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Abstract. Various conceptual models exist for numerical simulation of fluid flow in
fractured porous media, such as dual-porosity model and equivalent continuum model.
As a promising model, the discrete-fracture model has been received more attention
in the past decade. It can be used both as a stand-alone tool as well as for the evalu-
ation of effective parameters for the continuum models. Various numerical methods
have been applied to the discrete-fracture model, including control volume finite dif-
ference, Galerkin and mixed finite element methods. All these methods have inherent
limitations in accuracy and applicabilities. In this work, we developed a new numeri-
cal scheme for the discrete-fracture model by using mimetic finite difference method.
The proposed numerical model is applicable in arbitrary unstructured gridcells with
full-tensor permeabilities. The matrix-fracture and fracture-fracture fluxes are calcu-
lated based on powerful features of the mimetic finite difference method, while the
upstream finite volume scheme is used for the approximation of the saturation equa-
tion. Several numerical tests in 2D and 3D are carried out to demonstrate the efficiency
and robustness of the proposed numerical model.

AMS subject classifications: 76S05, 65N08, 65N55, 35J25

Key words: Fractured porous media, discrete-fracture model, two-phase flow, mimetic finite dif-
ference method.

1 Introduction

In response to stress, all rocks in the earth’s crust are fractured to some extent. Fractures
are important in many engineering and environmental practices. They can behave as
either hydraulic conductors or barriers, and occur on different scales, from microscopic to
continental. These cause modeling fluid flow in fractured rock to be a challenging work.
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Since 1960s, various conceptual models have been developed, which can be classified
into four broad classes: dual-porosity model and its variations, equivalent continuum
model, discrete-fracture model, and hybrid model [1].

The dual-porosity concept was introduced by Barenblatt et al. [2]. In this model, there
are two parallel continua, i.e. the fracture and the matrix systems, which are connecting
with transfer function. Because of its computational efficiency, dual-porosity model has
been widely used to simulate the fluid flow in fractured hydrocarbon reservoirs [3–7].
However, how to accurately evaluate the transfer function is still an open problem, espe-
cially for multi-phase flow [8–10]. By further subdividing individual matrix blocks, the
Multiple INteraction Continua (MINC) method [11–14] have better accuracy and features
than the conventional dual-porosity model.

In comparison, the equivalent continuum model (ECM) represents the fractured rock
as a single-porosity continuum. The heterogeneity of fractured rocks is modeled by using
effective parameters, such as equivalent permeability and effective porosity. The ECM
has long been used for modeling fracture-matrix flow due to its simple data requirements
and computational efficiency [14, 15]. However, the calculation of the effective parame-
ters for multi-phase flow is still a challenge, such as relative permeabilities and capillary
pressure [16]. In addition, the instantaneous equilibrium assumption for fracture-matrix
systems also limits the application of the ECM approach for modeling general multi-
phase flow.

As effective continuum models, either dual-porosity model or ECM is not well suited
for the modeling of discrete-fractured media, in which a small number of large-scale frac-
tures may dominate the flow. For this reason, the discrete-fracture model (DFM), which
describes the fractures explicitly in the medium, are received a growing attention in the
past decade. Most DFMs are based on meshing the fractures explicitly, either with an
equi-dimensional formulation where fracture gridcells have the same dimension as the
matrix [17–19] or with a hybrid formulation where the fractures are geometrically sim-
plified by using (d−1)-dimensional gridcells in a d-dimensional domain [20–24]. An
alternative approach is to deal with fractures as immersed interfaces in gridcells, includ-
ing embedded-fracture model [25,26] and non-matching grid method [27]. In the former,
the fractures are embedded into a coarse structured grid and modelled through transport
indices.

