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Abstract. The bubble packing method can generate high-quality node sets in simple
and complex domains. However, its efficiency remains to be improved. This study is
a part of an ongoing effort to introduce several acceleration schemes to reduce the cost
of simulation. Firstly, allow the viscosity coefficient c in the bubble governing equa-
tions to change according the coordinate of the bubble which are defined separately
as odd and normal bubbles,and meanwhile with the saw-shape relationship with time
or iterations. Then, in order to relieve the over crowded initial bubble placement, two
coefficients w1 and w2 are introduced to modify the insertion criterion. The range of
those two coefficients are discussed to be w1 =1, w2 ∈ [0.5,0.8]. Finally, a self-adaptive
termination condition is logically set when the stable system equilibrium is achieved.
Numerical examples illustrate that the computing cost can significantly decrease by
roughly 80% via adopting various combination of proper schemes (except the uniform
placement example), and the average qualities of corresponding Delaunay triangula-
tion substantially exceed 0.9. It shows that those strategies are efficient and can gener-
ate a node set with high quality.

AMS subject classifications: 65L50, 65B99

Key words: Bubble packing method, algorithm efficiency, viscosity coefficient, mesh generation,
Delaunay triangulation.

1 Introduction

Engineering analysis of mechanical systems have been addressed by deriving a partial
differential equation systems through basic physical principles such as equilibrium, con-
servation of energy and mass, the laws of thermodynamics and Newton’s laws of mo-
tion. However, once formulated, solving the resulting mathematical models is often in-
tractable, or even impossible, especially when the resulting models are non-linear. Over
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the past few decades many such problems have emerged in various computer applica-
tions, and along with a corresponding collection of solution techniques. These applica-
tions include engineering analysis, computer graphics, layered manufacturing, surface
design, and shape reconstruction [1].

In recent dozens of years, the finite element method (FEM) is the dominant discretiza-
tion technique in solving such mechanical problems, while the basic concept in the phys-
ical interpretation of the FEM is the subdivision of the mathematical model into disjoint
(non-overlapping) components of simple finite elements. For those numerical methods
fall into the mesh-based category, the accuracy and convergence properties are depen-
dent on the size and shape of the elements, which consequently have a positive influence
on the distribution of the corresponding nodes set [2].

In this paper, attentions are fixed on analysing the node placement method called
Bubble Packing Method (BPM), or bubble meshing developed by Shimada et al. [1, 3–5],
which is on account of the fact that a pattern of closely packed circles mimics a Voronoi
diagram so that a set of well-shaped Delaunay triangles can be created by connecting the
centers of the circles, this packed configuration is obtained by defining proximity-based
interacting forces among the circles and finding a force-balancing configuration using
dynamic simulation.

Since then, a fully automated quadrilateral meshing for finite element analysis was
presented, in which the directionality of the mesh is precisely controlled [6–8]. Itoh and
Shimada [9] presented a triangular-to-quadrilateral mesh conversion method that can
control the directionality of the output quadrilateral mesh according to a user-specified
vector field. Additionally, Yamakawa et al. [10] suggested an algorithm for anisotropic
tetrahedral meshing.

Kim et al. (2003) [11] employed a modified octree technique to place initial bubbles in
three-dimensional bodies, which leads to a drastic reduction of errors for each of the two-
and three-dimensional domains, from the present bubble packing technique combined
with the adaptive refinement based upon Zienkiewicz and Zhu error estimator [12, 13].
Chung et al. [14, 15] then proposed a new remeshing algorithm using the BPM in two-
dimensional finite element analysis and applied this algorithm to the large deformation
problem, it works well at the region with large error, it is further able to control the refine-
ment area and the new mesh size easily through the maximum permissible relative error
η∗

max and the bubble size control factor q. Nie et al. [2] verified the bubble system con-
vergence by studying the changes of the average speed in the dynamic simulation, and
also pointed out that physical parameters (e.g., damping coefficient) should be properly
selected, which directly impact on the convergence speed of the bubble system. More-
over, parallelization for large-scale problems can also be easily proposed for reduction
of the computational cost [16]. Rossi and Shimada et al. [17–19] presented a computer-
ized planning scheme for prostate cryosurgery using a variable insertion depth strategy
based on BPM in comparison with the experimentally applied cryoprobe layout, and it is
commented that this method was associated with a high computational cost.

