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Abstract. We present a finite volume based cell-centered method for solving diffusion
equations on three-dimensional unstructured grids with general tensor conduction.
Our main motivation concerns the numerical simulation of the coupling between fluid
flows and heat transfers. The corresponding numerical scheme is characterized by
cell-centered unknowns and a local stencil. Namely, the scheme results in a global
sparse diffusion matrix, which couples only the cell-centered unknowns. The space
discretization relies on the partition of polyhedral cells into sub-cells and on the par-
tition of cell faces into sub-faces. It is characterized by the introduction of sub-face
normal fluxes and sub-face temperatures, which are auxiliary unknowns. A sub-cell-
based variational formulation of the constitutive Fourier law allows to construct an
explicit approximation of the sub-face normal heat fluxes in terms of the cell-centered
temperature and the adjacent sub-face temperatures. The elimination of the sub-face
temperatures with respect to the cell-centered temperatures is achieved locally at each
node by solving a small and sparse linear system. This system is obtained by enforcing
the continuity condition of the normal heat flux across each sub-cell interface imping-
ing at the node under consideration. The parallel implementation of the numerical
algorithm and its efficiency are described and analyzed. The accuracy and the robust-
ness of the proposed finite volume method are assessed by means of various numerical
test cases.
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1 Introduction

In this paper, we describe a finite volume scheme to solve anisotropic diffusion equa-
tions on unstructured grids. This three-dimensional scheme is the natural extension of
the two-dimensional scheme CCLAD (Cell-Centered LAgrangian Diffusion) initially pre-
sented in [28]. Let us mention that it is also a 3D extension of the scheme proposed by
Le Potier [34]. We aim at developing a robust and flexible method for diffusion opera-
tors devoted to the numerical modeling of the coupling between heat transfers and fluid
flows. More precisely, we are concerned by the numerical simulation of heat transfers
in the domain of hypersonic ablation of thermal protection systems [12]. In this context,
one has to solve not only the compressible Navier-Stokes equations for the fluid flow
but also the anisotropic heat equation for the solid materials which compose the thermal
protection. These two models, i.e., the Navier-Stokes equations and the heat equation,
are strongly coupled by means of a surface ablation model which describes the removal
of surface materials resulting from complex thermochemical reactions such as sublima-
tion. We point out that in our case, the Navier-Stokes equations are solved employing a
cell-centered finite volume method and the thermal protection system consists of several
distinct materials with discontinuous conductivity tensors. This leads to the following
requirements related to the diffusion scheme under consideration:

• It should be a finite volume scheme wherein the primary unknown, i.e., the tem-
perature is located at the cell center.

• It should be a sufficiently accurate and robust scheme to cope with unstructured
three-dimensional grids composed of tetrahedral and/or hexahedral cells.

Before describing the main features of our finite volume scheme, let us briefly give an
overview of the existing cell-centered diffusion scheme on three-dimensional grids. The
simpler cell-centered finite volume is the so-called two-point flux approximation wherein
the normal component of the heat flux at a cell interface is computed using the finite dif-
ference of the adjacent temperatures. It is well known that this method is consistent if and
only if the computational grid is orthogonal with respect to the metrics induced by the
symmetric positive definite conductivity tensor. This flaw renders this method inopera-
tive for solving anisotropic diffusion problems on three-dimensional unstructured grids.
It has motivated the work of Aavatsmark and his co-authors to develop a class of finite
volume schemes based on multi-point flux approximations (MPFA) for solving the ellip-
tic flow equation encountered in the context of reservoir simulation, refer to [2,3]. In this
method, the flux is approximated by a multi-point expression based on transmissibility
coefficients. These coefficients are computed using the pointwise continuity of the nor-
mal flux and the temperature across cell interfaces. The link between lowest-order mixed
finite element and multi-point finite volume methods on simplicial meshes is investi-
gated in [40]. The class of MPFA methods is characterized by cell-centered unknowns
and a local stencil. The global diffusion matrix corresponding to this type of schemes
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on general 3D unstructured grids is in general non-symmetric. There are many variants
of the MPFA methods which differ in the choices of geometrical points and control vol-
umes employed to derive the multi-point flux approximation. For more details about
this method and its properties, the interested reader might refer to [4, 5, 18, 32] and the
references therein. It is also worth mentioning that the theoretical analysis of the MPFA O
scheme for heterogeneous anisotropic diffusion problems on general meshes have been
performed in [7]. In this paper, the introduction of an hybrid discrete variational formu-
lation and of a sufficient local condition for coercivity, depending on the grid and on the
conductivity tensor, allows to prove the convergence of the proposed numerical method.