Limited to the present computational capacity, the DFM is only applicable to the sit-
uations where a small number of fractures dominate the fractured rock. One approach
to overcome this deficiency is to combine the DFM with the continuum model, i.e. the
hybrid model [1, 14, 28]. While large-scale fractures are represented as discrete elements
explicitly, small-scale fractures are included as effective parameters in building contin-
uum approximations [25, 29]. As the effective permeability are generally full-tensor, an
efficient numerical scheme handling anisotropy in the permeability and discrete frac-
tures is necessary. Various numerical methods based on DFM have been used to simulate
fluid flow in discrete-fractured media, including the finite difference (FD) [30, 31], finite
volume (FV) [32–35], Galerkin finite element (GFE) [21, 36], and mixed finite element
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(MFE) [23] methods. Herein, our emphasis is on FV and MFE methods due to their good
local conservativeness.

Karimi-Fard et al. [34] introduced a simplified cell-centered FV method for two-phase
flow in fractured media by using two-point flux approximation (TPFA). Recently, Sandve
et al. [35] provided a consistent discretization for anisotropic permeabilities using a multi-
point flux approximation (MPFA). In order to handle the multiple intersecting fractures,
they have used the star-delta transformation to evaluate the transmissibility between the
intersecting fractures. The authors, however, mentioned that the star-delta transforma-
tion is just an approximation for two-phase flow problems. Hoteit and Firoozabadi [23]
developed an efficient numerical model for two-phase flow in fractured media using
MFE method, in which the treatment with multiple intersecting fractures in a natural and
accurate way. Unfortunately, the MFE scheme results in an algebraic saddle point prob-
lem. One possible solution is to use the mixed-hybrid formulation [37–39]. However,
the construction of the basis functions for MFE is a non-trivial task for general polyhe-
dral meshes. Recently, Brezzi et al. [40,41] developed the mimetic finite difference (MFD)
method whose formulation is similar to the mixed-hybrid formulation. But the MFD
approaches the discretization in a more easier way for general grids than MFE [39, 42].

In this work, we developed an efficient DFM valid for anisotropic permeabilities by
using MFD method. First, we assume that an effective permeability tensor exists for the
matrix system which contains small-scale fractures, and focus on the MFD discretiza-
tion of DFM. The organization of this paper is as follows. In Section 2, we present the
model equations which are valid in fractures and matrix, simultaneously the geometrical
discretization of the discrete-fracture model is described. Then the MFD discretization
for DFM is described in detail in Section 3. In Section 4, the upstream-weighting FV
discretization for the saturation equation is used since it is used almost exclusively in
commercial simulators. Some numerical examples are shown in Section 5 and several
remarks are concluded in Section 6.

2 Model equations and geometrical discretization

2.1 Model equations

We consider the flow of two immiscible and incompressible phases (wetting and non-
wetting) and assume no-flow boundary conditions. The flow equations can then be for-
mulated as an elliptic equation for the globe pressure p and the total Darcy velocity v (the
details can be found in [43]),

v=−Kλ·∇p+K ·(λwρw+λnρn)G, ∇·v=q. (2.1)

Here, q is a source term representing injection and production wells, K is the effective
permeability tensor, and λ=λn+λw denotes the total mobility. The mobility of phase is
given by λl=krl/µl , where µl is viscosity of phase l and krl(Sw) is the relative permeabil-
ity. G=−g∇z is the gravitational pull-down force, where g is the gravitational constant
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and z is the spatial coordinate in the upward vertical direction. The second primary un-
known is the wetting phase saturation Sw, which denotes the volume fraction of water
and is described by the transport equation

φ
∂Sw

∂t
+∇·vw=qw, (2.2)

vw= fw [v+Kλn ·∇pcnw+Kλn ·(ρw−ρn)G], (2.3)

where φ is the porosity, fw = λw/λ is the fractional flow function, pcnw = pn−pw is the

capillary pressure, and ∇pcnw = ∂pcnw

∂Sw
∇Sw.

The system of Eqs. (2.1)-(2.3) are valid for matrix and fractures. In this work, we
will use an IMPES (IMplicit Pressure and Explicit Saturation solver) sequential splitting
scheme to solve the flow equations, i.e., the pressure equation is solved at the current
time-step using saturation values from the previous time-step, then the total velocity v is
kept constant as a parameter in Eq. (2.2), while the saturation is advanced in time.