Recently, Wu et al. [20] employed BPM into simulating both square and polar lid-
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driven cavity flows under different Reynolds numbers. Cai et al. [21] proposed a numer-
ical path integration method based on bubble grids for nonlinear dynamical systems-
Duffing oscillator and Duffing Rayleigh oscillator subjected to harmonic and stochastic
excitations. The meshing problem has thus been mostly solved, for different shapes of
mesh, or even for meshless method [22]. The advantages of BPM are widely acceptable-
consistent applicability to 1D/2D/surface/3D/hybrid domains, precise node spacing
control, well-shaped elements, adaptive remeshing capability, intuitive and easy to im-
plement. Nevertheless, like all other physically-based approaches, the second stage of
the bubble method, the dynamic simulation is computationally costly due to the pair-
wise interbubble force interaction [1], in this sense, a new challenge now is to enable this
algorithm efficient rather than taking so much time.

Several modifications have been done to reduce the cost of the simulation previously
in [23]. Firstly, allow the viscosity coefficient c gradually increases instead of being taken
as a constant, which helps to speed up the convergence. Moreover, at the end of each
round simulation, in which bubble additions or deletions are operated, c is assigned to be
a relatively smaller value in order to ensure the quality of bubble distribution. Secondly,
as solving the ordinary differential equations (ODEs) that control the movement of bub-
bles, a second-order Euler algorithm instead of a fourth-order Runge-Kutta algorithm is
chosen. Finally, the sort process of overlapping rate of bubbles is removed, which is re-
placed by only setting threshold for bubbles additions and deletions. It is showed that the
computing cost decreases by approximately 40% and still can generate a nodes set with
high-quality. This modified node placement method is referred as a Fast Node Placement
Method with Bubble Simulation (FNPBS).

This paper is ongoingly aiming at improving the BPM in three ways: by defining
coefficients w1 and w2 to control the density of initial bubble configuration, by setting a
threshold to terminate the simulation process, and also by letting the viscosity coefficient
c shift with the position of bubble, or precisely, with the determinant of whether its adja-
cent bubbles being operated with the insertions or deletions, which in turns works upon
the governing ODEs model. Four examples, representing four types of domains or node
configurations, are executed with the above strategies, which may prove to substantially
reduce the computational cost, and likewise expediting the rate of convergence. It is also
shown that those strategies are selectively effective to different cases associated with the
shape of the domain and the defined ideal distance function.

2 Methodology

The physically-based model for mesh generation, presented as a ”dynamic bubble sys-
tem” was originally inspired by the idea of bubble meshing and the technology of molec-
ular dynamics. It treats the computational domain to be a force region with viscosity de-
fined on it, while each node in this domain to be the center of a bubble which are drove
by the repelling and attracting interbubble forces based on the proximity. The motion
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of every bubble satisfies the Newton’s 2nd Law. During the simulation, insertion and
deletion operations of bubbles are implemented according to the bubble’s overlapping
ratio. As the iterative process goes forward, a closely force-equilibrium configuration of
nodes is obtained, which is indeed the node distribution satisfying the given node spac-
ing function. In addition, the mean velocity of bubbles in this system tends to be zero.

While the principle of bubble packing are well documented in the literature [1,22], the
method is presented here in brief-for the completeness of presentation-with emphasis on
the new modifications.

2.1 Analysis of time consumption

The basic idea of BPM can be primarily summarized into 5 steps:

(A) Initialization

(a) Initial bubble placement,

(b) Build the initial adjacent list for each bubble.

(B) Searching and updating of adjacent list.

(C) Calculation of the interbubble force.

(D) Calculating the new position of each bubbles by the governing equations.

(E) Bubble population control with insertion and deletion operations.

Amongst those, except the first step is solely executed at the beginning, the rest are
all executed in several rounds, in which there are a series of simulation.

Example 3 in Section 3.3 is used throughout Section 2 for demonstration. It is a
[−3,3]×[−3,3] square region, and the node spacing function is

d(x,y)=0.2×
∣

∣

∣

√

x2+y2−2.0
∣

∣

∣
+0.15.