The mimetic finite difference (MFD) methodology is an interesting alternative ap-
proach for solving anisotropic diffusion equations on general unstructured grids. This
method mimics the essential underlying properties of the original continuum differential
operators such as conservation laws, solution symmetries and the fundamental identities
of vector and tensor calculus, refer to [23–25,36,37]. More precisely, the discrete flux oper-
ator is the negative adjoint of the discrete divergence in an inner scalar product weighted
by the inverse of the conductivity tensor. The classical MFD methods employ one de-
gree of freedom per element to approximate the temperature and one degree of freedom
per mesh face to approximate the normal component of the heat flux. The continuity
of temperature and of the normal component of the heat flux across cell interfaces al-
lows to assemble a global linear system satisfied by face-based temperatures unknowns.
The corresponding matrix is symmetric positive definite. This type of discretization is
usually second-order accurate for the temperature unknown on unstructured polyhedral
grids having degenerate and non convex polyhedra with flat faces [26]. In the case of
grids with strongly curved faces the introduction of more than one flux per curved face
is required to get the optimal convergence rate [14].

Another class of finite volume schemes for solving diffusion equations, with full ten-
sor coefficients, on general grids has been initially proposed in [19] and generalized
in [20]. This approach has been termed discrete duality finite volume (DDVF) [16] since
it arises from the construction of discrete analogs of the divergence and flux operators
which fulfill the discrete counterpart of vector calculus identities. The DDFV method
requires to solve the diffusion equation not only over the primal grid but also over a
dual grid. Namely, there are both cell-centered and vertex-centered unknowns. In ad-
dition, the construction of the dual grid in the case of a three-dimensional geometry is
not unique. There are at least three different choices which lead to different variants of
the three-dimensional DDFV schemes, see [21] and the references therein. The DDFV
method described in [21] is characterized by a symmetric definite positive matrix and
exhibits a numerical second-order accuracy for the temperature. Compared to a classical
cell-centered finite volume scheme, this DDFV discretization necessitates twice as much
degrees of freedom over hexahedral grids [22]. Let us point out that the use of such a
method might be difficult in the perspective of solving coupled problems such as heat
transfer and fluid flow.
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Finally, we note that besides the finite volume approach the finite element based for-
mulations provide high-order reliable numerical methods for solving both time indepen-
dent and time dependent diffusion problems, refer for instance to [31] and to [35] where
this approach is applied for the equations of three-dimensional magnetic diffusion.

The main feature of our finite volume scheme relies on the partition of each polyhe-
dral cell of the computational domain into sub-cells and on the partition of each cell face
into sub-faces, which are composed of triangular faces. There is one degree of freedom
per element to approximate the temperature unknown and one degree of freedom per
sub-face to approximate the normal component of the heat flux across cell interfaces. For
each cell, the sub-face normal fluxes impinging at a vertex are expressed with respect
to the difference between sub-face temperatures and the cell-centered temperature. This
approximation of the sub-face fluxes results from a local variational formulation written
over each sub-cell. The sub-face temperatures, which are auxiliary unknowns, are locally
eliminated by invoking the continuity of the temperature and the normal component of
the heat flux across each cell interface. This elimination procedure of the sub-face tem-
peratures in terms of the cell-centered temperatures surrounding a vertex is achieved by
solving a linear system of reasonable size at each vertex. Gathering the contribution of
each vertex allows to construct easily the global sparse diffusion matrix. The node-based
construction of our scheme provides a natural treatment of the boundary conditions. The
scheme stencil is local and for a given cell consists of the cell itself and its neighbors in
the sense of nodes. Since the constitutive law of the heat flux has been approximated
by means of a local variational formulation, the corresponding discrete diffusion opera-
tor inherits the positive definiteness property of the conductivity tensor. In addition, the
semi-discrete version of the scheme is stable with respect to the discrete L2 norm. For
tetrahedral grids, the scheme preserves linear solutions with respect to the space variable
and is characterized by a numerical second-order convergence rate for the temperature.
For smooth distorted hexahedral grids its exhibits an accuracy which is almost of second-
order. Let us point out that our formulation is similar to the local MFD discretization
developed in [27] for simplicial grids.

The remainder of this paper is organized as follows. In Section 2, we first give the
problem statement introducing the governing equations, the notation and assumptions
for deriving our finite volume scheme. This is followed by Section 3, which is devoted
to the space discretization of the scheme. In this section, we derive the sub-face fluxes
approximation by means of a sub-cell-based variational formulation. We also describe
the elimination of the sub-face temperatures in terms of the cell-centered unknowns to
achieve the construction of the global discrete diffusion operator. The time discretization
is briefly developed in Section 4. We describe the parallel implementation of the scheme
and its efficiency in Section 5. Finally, the robustness and the accuracy of the scheme are
assessed using various representative test cases in Section 6.
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2 Problem statement

2.1 Governing equations

Our motivation is to describe a finite volume scheme that solves the anisotropic heat con-
duction equation on three-dimensional unstructured grids. This computational method
is the natural extension to three-dimensions of the finite volume scheme that has been
initially derived in [28]. Let us introduce the governing equations, notations and the as-
sumptions required for the present work. Let D be an open set of the three-dimensional
space R3. Let x denotes the position vector of an arbitrary point inside the domain D
and t > 0 the time. We aim at constructing a numerical scheme to solve the following
initial-boundary-value problem for the temperature T=T(x,t)

