (solid lines, taken at times D and G) and upon recovery (dotted lines, at time F). Both capsules
share G=0.04, Eb=0.05, M=0, and V=2.

Despite this monotonicity, a single exponential decay function e−
t
tc failed to model

Dxy’s recovery as completely as for circular capsules. Rather, as with tank-treading cap-
sules, there seemed be a brief, initial mode of rapid recovery, followed by a more gradual
relaxation of the Taylor deformation parameter to its initial value. Consequently, we
modeled the recovery with a pair of exponential decay functions, estimating when the
change in recovery modes occurred. The difference in the order of magnitude for the
calculated tc values was smaller than for tank-treading capsules, with the initial tc being
O(10−1−100) and the latter tc being O(100−101).

As Fig. 10 illustrates, both initial and latter tc values were directly proportional with
G. The latter tc was also directly proportional with V, while the initial tc had a much less
steep linear relationship with V. Increases in M also produced modest, somewhat linear
increases in both tc values. Lastly, the latter tc was relatively inversely proportional to
Eb, while only a very small Eb had a meaningful effect on the initial tc.
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(a) Other parameters are Eb=0.05, V=5, M=0 (b) Other parameters are G = 0.04, Eb = 0.05,
and M=0

(c) Other parameters are G=0.04, Eb =0.0125,
and V=5

(d) Other parameters are G= 0.04, V = 5, and
M=0

Figure 10: For a tumbling capsule, initial tc values (triangles) and latter tc values (squares) are compared for
different G, V, M, and Eb. Solid lines approximate the relationship between the parameter and tc.

Suggesting an approximation of the initial tc for tumbling capsules is difficult, given
its imprecise relationships with parameters other than G. Even bending stiffness impacts
the initial tc, in sharp contrast to the tank-treading case. Conversely, the equation of the
latter tc≈ρ GV

Eb−φ given for a tank-treading capsule again provides a reasonable model for

the data from tumbling capsules, though it fails to account for the modest role of M in
this recovery mode.

4.3 Discussion

Our results differ from previous studies in their consideration of the entire shape recov-
ery process. In the work of Evans and Hochmuth, Dao et al., and others, they consider
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(a) (b)

Figure 11: Comparison of tension τ (left axis), bending moment m (right axis), and Taylor deformation parameter
(axis not shown) during shape recovery. For the sake of clarity, only part of the recovery time is shown in (a).

recovery with respect to the principal stretch ratio λ and found tc= ρ
ηe

Es
, for a constant

ρ. This is consistent with our result for tc for the initial recovery from tank-treading, but
fails to accommodate the major shape changes which a tank-treading capsule must un-
dergo later in its shape recovery from shear flow. This may be seen by comparing the
changes in membrane tension τ and bending moments m after the stop of shear flow
to the Taylor deformation parameter. In Fig. 11, this comparison is made for (a) tank-
treading and (b) tumbling capsules, with shear flow stopped at time A. We see that, for
the tank-treading capsule, membrane tension is very quickly dissipated, and that this oc-
curs while the Taylor deformation parameter decreases to its minimum value at time B,
which we characterized as the first recovery mode. Subsequently, with little change in
tension, bending moments continue their slow decrease, the course of which we called
the second recovery mode. This distinction between modes is less clear for a tumbling
capsule: while tension is again quickly dissipated after shear flow stops at time A, the rel-
atively larger bending stiffness of a tumbling capsule ensures that the decline of bending
moments does not lag far behind. This pair of sharp declines conclude the first recovery
mode at time B, after which both tension and bending moments gently decline to zero
during the second recovery mode.

5 Summary

We have introduced a method for simulating the deformation and shape recovery of vis-
coelastic, fluid-filled capsules which uses the multiple relaxation time lattice Boltzmann
and immersed boundary methods. We found that a single exponential decay function
sufficed to describe the shape recovery of a circular capsule, in terms of the Taylor de-
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formation parameter and in which the time constant was a clear function of the cap-
sule’s shear elasticity and bending stiffness, along with the viscosity jump. When this
model was extended to biconcave capsules recovering from tank-treading or tumbling,
we found that a more complicated recovery model was necessary.

Consequently, we have posited a two-part recovery for both tank-treading and tum-
bling biconcave capsules. The first mode, focused on dissipating large inter-membrane
forces quickly, involves λ nearly returning to its initial value and is due to the mem-
brane’s elasticity and viscosity. The second mode, unnecessary for the smaller defor-
mations which occur in micropipette aspiration, dissipates remaining forces while mem-
brane elements return to their initial positions. For this latter mode, we found that shear
elasticity, viscosity jump, and bending stiffness played significant – and almost identical
– roles for both tank-treading and tumbling capsules.

These results are, inevitably, limited by the 2D model. The requirement that a non-
circular capsule have a preference for its initial curvature in order to recover its shape may
overstate the role of bending stiffness in shape recovery. Additionally, using a Skalak
constitutive law, rather than a Hookean or neo-Hookean, would allow the role of the
capsule’s isotropic elasticity to be considered, which may also alter our findings. With re-
spect to red blood cells in particular, 3D simulations are required to address the potential
mechanisms of the cell shape memory. As it is not clear that red blood cells have a non-
constant preferred curvature, computational studies with uniform curvature preferences
have been conducted (e.g. [32]). A shape recovery study with a uniform curvature pref-
erence might help clarify the role of the red blood cell’s elastic character in determining
its biconcave discoidal shape, in line with recent studies [8, 19].
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