The time consumed by adopting the traditional BPM to obtain the node distribution of
this region is given in Table 1. All the examples in this paper, if not mentioned specifically,
are executed on Intel(R) Core TM2 Duo CPU T6600 2.20GHz, Microsoft Windows XP
Professional SP3, complied by Microsoft Visual C++ 6.0(SP6).

Table 1: Time consumed in each sub-step by the traditional BPM.

time consumption/s percentage/%

initialization 0.328 0.109

adjacent list search and update 15.123 5.028

calculating forces 36.062 11.991

calculating the new position 153.956 51.195

bubble population control 95.250 31.674
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From Table 1, it is noteworthy that the calculation of bubble new position and bubble
population control in BPM occupy more than 80% of the entire simulation, which points
out the main focus of this study.

2.2 Changing viscous coefficient c with bubbles’ position

The BPM treats the problem of establishing a set of discrete points by bubble movement
as a force-balance problem of particle motions in a viscous medium. In view of this,
strategies are taken to optimize the design of the coefficients in the bubble motions gov-
erning equations so that the particle equilibrium can be quickly obtained, and meanwhile
to obtain a high-quality nodal distribution.

The bubble system is regarded as a viscous medium system consisting a large amount
of particles, in which each particle is dragged by two types of forces, i.e., the interaction
force from other particles and the viscous damping force from the virtual medium. The
expression of interbubble force, or the intermolecular Van der Waals force in nature is
given by [1, 16, 23]

f (λ)=







k0

(5

4
λ3−

19

8
λ2+

9

8

)

, 0≤λ≥1.5,

0, λ>1.5,
(2.1)

where λ represents the ratio of the actual distance l and the desired distance between two
bubbles, and k0 is a parameter to scale the force value. The general form of this function
is shown in Fig. 1.

As explained previously, the final force balancing configuration of bubbles is obtained
by solving a system of non-linear ODEs. In the BPM, the dynamic bubble system is
represented according to the Newton’s 2nd Law:

m
d2xi(t)

dt2
+c

dxi(t)

dt
=Fi(t), (2.2)

where m denotes mass, c is the damping coefficient, and xi is the position of the ith bub-
ble’s central point, Fi is the resultant force exerted on the ith bubble.

An essential issue in this physically-based approach is the selection of physical pa-
rameters such as the mass, the damping and the strength of interbubble forces, which
is measured in terms of the coefficient of the interbubble force. They directly determine
the time response of the ODEs system and so that highly effect the efficiency and conver-
gence of the bubble system. Therefore, it is intended to design a ”well-behaved” physical
model by carefully choosing a combination of parameters.

Shimada et al. [1] once pointed out that the system is similar to a standard second-
order, single degree system consisting of a mass, viscous damping, and a linear spring.
By defining representative linear spring constants for this non-linear springs, it is con-
cluded that physical parameters should be chosen such that the damping ratio ζ gives
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Figure 1: The Van der Waals force, which exerts a repelling force when two bubbles are located closer than a
specified distance l0, and an attracting force when two bubbles are farther away [1].

approximately

ζ=
c

2
√

mk0

≈0.7,

in which all the parameters are defined as constants.
To study the influence of damping coefficient c on the convergency of the bubble

system, let m = 1.0, k0 = 1.0. Compared to the interbubble force, if the viscosity of the
medium is too large, the particles can quickly tend to the balance, but it is difficult to
obtain a high-quality nodes distribution; while if the viscosity is too small, then at the
beginning of the simulation, the bubble system is conducive to converge to a suitable
nodes set, it is because the smaller the value of c, the larger displacement of bubbles
in every round of simulation, so that the better position of bubbles will be acquired at
the early stage. However, the defect of this assignment leads to relatively longer time
consumed for the whole system to dynamically reach an equilibrium state.

The analysis above is concluded by taking the viscous coefficient c as a constant.
However, the node placement process is not the movement of particles in the viscous
liquid in reality. This is simply a simple mathematical model in virtue of the embedded
physical meaning, which means the damping coefficient c in the ODEs is not necessarily
required to be a constant. If setting c increasing linearly over time (steps), it will help the
system accelerate to converge. Due to the operation of deletion and insertion of bubbles
at the end of each round of simulation, the coefficient c shall be further adjusted to a
relatively small value [23].