2.2 Geometrical discretization

In this work, an unstructured geometrical discretization based on control-volume parti-
tioning is used to adapt the complexity of fractures. As mentioned in Section 1, the frac-
tures gridcells are geometrically simplified by dimension reduction method, i.e. using
(d−1)-dimensional gridcells in a d-dimensional domain. In a 2D domain, the fractures
are represented by the matrix gridcell segments, which are 1D geometry entities as il-
lustrated in Fig. 1. This simplification removes the length-scale contrast caused by the
explicit representation of the fracture aperture as in the equi-dimensional DFM. As a re-
sult, computational efficiency is improved considerably. The fractures aperture are just
considered in the computational domain. For this reason, the DFM can only handle a lim-
ited number of fractures (of the order of thousands) for consideration of computational
resources.

realistic physical domain

fracture

matrix

unstructured grid discretization

Figure 1: Schematic of a discrete-fractured medium (left) and the corresponding unstructured gridding (right),
where the thick segments represent the fracture gridcells.
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Here, we used a free Delaunay triangulation algorithm (EasyMesh) for 2D problems.
More details of EasyMesh can be found in [44]. And the opensource C++ program (Tet-
Gen) will be used for gridding the 3D discrete-fracture model. For a 3D domain, defined
by its boundary (such as a fracture surface), TetGen generates the boundary constrained
(Delaunay) tetrahedralization. The interested readers is referred to [45] for more details.
However, the gridding of complex fractured geological models is still a challenging issue.
We plan to address this important issue as our future work.

3 Discretization of the pressure equation

In this section, we start by discussing the mimetic discretizations in matrix and fractures
using the inner product concept, which can be used to design the properties of the MFD
method. Here, only a short description of the MFD method will be given. The inter-
ested reader is referred to [39] and [42] for more details. Then, we will discuss the MFD
numerical scheme for DFM in more detail.

3.1 Mimetic discretization method

The MFD method (see [40]) is defined in terms of a local inner product M i in a gridcell,
which gives the gridcell-based discretisation of Darcy’s law

M ivi = ei pi−π i. (3.1)

Here, ei =(1,··· ,1)T, π is the pressure at the face centroids and p the gridcell pressure at
the gridcell centroid as depicted in Fig. 2. The MFD method is constructed so that they are
exact for linear pressure fields and give a symmetric positive-definite matrix M i. A linear
pressure field can be written in the form p= a ·x+b for a constant vector a and scalar b,
giving a Darcy velocity v=−K ·a. Let nk denote the area-weighted normal vector to face
number k and xik be the vector pointing from the gridcell centroid to the face centroid.
Then the flux and pressure drop are given by

vik =−nik ·K ·a, pi−πk = xik ·a. (3.2)

Substituting Eq. (3.2) into Eq. (3.1), we see that the matrices M satisfies the following
consistency conditions

M iN iKi =X i, N i=







ni1
...

nim






, X i=







xi1
...

xim






, (3.3)

where m is the number of faces within gridcell Ωi. By augmenting Eq. (3.3) with flux and
pressure continuity across gridcell faces, we can obtain the following linear system





B −C D

CT 0 0

DT 0 0









v
p
π



=





g
q
f



, (3.4)



804 Z. Q. Huang, X. Yan and J. Yao / Commun. Comput. Phys., 16 (2014), pp. 799-816

Ði

Ðjpi

pj
nk

xik

¼k
Ak

Figure 2: Schematic of grid analysis used to define the mimetic inner product.

Here, the first row corresponds to Darcy’s law in the form (3.1), the second row represents
the mass conservation for each gridcell, while the third row expresses the flux continuity
of gridcell faces.

Therefore, v denotes the outward face fluxes ordered cell-wise (fluxes over interior
faces and fractures appear twice), p denotes the cell pressures and π the face pressures.
The matrices B and C are block diagonal with each block corresponding to a gridcell.
For the two matrices, the i-th blocks are given as M i and ei, respectively. Similarly, each
column of D corresponds to a unique face and has one (for boundary faces) or two (for
interior faces) unit entries corresponding to the index(s) of the face in the cell-wise order-
ing. In the right-hand side, g is the gravity effects, q is the source/sink terms, and f is
the Neumann boundary conditions. For simplicity, we will set f = 0 by considering the
impermeable boundaries hereafter.