ρCv
∂T

∂t
+∇·q=ρr, (x,t)∈D×[0,T ], (2.1a)

T(x,0)=T0(x), x∈D, (2.1b)

T(x,t)=T∗(x,t), x∈∂DD , (2.1c)

q(x,t)·n=q∗N(x,t), x∈∂DN , (2.1d)

αT(x,t)+βq(x,t)·n=q∗R(x,t), x∈∂DR. (2.1e)

Here, T >0 denotes the final time, ρ is a positive real valued function, which stands for the
mass density of the material. The source term, r, corresponds to the specific heat supplied
to the material and Cv denotes the heat capacity at constant volume. We assume that ρ,
Cv, and r are known functions. The initial condition is characterized by the initial temper-
ature field T0. Three types of boundary conditions are considered: Dirichlet, Neumann
and Robin boundary conditions. They consist in specifying respectively the temperature,
the flux and a combination of them. We introduce the partition ∂D=∂DD∪∂DN∪∂DR of
the boundary domain. Here, T∗ and q∗N denote respectively the prescribed temperature
and flux for the Dirichlet and Neumann boundary conditions. α, β and q∗R are the param-
eters of the Robin boundary condition. The vector q denotes the heat flux and n is the
outward unit normal to the boundary of the domain D.

Eq. (2.1a) is a partial differential parabolic equation of second order for the tempera-
ture T, wherein the conductive flux, q, is defined according to the Fourier law

q=−K∇T, (2.2)

where the second-order tensor, K, is the conductivity tensor which is an intrinsic prop-
erty of the material under consideration. We suppose that K is positive definite to ensure
the model consistency with the Second Law of thermodynamics. Namely, this property
ensures that heat flux direction is opposite to temperature gradient. Let us point out that
in the problems we are considering the conductivity tensor is always symmetric positive
definite, i.e., K=Kt, where the superscript t denotes transpose.
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Comment 2.1. The normal component of the heat flux at the interface between two dis-
tinct materials, labeled by 1 and 2, is continuous, that is

(K∇T)1 ·n12=(K∇T)2 ·n12,

where n12 is the unit normal to the interface. The temperature itself is also continuous.

2.2 Notations and assumptions

Let us introduce some notations that will be useful to develop the space discretization
of problem (2.1). The domain D is paved with non overlapping polyhedral cells, i.e.,
D=∪cωc, where ωc denotes a generic polyhedral cell. In what follows, the letter c will
be used to denote quantities referring to the cell ωc. The list of vertices (points) of cell c
is denoted by P(c). Further, if p is a generic point, its position vector is denoted by xp

and C(p) is the set of the cells surrounding it. In two-dimensional geometry the list of the
counterclockwise ordered vertices belonging to a cell is sufficient to fully describe a cell.
Unfortunately this is not the case anymore in three-dimensional geometry. To complete
the cell geometry description, we introduce the set F(c) as being the list of faces of cell c
and the setF(p,c), which is the list of faces of cell c impinging at point p. We observe that
the former set is linked to the latter by F(c)=∪p∈P(c)F(p,c). A generic face is denoted

either by the index f or by ∂ω
f
c .

Here, we consider a mesh composed of polyhedral cells. Namely, the term polyhedral
cell stands for a volume enclosed by an arbitrary number of faces, each determined by
an arbitrary number (3 or more) of vertices. If a face has four or more vertices, they can
be non-coplanar, thus the face is not a plane and it is difficult to define its unit outward
normal. To overcome this problem, we shall employ the decomposition of a polyhedral
cell into elementary tetrahedra, initially introduced by Burton in [15] to discretize the
conservation laws of Lagrangian hydrodynamics onto polyhedral grids. According to
Burton’s terminology, these elementary tetrahedra are called iotas, since ι is the smallest
letter in the Greek alphabet. Being given the polyhedral cell c, we consider the vertex
p ∈ P(c) which belongs to the face f ∈ F(c) and the edge e, refer to Fig. 1. The iota
tetrahedron, I p f e, related to point p, face f and edge e, is constructed by connecting point
p, the centroid of cell c, the centroid of face f and the midpoint of edge e as displayed

in Fig. 1. Further, we denote by I
p f ec, the outward normal vector to the triangular face

obtained by connecting the point p to the midpoint of edge e and the centroid of face f .