In addition, it also intends to design a relation between damping coefficient with the
position of the bubble itself. It is because after the deletion or insertion based on the
bubble’s overlapping ratio, not all the bubbles’ position need to be reoptimized to a large
extent except the ones close to the deleted or newly inserted bubbles, those are called
odd bubbles, otherwise normal bubbles. In this sense, for the odd bubbles tagged in each
round of simulation, their viscous coefficients need to be assigned as a small value codd,
so that the basic incremental sawtooth-shape variance scheme shall be modified to be flat
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Figure 2: The viscosity coefficient of two representative bubbles as a function of time: one is a normal bubble
(black solid line) throughout the whole simulation, the curve turns out to be saw-shaped and roughly increased
pattern. Analysed in [23], there are three parameters c0, k1, k2 to determine the shape of this curve, where
c0 is the initial viscous term, k1, k2 are the slopes for viscous coefficients amongst inter-round and extra-round
simulations, 0< k1< k2 is studied to be satisfied, firstly to construct the term c at the start of this round to be
smaller than the end of last round, and secondly to ensure it is a increased incremental pattern; the another is
an odd bubble (red dashed line) in the 2nd and 4th rounds, specifically, while in other round it is still a normal
bubble so that its viscous changes with other normal bubbles.

when applied to those odd bubbles, while for others, basically linear increased scheme
is enough to attain the normal bubbles stably and quickly converge to the final stage.
This bifurcated modification allows the bubbles in different situations in each round of
simulation to move to superior positions as quickly as possible, and also helps to ensure
the quality of bubble distribution. Fig. 2 gives one method to realize the above scheme to
set the damping coefficient c changing both over time (steps) and position.

To achieve this scheme, the basic idea is to detect the nodes whose overlapping ratio
do not meet the requirements so as to have insertion or deletion operations at the end
of each round of simulation. The coordinates of those nodes are recorded since it is the
only variable that is kept identical and can be transmitted from this round to next round,
the nodes count, however, has generally been arranged in sequential order. Thus, if the
bubble is detected as an odd bubble, then the viscous term for next round will be set to
be codd=1 here; otherwise, it follows the change with time/iterations.

Since at the first several round of simulation, the bubble population control operation
will affect most of the bubbles. In order to save the time for detection, searching and
assigning, the c varying with position scheme will be operated when N1−N2≤0.05%×N1,
where N1, N2 are the nodes count before and after this round of simulation, respectively.
At this time, the whole bubble configuration has been formed and the position changes
only involve a small number of nodes.

Adopting it into Example 3, the result shows that the scheme actually increases the
computing time. This is mainly due to the addition of searching operation, which not
only offset the time saved, but cost more.
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time consumed/s initial node count final node count

WITHOUT this scheme 187.156 1420 712

WITH this scheme 194.594 1420 709

Nevertheless, if setting the node spacing function to be

d(x,y)=0.35×
∣

∣

∣

√

x2+y2−2.0
∣

∣

∣
+0.05,

namely enlarge the node spacing variance amongst bubbles. Conducting it on an 8-core
mainframe computer, the result in Fig. 3 shows that this scheme does improve the perfor-
mance of the computing efficiency, but requires that the insertion and deletion operations
are confined to some local areas, for instance, the crack propagation problems. It needs
to be pointed out that the comparison is solely between the simulation with and without
our scheme in the same environment. In other words, the eight-core computations does
not contrast with single-core ones. The multicore simulation is due to the increased time
consumption when the node spacing being largely reduced.

time consumption/s initial node count final node count

WITHOUT this scheme 19.61 1822 1602

WITH this scheme 9.15 1822 1598

The plots of the 2-D meshes in Fig. 3 shows that the algorithm produces triangles that
are almost equilateral. One commonly used mesh quality measure is the ratio between
the radius of the largest inscribed circle (times two) and the smallest circumscribed cir-
cle [24], which is very similar to the concept of ”radius ratio”:

q=2
rin

rout
=

(b+c−a)(c+a−b)(a+b−c)

abc
,

where a, b, c are the side lengths. An equilateral triangle has q= 1, while a degenerate
triangle (zero area) has q=0. The coarse and dense Delaunay meshes have q=0.9558 and
q=0.9425, respectively, which are both desirable properties when solving PDEs with the
FEM.