How to obtain a symmetric positive-definite matrix M i is the key step for the MFD
method. A strict theorem is presented by Brezzi et al. in [40], where they give a recipe for
constructing M i. Recently, Lie et al. [42] have discussed the corresponding implementa-
tions and some specific properties of the MFD. In this work, the following inner product
has been used

M i=
1

|Ωi|
X iK

−1
i XT

i +
d|Ωi|

6tr(Ki)
A−1

i

(

I−QQT
)

A−1
i , (3.5)

where Q is an orthonormal basis for the range of A−1
i N i, Ai is the diagonal matrix with

Aii the face area of the i-th face, d the space dimension, and I the identity with dimension
m.

3.2 Discrete fracture-matrix system

Obviously, the Eqs. (3.1)-(3.5) are applicable for matrix and fractures. However, it is noted
that the fractures’ formulation is in a lower space-dimension. Thus, the linear systems for
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matrix and fractures can be written as follows, respectively




Bm −Cm Dm

CT
m 0 0

DT
m 0 0









vm

pm

πm



=





gm

qm

0



, (3.6)





Bf −Cf Df

CT
f 0 0

DT
f 0 0









vf

pf

πf



=





gf

qf

0



, (3.7)

where the subscripts m and f denote the matrix and fracture respectively.
For the fracture-matrix connections, we consider the hybrid grid as described in Sec-

tion 2.2. In the hybrid grid, a fracture is consider as a lower-dimensional object as interior
boundary, and the fracture cell usually represented as a face of a matrix cell. Obviously,
the fracture-cell pressures pf are part of the matrix-face pressures πm, as illustrated in
Fig. 3. Thus, in the coupling linear system, only the matrix-face pressures πm are re-
tained.

E E0
F

E

F

E0

¼m ¼mpf

vF
m;E vF

m;E0

v1

f;F

v2

f;F

)

F

Figure 3: Schematic of combining the discretization in the matrix and fractures.

Simultaneously, the flux in Eq. (3.6) is written locally for all faces within each matrix
cell. To link the cells in the mesh together, the following continuity conditions for the flux
are imposed at each interface F of two neighboring cells E and E′ (F=E

⋂

E′, see Fig. 3):

• If F is neither a fracture nor a barrier, the continuity of flux is imposed

vF
m,E+vF

m,E′=0. (3.8)
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• If F is a fracture, the total flux across both sides of the matrix-fracture interface de-
fines the transfer function QF

f at F, which acts as a sink/source term for the fracture
cell

{

vF
m,E+vF

m,E′ =QF
f ,

∑vf,F=QF
f +qf,F.

(3.9)

Here, the second equation is the mass conservation in a fracture gridcell. And one
should remember that the fracture’s aperture a should be considered to calculate
the flux of each fracture cell.

• If F is a barrier, the flux across F is zero, which can be imposed as a interior Neu-
mann boundary condition in simple way.

Thus, the Eqs. (3.6) and (3.7) can be coupled through the matrix-fracture transfer func-
tion (Eq. (3.9)). And the resulting coupling linear system becomes













Bm −Cm Dm 0 0

CT
m 0 0 0 0

DT
m 0 0 −CT

f 0
0 0 −Cf Bf Df

0 0 0 DT
f 0
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πm
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=













gm

qm

−qf

gf

0













. (3.10)

There is no particular difficulty in constructing the above hybrid system. And it can
be solved using a Schur-complement method and Aggregation-based Multigrid (AGMG)
iterative method [46].

4 Discretization of the saturation equation

In this section, the FV discretization of the saturation equation is developed, which are
valid for matrix and fracture gridcells. Only a short description of the method employed
in this paper will be given. The interested reader is referred to [16, 43] for more details.
And the upstream-weighting numerical scheme for multiple intersecting fractures is dis-
cussed in detail. In this work, the wetting phase is water, and the non-wetting phase is
oil.