Let us point out that |I p f ec | is the area of the aforementioned triangular face.
Bearing this in mind, we can define the decomposition of the polyhedral cell, ωc, into

sub-cells. The sub-cell, ωpc, related to point p is obtained by gathering the iotas attached
to point p as follows

ωpc=
⋃

f∈F (p,c)

⋃

e∈E (p, f )

I p f e,

where E(p, f ) is the set of edges of face f impinging at point p. For the hexahedral cell
displayed in Fig. 1, the sub-cell ωpc is made of 6 iotas since there are 3 faces impinging
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c
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e

f

I
pfe

I
pfec

Figure 1: Definition of the iota cell I p f e and the outward normal vector I p f ec related to point p, face f and
edge e in the hexahedral cell c.

at point p and knowing that for each face there are two edges connected to point p. The
volume of the sub-cell ωpc is given by

|ωpc |= ∑
f∈F (p,c)

∑
e∈E (p, f )

| I p f e | .

It is worth mentioning that the set of sub-cells, {ωpc, p ∈ P(c)}, is a partition of the
polyhedral cell c and thus the cell volume is defined by

|ωc |= ∑
p∈P(c)

|ωpc | .

The sub-face related to point p and face f is denoted by ∂ω
f
pc and defined as ∂ω

f
pc =

ωpc∩∂ω
f
c . It consists of the union of the two outer triangular faces attached to the two

iotas related to point p and face f , refer to Fig. 2. The area and the unit outward normal

corresponding to the sub-face ∂ω
f
pc are given by

A
f
pc=| ∑

e∈E (p, f )

I
p f ec |, n

f
pc=

1

A
f
pc

∑
e∈E (p, f )

I
p f ec.

Let us point out that the set of sub-faces, {∂ω
f
pc, p∈P(c, f )}, where, P(c, f ) is the set of

points of cell c lying on face f , is a partition of the generic face f .
Now, we are in position to construct the space discretization of our diffusion problem.

Integrating (2.1a) over cell ωc and applying the divergence formula yields

d

dt

∫

ωc

ρCvT(x,t)dv+
∫

∂ωc

q·nds=
∫

ωc

ρr(x,t)dv. (2.3)

Here, n is the unit outward normal to ∂ωc. The physical quantities ρ,Cv and r are sup-
posed to be known functions with respect to space and time variables. We represent them
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p

f

e1

e2

I
pfe2

I
pfe1

Figure 2: Generic quadrilateral face, f , related to the hexahedral cell ωc. The sub-face, ∂ω
f
pc, related to point

p and face f is obtained by gathering the triangular faces corresponding to the iotas I p f e1 and I p f e2.

with a piecewise constant approximation over each cell ωc. This approximation will be
denoted with the subscript c. The conductivity tensor K is also considered to be constant
over each cell and its approximation over ωc is denoted by Kc. Regarding the unknown
temperature field, T, we are going to describe it using a piecewise constant approxima-
tion over each cell. Using these assumptions, (2.3) rewrites

mcCvc
d

dt
Tc+

∫

∂ωc

q·nds=mcrc,

where mc is the mass of cell ωc, i.e., mc = ρc|ωc|, and Tc =Tc(t) is the cell-averaged value
of the temperature

Tc(t)=
1

|ωc |

∫

ωc

T(x,t)dv.

Finally, to achieve the first step of the space discretization of (2.3), it remains to dis-
cretize the surface integral of the heat flux employing the partition of faces into sub-faces.

Knowing that ∂ωc=∪ f∈F (c)∂ω
f
c the surface integral of the heat flux reads
∫

∂ωc

q ·nds= ∑
f∈F (c)

∫

∂ω
f
c

q·nds.

Now, recalling the partition of face f into sub-cells, i.e., ∂ω
f
c =∪p∈P(c, f )ω

f
pc, leads to write

the above surface integral as
∫

∂ωc

q·nds= ∑
f∈F (c)

∑
p∈P(c, f )

∫

ω
f
pc

q·nds

= ∑
p∈P(c)

∑
f∈F (p,c)

∫

ω
f
pc

q ·nds.
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Here, we have interchanged the order of the double summation to finally get a global
summation over the points of cell c and a local summation over the faces impinging

at point p. Let us denote by q
f
pc the piecewise constant representation of the normal

component of the heat flux over sub-face ∂ω
f
pc

q
f
pc=

1

A
f
pc

∫

∂ω
f
pc

q·nds. (2.4)

Gathering the above results, Eq. (2.3) turns into

mcCvc
d

dt
Tc+ ∑

p∈P(c)
∑

f∈F (p,c)

A
f
pcq

f
pc=mcrc. (2.5)

To conclude this paragraph we introduce the sub-face temperature, which will be
useful in the description of our scheme as auxiliary unknown

T
f
pc=

1

A
f
pc

∫

∂ω
f
pc

T(x,t)ds. (2.6)

In writing this equation, we also assumed a piecewise constant approximation of the
temperature field over each sub-face.