2.3 Reducing the time consumed for bubble population control

It is essential to obtain a advantageous initial bubble configuration before physically-
based relaxation since a suitable first guess will greatly reduce the convergence time of
the lengthy relaxation process [1]. The bubbles initial placing scheme in the BPM based
on a the repeated bisection technique or hierarchical spatial subdivision (HSS) has been
devised. This scheme is firstly applied to the boundaries of the region-in 2D is a segment,
in 3D is first segment then surface, afterwards, operating the placing for the inner part of
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(a) (b)

(c) (d)

Figure 3: (a) the coarse node configuration, (b) the dense node configuration, (c) the locally zoom-in, (d) the
Delaunay radius ratio of the dense node configuration.

the region. The process is shown in Fig. 4. This scheme is simple, relatively fast and has
been largely adopted [2–8,10,22]. However, when the mesh spacing varies, it can produce
initial bubble configurations with large overlapped bubbles. The HSS method does not
effect the quality of the final mesh since the population control algorithm ensures the
correct number of final bubbles, it does slow down the meshing processing since a large
number of movement steps are required to obtain a force balanced condition.

Figure 4: The packing order in a 3D case [2].
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Figure 5: The comparison between the initial 1420 nodes distribution and the final 714 nodes distribution.

Accordingly, Yokoyama et al. [25, 26] take a different approach to get the initial con-
figuration, specifically, an initial triangulation of the boundary points is used to define
a series of trial points, and each of these trial points is tested in turn to determine the
suitability of adding a bubble at that point. This method can easily handle variable mesh
spacing without leaving gaps or producing overlapped bubbles. However, it is admitted
that the overall technique is comparatively slow compared to the one using the HSS as
the initial bubble placing method. In other words, it is worthwhile to improve the HSS
method in the aspect of reducing the number of the large overlapped bubbles.

From Fig. 5, it is clear to see that during the 10 rounds simulation, the number of
bubbles reduces from initially 1420 to finally 714, which indicates nearly 50% of the initial
placed bubbles will be deleted at the end. In this sense, to construct the subdivision
somewhat more sparse need to be adapted.

The basic idea of the HSS is to subdivide a curve, a surface, or a volume hierarchically
using a binary tree, a quadtree, and a octree respectively. As a result, bubbles are inserted
until they cover the entire region without significant gaps or overlaps. Regardless of to
place a initial boundary bubble or a initial inner bubble, the criterion for whether to place
a bubble between two end points P1, P2 is by judging P1P2≥d1/2+d2/2, where d1, d2 are
the diameters of those end bubbles, which are calculated from the given node spacing
function, and P1P2 the distance along the curve segment. If TRUE, meaning that the
two end bubbles completely cover the curve segment, and thus no further subdivision is
required; If FALSE, then further subdivision is required, and a new bubble is placed at
the midpoint of the two end points (Fig. 6). This procedure is recursively repeated until
the whole region is covered by bubbles, which is basically the same for surface or volume
bubble placement.

To relief the largely coarse initial node placement, two weighting factors w1, w2 are
considered to modify the criterion to be w1×P1P2≥d1/2+d2/2 for initial boundary nodes,
and likewise w2×P1P2≥d1/2+d2/2 for initial inner nodes.

As to the selection of w1, several experiments are executed by the FNPBS, and the
results are given in Table 2.
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Figure 6: The basic idea of hierarchical spatial subdivision for a curve segment.

Table 2: Results with different w1.

w1 initial nodes count final nodes count time consumed/s

0.8 1404 780 463.609

0.9 1404 752 421.422

1 1420 712 187.156

1.2 1432 715 192.903

1.5 1460 720 198.813

2 1508 694 278.859

Table 3: Results with different w2.

w2 initial nodes count final nodes count time consumption/s

1 1420 712 187.156

0.8 1139 711 116.469

0.7 983 707 99.328

0.6 826 707 91.515

0.57 660 655 215.093

Similarly, when going forward to do experiments on w2, it is obtained with different
time consumption shown in Table 3.

Drawing from the form of the modified criterion, w1,w2≤1 are required. When w1=1,
w2 = 0.6, the radius ratio of the corresponding Delaunay triangulation is 0.9525, with
almost no difference with 0.9435 by the FNPBS and 0.9558 by traditional BPM, which
means this radius ratio still keeps a rather high level and satisfies the quality requirement
for FEM mesh. However, the time consumed in this case is approximately 50% less than
the FNPBS, not to mention the traditional BPM.