4.1 Upstream finite volume scheme

The saturation discretization in the i-th gridcell based on finite volume method is given
as

∫

Ωi

φ
∂S

∂t
dΩ+

∫

∂Ωi

(

fw(v+Kλn ·∇pcnw+Kλn ·(ρw−ρn)G)
)

·ni dΓ

=
∫

Ωi

qw dΩ. (4.1)
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Here we dropped the subscript w for water saturation Sw. Using the θ-rule for temporal
discretization, a finite-volume scheme takes the following form

φi

∆t
(Sk+1

i −Sk
i )+

1

|Ωi|
∑
γij

(

θFij(S
k+1)+(1−θ)Fij(S

k)
)

=qw(S
k
i ), (4.2)

where

Fij(S)=
∫

γij

fw(S)ij(v·nij+Kλn ·∇pcnw ·nij+Kλn ·(ρw−ρn)G ·nij) dΓ

is a numerical approximation of the flux over edge γij. For a first-order scheme, it is
common to use upstream weighting for the fractional flow

fw(S)ij =

{

fw(Si) if v·nij>0,

fw(Sj) if v·nij <0.
(4.3)

In this work, an explicit scheme, i.e. θ=0, is employed. Such scheme is quite accurate
but need impose stability restrictions on the time step, i.e. the CFL condition,

∆t6
φi|Ωi|

vin
i max{ f ′w(S)}06S61

,

where

vin
i =max(qi,0)−∑

γij

min(vij,0),
∂ fw

∂S
=

∂ fw

∂S∗

∂S∗

∂S
=

1

1−Swc−Sor

∂ fw

∂S∗
.

Here S∗ denotes the normalized water saturation.

4.2 Multiple intersecting fractures

We will use the generalization of the conventional two-point upstream-weighting tech-
nique to define the upstream-weighting in case of multiple intersecting fractures, which
has been used successfully by Hoteit and Firoozabadi [23].

As depicted in Fig. 4, let I be the interface (line for 3-D domain and point for 2-D
domain) connecting NI fracture gridcells, ei, i= 1,··· ,NI . In each fracture gridcell ei, the
fractional flow function and the flux at I are denoted by fw,ei

and vf,ei
. According to the

signs of the fluxes, influx or efflux at I, we define an integer 0<n<NI , such that

{

vf,ei
60, 0< i6n (efflux),

vf,ei
>0, n< i<NI (influx).

(4.4)
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e1

e2
e3

e4

e5

e1

e2

e3

e4

e5

Figure 4: Grid with five intersecting fractures at I; the fractures e1, e2 are in the downstream, and e3, e4, e5 are
in the upstream.

By writing the total volumetric balance and the total mass balance at I, one gets

NI

∑
i=n+1

vf,ei
=−

n

∑
i=1

vf,ei
, (4.5)

NI

∑
i=n+1

fw,ivf,ei
=−

n

∑
i=1

fw,Ivf,ei
=− fw,I

n

∑
i=1

vf,ei
. (4.6)

And then, one can readily calculate the up-stream mobility for the effluxes at I, as follows

fw,I =
∑

NI
i=n+1 fw,ivf,ei

∑
NI
i=n+1vf,ei

. (4.7)

5 Numerical examples

To show the accuracy and applicability of the proposed method, four water-injection sim-
ulations are presented. We first consider a rock matrix with a single fracture to present the
grid sensitivity of our numerical model. In the second case investigation, the robustness
and the accuracy of the present algorithm are shown through a simple fractured block
defined by horizontal and vertical fractures, which is derived from Ref. [34]. The third
example shows the efficiency in numerical simulation of two-phase flow in 2D complex
fractured porous media with fractures and barriers; and two different gridcell types also
have been investigated to illustrate the grid flexibility of our proposed model. In the
last example, the simulation results of a complex 3D discrete-fracture model have been
shown.