Let us write down the continuity conditions exposed at the end of the last section,
in terms of sub-face fluxes and sub-face temperatures. To this end, we consider two
neighboring cells denoted by c and d sharing a face and a point. The face is denoted
by f in the local list of faces of cell c and g in the local list of faces in cell d. Regarding
the common point, it is denoted by p in the local numbering of cell c and r in the local
numbering of cell d. In what follows, we shall consider the sub-cells ωpc and ωrd sharing

the sub-face ∂ω
f
pc≡∂ω

g
rd, which is displayed in Fig. 3. For sake of simplicity, we have only

plotted the common sub-face shared by the two sub-cells ωpc and ωrd. When viewed from

sub-cell ωpc the sub-face temperature and the sub-face flux are denoted by T
f
pc and q

f
pc,

whereas viewed from sub-cell ωrd they are denoted respectively by T
g
rd and q

g
rd. Using the

above notations and recalling that the unit outward normals satisfy n
f
pc =−n

g
rd leads to

write the continuity conditions for the temperatures and the heat flux as

A
f
pcq

f
pc+A

g
rdq

g
rd =0, (2.7a)

T
f
pc=T

g
rd. (2.7b)

To achieve the space discretization of (2.5), it remains to construct an approximation of

the sub-face normal flux, that is, to define a numeric sub-face flux function h
f
pc such that:

q
f
pc=h

f
pc(T

1
pc−Tc,··· ,T

k
pc−Tc,··· ,T

Fpc
pc −Tc), ∀ f ∈F(p,c), (2.8)
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p ≡ r

ωrd

ωd

∂ωf
pc ≡ ∂ω

g
rd

f ≡ g

ωpc

ωc T f
pc = T

g
rd

n
g
rd n

f
pc

qf
pc + q

g
rd = 0

Figure 3: Continuity conditions for the sub-face fluxes and temperature on a sub-face shared by two sub-cells
attached to the same point. Fragment of a polyhedral grid: quadrilateral face shared by hexahedral cells c and
d. Labels p and r denote the indices of the same point relatively to the local numbering of points in cell c and

d. The neighboring sub-cells are denoted by ωpc and ωrd. They share the sub-face ∂ω
f
pc≡ ∂ω

g
rd, which has

been colored in blue.

where Fpc denotes the number of faces of cell c impinging at point p, that is Fpc=|F(p,c)|.

To write our scheme we are going to define an approximation of the sub-face numer-
ical fluxes in terms of sub-face temperatures and cell-centered temperatures. We shall
then eliminate the sub-face temperatures using the continuity conditions (2.7) across the
sub-faces interfaces. This is the topic of the next section.

3 Space discretization

We present the space discretization associated to our finite volume scheme, wherein the
sub-face fluxes approximation results from a sub-cell-based variational formulation. Be-
fore proceeding any further, we start by giving a useful and classical result concerning
the representation of a vector in terms of its normal components. This result leads to the
expression of the standard inner product of two vectors, which will be one of the tools
utilized to derive the sub-cell-based variational formulation.

3.1 Vector expression in terms of its normal components

Here, we describe the methodology to recover a three-dimensional vector at each ver-
tex of a polyhedron from the normal components related to the sub-faces impinging at
each vertex. Let φ be an arbitrary vector of the three-dimensional space R3 and φpc its
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piecewise constant approximation over the sub-cell ωpc. Let φ
f
pc be the sub-face normal

components of φpc defined by

φpc ·n
f
pc=φ

f
pc, ∀ f ∈F(p,c),

where F(p,c) is the set of sub-faces belonging to cell c and impinging at point p. The
above linear system is characterized by 3 unknowns, i.e., the Cartesian components of
the vector φpc and Fpc =| F(p,c) | equations. This system is properly defined provided
that Fpc =3. Namely, the number of faces of cell c, impinging at point p must be strictly
equal to 3. In what follows, we assume that the polyhedral cells we are working with
are characterized by Fpc = 3. Let us remark that this restriction allows us to cope with
tetrahedron, hexahedron and prism. The extension to the case Fpc>3 will be investigated
in Appendix B by studying the particular case of pyramids for which Fpc=4 at one vertex.

Bearing this assumption in mind, let us introduce the corner matrix Jpc=[n1
pc,n

2
pc,n

3
pc]

to rewrite the above 3×3 linear system as

Jt
pcφpc=




φ1
pc

φ2
pc

φ3
pc


,

where the superscript t denotes the transpose matrix. Granted that the vectors n
f
pc, for

f =1,··· ,3, are not co-linear, the above linear system has always a unique solution, which
reads

φpc=J−t
pc




φ1
pc

φ2
pc

φ3
pc


. (3.1)

This equation allows to express any vector in terms of its normal components on the local
basis {n1

pc,n
2
pc,n

3
pc}. This representation provides the computation of the inner product of

two vectors φpc and ψpc as follows

φpc ·ψpc=
(

Jt
pcJpc

)−1




ψ1
pc

ψ2
pc

ψ3
pc


·




φ1
pc

φ2
pc

φ3
pc


. (3.2)

A straightforward computation shows that the 3×3 matrix Hpc = Jt
pcJpc is expressed in

terms of the dot products of the basis vectors
(
Hpc

)
ij
=n

j
pc ·n

i
pc.