2.4 Set termination condition

In either the traditional BPM and the FNPBS, the iteration termination condition is to
set the round number of bubble packing process, and often this choice is settled based
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Table 4: The data for each round of simulation for Example 3 by the FNPBS.

round

count

iteration

count

time

consumed/s

nodes

count

Delaunay

element count

radius

ratio

0 0 0 1420 2758 0.9742

1 250 56.953 1202 2339 0.8562

2 500 93.578 1013 1963 0.8268

3 750 115.625 847 1631 0.8230

4 1000 129.156 748 1434 0.8650

5 1250 138.813 726 1391 0.9052

6 1500 147.438 721 1381 0.9231

7 1750 155.938 716 1371 0.9286

8 2000 164.313 714 1367 0.9351

9 2250 172.719 712 1363 0.9392

10 2750 187.156 712 1363 0.9435

on experience. For instance, in the foregoing example, the pre-established round count
equals 10, and the simulation time and nodes count for each round are given in Table 4.

As can be seen from the above table, the variance between two successive rounds
will be reduced with the increase of iteration. In those last rounds, the nodes variance
is very meager, that is to say, at those times, the bubbles’ overlapping ratio is basically
in line with the requirements. Thus the insertion and deletion operate quite a few so
that the corresponding Delaunay radius ratio will not change greatly, and will maintain
a relatively stable state, shown in Fig. 7.

Figure 7: The Delaunay radius ratio changes with the iteration. Note that the oblique quadtree method for 2D
initial bubble placement is adopted, which means for roughly uniform node spacing region, the triangulation
quality will be rather high, for the node spacing region with great changes, however, the grid shapes will be
seriously distorted. Therefore, although the mean radius ratio of the initial node placement seems to be most
close to 1, the minimum radius ratio is even less than 0.5, which is quite a poor mesh.
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(a) (b)

Figure 8: (a) The Delaunay radius ratio of 9th round simulation. (b) The triangulation mesh comparison
between the 9th and 10th round simulations. There are only some rare differences except some nodes roughly
satisfying the rule of empty circumcircle, which have minor influence on the mesh radius ratio.

Drawing in the above discussion and results, the termination condition sets to be
when N1−N2 ≤0.5%×N1 is satisfied for twice, where N1, N2 are the nodes count before
and after this round of simulation, respectively. From Table 4, the end tag lies to 9th
round, and the time consumed is 172.719s and the radius ratio is 0.9392 (Fig. 8). If com-
bined with strategy in Section 2.3, the time reduction will be more pronounced, which is
shown in the following section.

3 Numerical examples

Selectively applying different combination of the above strategies to four types of com-
puting regions, the results of simulation are obtained as follows.

3.1 Uniform distribution on symmetric multiple connected domain

This is a [−1,1]×[−2,2] rectangular region with node spacing function to be uniformly
d(x,y) = 0.1. w1 is similarly chosen to be 1, while for w2, numerical experiments show
that when w2∈[0.695,1], the node configuration and time consumption are kept the same,
when w2<0.69, ”the debug error” appears. Thus, for this uniform node placement, w1=
w2=1 may be a preferable choice.

It is concluded that using the BPM to uniform node placement is not an optimal selec-
tion, even if putting to use several speeding schemes, the time consumption and place-
ment effect are generally less satisfactory compared to some other classic node placement
methods, e.g., Advancing Front Triangulation, Sweeping Mesh Generation. In addition,
changing the value of w2 here has no effect either, because if w2 is chosen to be close to 1,
the initial distribution has not changed since the modified criterion treats all the situation
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(a) (b)

Figure 9: (a) The node displacement comparison between the 6th and 10th round simulations. (b) The radius
ratio changes with iteration.

the same. However, if w2 is less than a certain value, here it is approximately 0.69, then
a dramatic changes of the initial inner bubbles placement will even cause the number of
initial bubbles far less than the ultimately ideal node count, the resulting configuration,
therefore, will be highly deformed, or even encounter ”debug error”.

However, it is undeniable that the third strategy to set the termination condition is still
applied here to cause the simulation terminate after reaching a steady state, which will
not only achieve a superior quality of node layout, but also greatly reduces the number
of iterations and simulation time. Here the simulation is computed to stop in the 6th
round (takes 108.406s) rather than the 10th round (takes 154.094s) based on experience.
The results are shown in Fig. 9.