5.1 Example 1: grid sensitivity

In order to examine the dependency of the size of the gridcells in our numerical model,
we consider a 2D matrix block of dimensions 1 m×1 m (x,y) with one fracture along the
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Figure 5: Water saturation profile after 1.5 PV water injection with different grid system. From left to right:
196, 479, 1096 grid nodes.
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Figure 6: The curves of water cut and oil production vs. water injection during 1.5 PV water injection.

diagonal, as shown in Fig. 5. The endpoints of the fracture are located in (0.2,0.2) and
(0.8,0.8), respectively. The whole domain is initially saturated with oil. We inject water
at the bottom left corner, and the liquid is produced from the top right corner. The fluid
and medium properties are provided in Table 1.

Water-flooding simulations are carried out for three different grid system. Due to the
complexity of an unstructured grid, it is not easy to define an optimal grid. Herein, our
purpose is only to obtain a grid good enough to allow the evaluation of the accuracy of
the model. Fig. 5 presents the water saturation profile after 1.5 PV water injection. The
history of oil production and water cut vs. water injection during 1.5 PV water injection
is plotted in Fig. 6. And it has shown that the numerical results based on the grid system
with 479 grid nodes is suitable for this example. This suggests us to do the subsequent
simulations using the similar grid density as the grid system with 479 grid nodes.

5.2 Example 2: a simple fractured test model

To show the accuracy and efficiency of our numerical simulator, we consider a simple 2D
fractured porous medium which is derived from ref. [34]. The geometry model includes
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Table 1: Relevant data for Examples 1 and 2.

matrix properties: φm=0.2, Km =1 d (≈0.9869×10−12 m2)

fracture properties: φf=1.0, a=0.1 mm, Kf=8.33×104 d

fluid properties: µw =µo =1.0 mPa·s, ρw=ρo=1000 kg/m3

residual saturations: Swc=0.0, Sor=0.0

relative permeabilities: krw=Se, kro=1−Se, Se =
1−Sw

1−Swc−Sor

capillary pressure: neglected

water injection and oil production rates: 0.01 PV/day

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0

PV water injected
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V

 o
il

 p
ro

d
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This work

Results of ref. [33]

Fine grid (Eclipse)

Figure 7: Sketch of geometrical of a simple 2D fractured porous medium (left); cumulative oil production curve
(right).
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Figure 8: Water saturation profiles after 0.1, 0.3, and 0.5 PV water injected.

three fractures inside a domain, as depicted in Fig. 7. The relevant data are provided in
Table 1 as same as Example 1.

Fig. 8 shows the water saturation profiles after 0.1, 0.3, and 0.5 PV water injected.
The grid system contains 513 nodes, 946 matrix cells and 28 fracture cells. The excellent
agreement between our present solutions and the results of Ref. [34] can be seen in Fig. 7,
where we plot the cumulative oil production.
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5.3 Example 3: 2D complex discrete-fracture model

In this example, we demonstrate the flexibility of the MFD method in modeling fractures
and barriers. We consider a 2D rectangular domain initially saturated with oil, where
several conductive fractures and a barrier are embedded in the porous medium, as illus-
trated in Fig. 9. The relevant data are provided in Table 2. Assuming that the reservoir
model is water wetting, the capillary pressure curve follows Brooks-Corey capillary pres-
sure function as shown in Eq. (5.1), and only the matrixs capillary pressure is considered.

pc(Sw)= pd

(

Sw−Swc

1−Swc−Sor

)− 1
λ

, 0.2<λ<3.0. (5.1)

In order to show the applicability and efficiency of the proposed method, a fracture
have been designed to intersect the barrier and crosses it (see Fig. 9), and two different
gridcell types (triangle and quadrilateral) are used for the numerical simulations. The
triangle grid system contains 881 grid nodes and 1615 gridcells, while the quadrilateral
grid system includes 1859 nodes and 1737 gridcells.

Fig. 10 has shown the water saturation profiles at different time. The results in-
dicate that the injected water displaces oil down the matrix and then moves forward
rapidly along fracture when the oil/water front encounters conduit fractures. At the
same time, the barrier forces the fluid flow along the extension direction of the barrier,
as shown in Fig. 10. Evidently, the existence of fractures results in strong heterogeneity
and anisotropy, which have a great influence on the fluid flow. Owing to the presence
of capillary pressure, the oil recovery is improved due to the expansion of sweep area;
however, the entire water-flooding effect is still controlled by the fractures.