This matrix is symmetric positive definite and represents the local metric tensor associ-
ated to the sub-cell ωpc.

Comment 3.1. Let us remark that the problem of finding the expression of a vector in
terms of its normal components always admits a unique solution in the two-dimensional
case since the number of faces of cell c impinging at point p is always equal to two.
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3.2 Sub-cell-based variational formulation

We construct an approximation of the sub-face fluxes by means of a local variational for-
mulation written over the sub-cell ωpc. Contrary to the classical cell-based variational for-
mulation used in the context of Mimetic Finite Difference Method [23,26,29], the present
sub-cell-based variational formulation leads to a local explicit expression of the sub-face

fluxes in terms of the sub-face temperatures and the mean cell temperature. The local and
explicit feature of the sub-face fluxes expression is of great importance, since it allows to
construct a numerical scheme with only one unknown per cell. We also want to mention
that this method is the three-dimensional extension of the procedure initially developed
in [28].

Our starting point to derive the sub-cell based variational formulation consists in
writing the partial differential equation satisfied by the heat flux. From the heat flux
definition (2.2), it follows that q satisfies

K−1q+∇T=0. (3.3)

Let us point out that the present approach is strongly linked to the mixed formulation
utilized in the context of mixed finite element discretization [6, 27, 38]. Dot-multiplying
the above equation by an arbitrary vector φ∈D and integrating over the cell ωpc yields

∫

ωpc

φ ·K−1qdv=−
∫

ωpc

φ·∇Tdv, ∀φ∈D. (3.4)

Integrating by part the right-hand side and applying the divergence formula lead to the
following variational formulation

∫

ωpc

φ·K−1qdv=
∫

ωpc

T∇·φdv−
∫

∂ωpc

Tφ·nds, ∀φ∈D. (3.5)

This sub-cell-based variational formulation is the cornerstone to construct a local and ex-
plicit expression of the sub-face fluxes. Replacing T by its piecewise constant approxima-
tion, Tc, in the first integral of the right-hand side and applying the divergence formula
to the remaining volume integral leads to

∫

ωpc

φ·K−1qdv=Tc

∫

∂ωpc

φ ·nds−
∫

∂ωpc

Tφ ·nds, ∀φ∈D. (3.6)

Observing that the sub-cell boundary, ∂ωpc, decomposes into the inner part ∂ωpc=∂ωpc∩

ωc and the outer part ∂ωpc = ∂ωpc∩∂ωc allows to split the surface integrals of the right-
hand side of (3.6) as follows

∫

ωpc

φ·K−1qdv=Tc

∫

∂ωpc

φ ·nds+Tc

∫

∂ωpc

φ·nds−
∫

∂ωpc

Tφ ·nds−
∫

∂ωpc

Tφ ·nds. (3.7)
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We replace T by its piecewise constant approximation, Tc, in the fourth surface integral
of the right-hand side, then noticing that the second integral is equal to the fourth one
transforms Eq. (3.7) into

∫

ωpc

φ ·K−1qdv=Tc

∫

∂ωpc

φ·nds−
∫

∂ωpc

Tφ ·nds. (3.8)

Comment 3.2. A this point it is interesting to remark that the above sub-cell-based formu-
lation is a sufficient condition to recover the classical cell-based variational formulation.
This is due to the fact that the set of sub-cells is a partition of the cell, i.e.,

ωc=
⋃

p∈P(c)

ωpc, and ∂ωc=
⋃

p∈P(c)

∂ωpc.

Thus, summing (3.8) over all the sub-cells of ωc leads to
∫

ωc

φ·K−1qdv=Tc

∫

∂ωc

φ ·nds−
∫

∂ωc

Tφ ·nds.

This last equation corresponds to the cell-based variational formulation of the partial
differential equation (3.3). This form is used in the context of Mimetic Finite Difference
Method [23] to obtain a discretization of the heat flux. More precisely, it leads to a linear
system satisfied by the sub-face fluxes. This results in a non explicit expression of the sub-
face flux with respect to the sub-face temperatures and the cell-centered temperature [26],
which leads to a finite volume discretization characterized by face-based and cell-based
unknowns. In contrast to this approach, the sub-cell-based variational formulation yields
a finite volume discretization with one unknown per cell.