3.2 Nonuniform distribution on symmetric simple connected domain

Here gives a [−1,1]×[−1,1] square region with a round hole, the node spacing function
is

d(x,y)=
1

8

√

x2+y2.

From the FNPBS, after 1250 iterations, the nodes count becomes 587, and the radius
ratio is 0.9087.

Actually in the 4th round, the nodes count does not come to the specific termination
condition and there is still room to improve the overall radius ratio, or the mesh quality.
As a result, allow the simulation conduct several more rounds (set to be 10), and since the
given number of simulation varies, the functional relationship between viscous term and
the number of simulation needs to be altered as well. It turns out that in the 5th round,
it meets the condition to stop, and the time consumed is 102.765s, while the radius ratio
rises to 0.9396. Furthermore, through a series of trials, w1 = 1 keeps unchanged, and w2

is selected to be 0.64. Moreover, the time consumption is only 11s after 4th rounds with
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(a) (b)

(c)

Figure 10: (a) The node displacement comparison between the 4th and 10th round simulations. (b) The radius
ratio changes with iteration. (c) The Delaunay radius ratio of 4th round simulation.

radius ratio to be 0.9564, which is a huge time reduction compared with 81.125s by the
FNPBS. Some useful results are given in Fig. 10.

3.3 Nonuniform distribution on symmetric multiple connected domain

It is exactly the representative example throughout the explanation in Section 2. To ap-
plying together with the strategies in Sections 2.2 and 2.3, and with w1=1, w2=0.6, after
computing 3 rounds, the time consumption comes to 29.375s, which is a significant im-
provement compared to 187.156s by the FNPBS, and the radius ratio is 0.9453, meeting
the requirement for the FEM mesh.

3.4 Nonuniform distribution on non-symmetric multiple connected domain

Lastly, a semicircular region shown in Fig. 11(d) with node spacing defined as

d(x,y)=min(min(h1,h2),h3),
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Table 5: An overall comparison between the FNPBS and the improved method discussed in this paper.

time

consumed

by the

FNPBS/s

time consumed

with the

speeding

strategies/s

time

reduction

percentage

radius ratio

by the

FNPBS

radius ratio

with the

speeding

strategies

rectangular

region
154.094 108.406 29.65% 0.9626 0.9532

square region

with a hole
82.125 11 86.61% 0.9087 0.9564

local dense

square region
187.156 29.375 84.29% 0.9558 0.9453

semicircular

region
117.828 30.266 74.31% 0.9407 0.9362

where

h1 =0.25−0.15d1, h2=0.05+0.08d2 , h3 =(d2−d1)/2,

d1 =
√

x2+y2−1, d2=
√

(x+0.4)2+y2−0.5,

is required to place nodes. By Using strategies mentioned in Sections 2.2 and 2.3, and
picking w1 = 1, w2 = 0.75, the time consumption reduces to 30.266s after computing 5
rounds. It improves significantly compared to 117.828s by the FNPBS, and the radius
ratio is 0.9362, satisfying the requirement for the FEM mesh.

To sum up, Table 5 gives an overall comparison between the FNPBS and the improved
method discussed in this paper. From [23], the computing cost decreases by roughly 40%
from the traditional BPM to the FNPBS. By further using different strategies here, the
cost can further decrease by almost 80% except for the uniform distribution example. All
those four examples node placements and mesh results are given in Fig. 11, the node
configurations as well as the triangulations are all transitional smooth and uniform.

4 Discussion

4.1 Convergence analysis

Drawing from the bubble system equations of motion, due to the addition of the damping
term, the average speed of the bubbles ultimately tends to zero because of the induced
viscosity. That is to say, the bubble system eventually converge to a stable equilibrium.
The bubble average speed curve with iteration by the traditional BPM, the FNPBS, and
the model in this study is shown in Fig. 12, respectively. It is noted that the average initial
bubble speed is very large, then rapidly decreases with the increasing number of iteration
within one round of simulation. This situation is repeated several times. Moreover, it can
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11: Node placements and corresponding Delaunay mesh configurations to (a), (b) rectangular region;
(c), (d)square region with a hole; (e), (f) local dense square region; (g), (h) semicircular region.
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(a) (b) (c)

Figure 12: The bubble average speed curve with iteration by (a) the traditional BPM, (b) the FNPBS, and (c)
the model in this study.

be explained that in the end of each round, it is necessary to calculate the overlapping
ratio of all active bubbles so that the insertions and deletions occur, exactly due to those
operations, in the next round, the speed of bubbles becomes relatively large, but will soon
decrease.