Table 2: Relevant data for Example 3.

matrix properties: φm=0.2, Km is the permeability tensor (see Fig. 9 for Kx
m)

fracture properties: φf=1.0, a=1 mm, Kf =8.33×104 d

fluid properties: µw =1.0 mPa·s, µo=5.0 mPa·s, ρw=ρo=1000 kg/m3

residual saturations: Swc=0.0, Sor=0.2

relative permeabilities: kro=S2
e , krw=(1−Se)2, Se =

1−Sw
1−Swc−Sor

capillary pressure in fractures: neglected

capillary pressure in matrix: Brooks-Corey function (Eq. 21), pd=1000 Pa, λ=1.0

water injection and oil production rates: 0.01 PV/day

5.4 Example 4: 3D complex discrete-fracture model

Here we consider a 3D fractured rock block of dimensions 100 m × 40 m × 16 m, (x×
y×z). The medium contains a filled fracture (red line) and several intersecting fractures
(blue lines), as illustrated in Fig. 11. The injector is located at the left face of the block (i.e.
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Figure 9: 2D fractured reservoir with complex fractures (left); the logarithmic permeability distribution of the
matrix (right).
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Figure 10: Water saturation profiles with two different gridcell types after 0.1, 0.2, and 0.4 PV water injected:
quadrilateral gridcells (top), triangle gridcells (bottom).

at x=0 m) and the producer at the opposite right face (at x=100 m). The corresponding
properties of the rock, fractures and relative permeability are provided in Table 3.

The domain is discretized into an unstructured mesh of 22124 matrix gridcells (tetra-
hedra) (see Fig. 11). In this example, the filled fracture is considered as a barrier. The
corresponding water saturation profiles in the matrix and fractures are shown in Fig. 12.
We would like to point out that the gridding for the present 3D discrete-fracture model
is by no means optimal. In addition, all the four numerical tests were performed on a PC
with 2.67 GHz Intel-Core i7 920 CPU and 8 GB of RAM.
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Table 3: Relevant data for Example 4.

matrix properties: φm=0.2, Km=1 md

fracture properties: φf =1.0, a=0.1 mm, Kf =8.33×105 md

fluid properties: µw=1.0 mPa·s, µo =1.0 mPa·s, ρw=ρo=1000 kg/m3

residual saturations: Swc=0.0, Sor=0.2

relative permeabilities: krw =Se, kro=1−Se, Se =
1−Sw

1−Swc−Sor

capillary pressure and gravity: neglected

water injection and oil production rates: 0.001 PV/day
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Figure 11: 3D discrete-fracture model with several conduit fractures and a filled fracture.
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Figure 12: Water saturation profiles after 0.1 and 0.2 PV water injection.

6 Conclusions

The main features of this work can be summarized in three points:

1. A robust and efficient numerical approach has been developed for the two-phase
flow simulation in discrete-fractured media. This numerical approach combines
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the MFD and FV methods. The MFD method is used to approximate Darcys law,
while the FV method is used to approximate the saturation equation. The numerical
approach is applicable for both 2D and 3D discrete-fracture systems.

2. The MFD method provides a highly accurate approximation of the velocity field.
The resulted formulation is similar to the mixed-hybrid formulation. However, the
MFD approaches the discretization in a more easier way for general grids than MFE
method, which resembles the conventional FD method. Therefore, our method is
less mesh dependent than the conventional approximation, which have been illus-
trated through several examples. In the present numerical model, the flux through
multiple intersecting fractures is accurately approximated in a natural way without
any special assumption.

3. The discrete-fracture model is a powerful tool for fractured porous media. The ge-
ometrical simplification of the fractures significantly reduces the CPU and memory
requirements. However, the gridding of complex fractured geological models is
still a challenging issue, which deserves further research.
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