We pursue the study of the sub-cell-based variational formulation discretizing the
right-hand side of (3.8). First, we recall that the outer boundary of sub-cell ωpc decom-
poses into sub-faces as

∂ωpc=
⋃

f∈F (p,c)

∂ω
f
pc,

where ∂ω
f
pc is the sub-face associated to point p and face f in cell c, and F(p,c) is the set

of faces of cell c impinging at point p. Utilizing the above partition allows to rewrite the
right-hand side of (3.8) as

∫

ωpc

φ·K−1qdv=Tc ∑
f∈F (p,c)

∫

∂ω
f
pc

φ·nds− ∑
f∈F (p,c)

∫

∂ω
f
pc

Tφ·nds. (3.9)

Introducing the sub-face temperature, T
f
pc, given by (2.6) and the sub-face approximation

of vector φ defined by φ
f
pc=

1

A
f
pc

∫
∂ω

f
pc

φ·nds, where A
f
pc is the area of the sub-face, leads to

rewrite the above equation as follows
∫

ωpc

φ ·K−1qdv=− ∑
f∈F (p,c)

A
f
pc(T

f
pc−Tc)φ

f
pc. (3.10)
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Finally, assuming a piecewise constant representation of the test function φ allows to
compute the volume integral in the left-hand side thanks to the quadrature rule

∫

ωpc

φ·K−1qdv=wpcφpc ·K
−1
c qpc. (3.11)

Here, Kc is the piecewise constant approximation of the conductivity tensor, φpc and qpc

are the piecewise constant approximation of the vectors φ and q. In addition, wpc denotes
some positive corner volume related to sub-cell ωpc, which will be determined later.

Comment 3.3. Let us note that the quadrature weight, wpc, must satisfy the consistency
condition

∑
p∈P(c)

wpc= |ωc|. (3.12)

Namely, the corner volumes of a cell sum to the volume of the cell. This requirement
ensures that constant functions are exactly integrated using the above quadrature rule.

Expressing the vectors qpc and φpc in terms of their normal components by means of
(3.1) allows to write the right-hand side of (3.11) as

wpcφpc ·K
−1
c qpc=wpc

(
Jt

pcKcJpc

)−1




q1
pc

q2
pc

q3
pc


·




φ1
pc

φ2
pc

φ3
pc


, (3.13)

where Jpc is the corner matrix defined by Jpc = [n1
pc,n

2
pc,n

3
pc]. Recalling that |F(p,c)|= 3

leads to rewrite the right-hand side of (3.10)

− ∑
f∈F (p,c)

A
f
pc(T

f
pc−Tc)φ

f
pc=−




A1
pc(T

1
pc−Tc)

A2
pc(T

2
pc−Tc)

A3
pc(T

3
pc−Tc)


·




φ1
pc

φ2
pc

φ3
pc


. (3.14)

Finally, combining (3.13) and (3.14), the sub-cell variational formulation becomes

wpc

(
Jt

pcKcJpc

)−1




q1
pc

q2
pc

q3
pc


·




φ1
pc

φ2
pc

φ3
pc


=−




A1
pc(T

1
pc−Tc)

A2
pc(T

2
pc−Tc)

A3
pc(T

3
pc−Tc)


·




φ1
pc

φ2
pc

φ3
pc


. (3.15)

Knowing that this equation must hold for any vector φpc, we obtain




q1
pc

q2
pc

q3
pc


=−

1

wpc
(Jt

pcKcJpc)




A1
pc(T

1
pc−Tc)

A2
pc(T

2
pc−Tc)

A3
pc(T

3
pc−Tc)


. (3.16)

This equation constitutes the approximation of the sub-face normal fluxes. This local ap-
proximation is compatible with the expression of the constitutive law (2.2) in the sense
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that the discrete approximation of the heat flux is equal to a tensor times the approxima-
tion of the temperature gradient. This tensor can be viewed as an effective conductivity
tensor associated to the sub-cell ωpc. Thus, it is natural to set

Kpc=Jt
pcKcJpc.

Let us emphasize that this corner tensor inherits all the properties of the conductivity
tensor Kc. Namely, Kc being symmetric positive definite, Kpc is also symmetric positive
definite. Recalling that Jpc=[n1

pc,n
2
pc,n

3
pc], we readily obtain the expression of the entries

of the corner tensor, Kpc, in terms of the unit normals n
f
pc for f = 1,··· ,3 and the cell

conductivity Kc (
Kpc

)
f g
=(Kcn

f
pc)·n

g
pc.

Finally, the sub-face flux approximation for the sub-face f is written under the compact
form

q
f
pc=−αpc

3

∑
g=1

(
Kpc

)
f g

A
g
pc(T

g
pc−Tc), (3.17)

where αpc=
1

wpc
.

Comment 3.4. We have followed exactly the construction of the sub-cell variational for-
mulation described in [28]. The notations are a bit different to take into account the
three-dimensional specificities, but the conclusions we have drawn so far are the same.