Comparing those three figures shown in Fig. 12, The fact that the peak speed de-
creases the fastest in this model indicates that the schemes used herein do help most to
force the bubbles to quickly converge to a balanced state. In addition, the impact of the
cumulative numerical errors inevitably render the bubble average speed not to be equal
to zero but only tend to zero, and the whole system is in dynamic equilibrium.

4.2 The selection of parameters

The parameters in scheme 1 can be summarised as the initial viscous coefficient c0, the
gradient of c within each round k1, the gradient of c amongst different rounds throughout
the simulation k2 and the modified viscous coefficient of odd bubbles codd. Generally,
0<k2<k1 since obviously it is linearly increasing pattern, and k2<k1 ensures the viscous
coefficient at the beginning of the current round is smaller than the one at the end of the
former round [23]. The c0 and codd both have a negligible effect on the time consumption
in a relatively large range. Thus, superior results can be obtained as long as the c0, codd

are not big, say in the range of [1,4].
Clearly from Table 2, the greater the value of w1, the more of the initial number of

nodes, and from what is mostly concerned, the selection to keep w1 to be unit may be
optimal here, which is logical to understand. In each round, bubbles are readjusted to
a better configuration by insertion and deletion, so that the boundary nodes can easily
run away from the computing region, the projection operation, therefore, is introduced
to compel the boundary nodes to move back again dynamically, and generally they are
dragged back to their original locations. For this reason, the initial boundary node config-
uration is actually the final output, and the distances between those nodes should better
set to be strictly equal to the given node spacing diameter, which also explains why the
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value of w1 slightly bigger than 1 is still acceptable since the criterion is an inequality.

As for the analysis of w2, in the range of [0.6,1], the time consumed and initial nodes
number go into a monotonically decreasing trend. As we can see in Table 3, cutting down
the value of weighing factor w2 indeed generate the initial node placement far less dense,
and therefore, the calculation scale and the follow-up computing also attain a correspond-
ing reduction, which turns out to be a much fewer time consumption. However, when
w2 becomes further small, for example below 0.57, the mesh becomes of a deformity or
even can not obtain a reasonable result. This is because the selected w2 is such small
that the initial bubbles are not full enough to gain the bubble supplement by insertion
operation. Hence, for the demonstration example, w2=0.6 appears to be the best choice.
Of course, due to various computing region shapes and demands of node spacing, the
selection of w2 should be slightly different, but assigning it to be less than 1 indeed gives
rise to greatly help improving the simulation time.

5 Conclusions

By analysing the key factors affect the algorithm efficiency of the traditional BPM, three
effective and efficient acceleration schemes are proposed. Example experiments and fur-
ther discussion show that:

• The scheme by letting viscous coefficient c changes with the position of the bubble
apart from with the iteration works most valid when the node spacing varying
greatly, such as the FEM mesh used in crack propagation issues.

• By introducing weight factors w1, w2 to amend the criterion to control the insertion
of initial bubbles, the over crowed initial bubble placement problem can be well
solved, while the factor w1 need to be assigned to be 1 at all the cases, and w2 is
recommended to be within the limits of [0.5,0.8].

• The new termination condition is preferably set to stop the process of the simulation
when the bubble system is basically in equilibrium. Simply for this reason, the
algorithm transfers to be a self-adaptive method.

• The traditional BPM may not be proper for uniform node placement in regular
region, irrespective of employing what scheme to accelerate. Since the BPM is a
dynamic system, it is more appropriate for non-uniform configuration. In those
cases, the classic mesh generator seems to be more satisfactory both from the aspect
in time consumption and the quality of the FE mesh.

In all, the schemes adopted above not only maintain the characteristics of high-quality
mesh generation of the original method, but also significantly improve the overall amount
of computation and decrease the time consumption, which shows its greatly superior
property to the traditional BPM and the FNPBS.
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