3.3 Inequality satisfied by the discrete sub-face normal flux approximation

In this paragraph we demonstrate that the discrete approximation of the sub-face nor-
mal fluxes (3.17) satisfies a discrete version of the fundamental inequality which follows
from the Second Law of thermodynamics: q·∇T ≤ 0. The discrete counterpart of the
fundamental inequality states that for the sub-faces fluxes defined according to (3.17) the
following inequality holds

∑
c∈C(p)


 ∑

f∈F (p,c)

A
f
pcq

f
pc


Tc≥0. (3.18)

To demonstrate this result, let us introduce, Ip, the nodal quantity defined by

Ip= ∑
c∈C(p)


 ∑

f∈F (p,c)

A
f
pcq

f
pc


Tc. (3.19)

We prove that Ip is always positive using the sub-cell variational formulation. Impos-
ing φ=q in (3.15) yields

wpcK
−1
pc




q1
pc

q2
pc

q3
pc


·




q1
pc

q2
pc

q3
pc


=−




A1
pc(T

1
pc−Tc)

A2
pc(T

2
pc−Tc)

A3
pc(T

3
pc−Tc)


·




q1
pc

q2
pc

q3
pc


. (3.20)
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Now, rearranging the right-hand side leads to

wpcK
−1
pc




q1
pc

q2
pc

q3
pc


·




q1
pc

q2
pc

q3
pc


=

(
3

∑
i=1

Ai
pcq

i
pc

)
Tc−

3

∑
i=1

Ai
pcq

i
pcTi

pc. (3.21)

We notice that the left hand-side of (3.21) is always non-negative since Kpc is positive
definite. Summing Eq. (3.21) over all cells surrounding p yields

∑
c∈C(p)

wpcK
−1
pc




q1
pc

q2
pc

q3
pc


·




q1
pc

q2
pc

q3
pc


= ∑

c∈C(p)

(
3

∑
i=1

Ai
pcq

i
pc

)
Tc− ∑

c∈C(p)

(
3

∑
i=1

Ai
pcq

i
pcTi

pc

)
. (3.22)

Due to the continuity condition of the sub-face temperatures, the second term of the
right-hand side is equal to zero. Finally, Eq. (3.22) becomes

Ip= ∑
c∈C(p)

wpcK
−1
pc




q1
pc

q2
pc

q3
pc


·




q1
pc

q2
pc

q3
pc


≥0, (3.23)

which ends the proof.

Comment 3.5. Inequality (3.23) is not only the discrete counterpart of the Second Law
of thermodynamics but also the cornerstone to demonstrate the L2-stability of the semi-
discrete formulation of our finite volume scheme as we shall see in Section A.2.

3.4 Computation of the corner volume wpc

We show that the sub-face normal fluxes approximation given by (3.16) preserves linear
temperature fields over tetrahedral cells provided that the corner volume wpc is defined

by wpc =
1
4 |ωc |. To demonstrate this result, let us consider a generic tetrahedron, ωc,

over which the temperature field, T=T(x), is linear with respect to the space variable x.
The vertices of this tetrahedron are denoted respectively by p, r, r+1 and r+2, refer to
Fig. 4. The temperatures at these vertices are Tp, Tr, Tr+1 and Tr+2. They coincide with the
pointwise values of the linear temperature field. The constant value of the conductivity
tensor over ωc is Kc. The heat flux is the constant vector qc=−Kc∇T, which satisfies the
identity

qc=−
1

|ωc |

∫

ωc

Kc∇Tdv.

Utilizing the divergence formula in the above equation turns it into

qc=−
1

|ωc |

∫

∂ωc

KcTnds.
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xr

xp

n
(p,r,r+1)
c

xr+2

xr+1

xc

Figure 4: Generic tetrahedron with vertices (xp,xr ,xr+1,xr+4) and centroid xc=
1
4 (xp+xr+xr+1+xr+2).

Now, expanding the surface integral over the triangular faces of the tetrahedral cell yields

qc=−
1

|ωc |
∑

f∈F (c)

Kc A
f
c n

f
c T̃

f
c ,

where A
f
c is the area of face f , n

f
c is the unit outward normal to face f and T̃

f
c is the

face-averaged value of the temperature. This face-averaged temperature is computed by
means of

T̃
f

c =
1

3 ∑
s∈P(c, f )

Ts, (3.24)

where P(c, f ) is the set of points of cell c belonging to face f . Before proceeding any
further, we explicit our notations to highlight the role played by point p. Each triangular
face is characterized by the set of its three vertices. The three faces impinging at point p
are (p,r+k,r+k+1) for k= 1,··· ,3 and assuming a cyclic indexing. Their area, unit out-
ward normal and face-averaged temperature are denoted respectively by Ak

c , nk
c and T̃k

c .
The remaining face, which is opposite to point p, is (r,r+1,r+2). Its area, unit outward
normal and face-averaged temperature are denoted respectively by Ar

c, nr
c and T̃r

c . With
the above notations, the heat flux expression becomes

qc=−
1

|ωc |

(
3

∑
k=1

Kc Ak
cnk

c T̃k
c +Kc Ar

cn
r
cT̃r

c

)
.

Knowing that Ar
cnr

c=−∑
3
k=1 Ak

cnk
c leads to rewrite the above flux expression as

qc=−
1

|ωc |

3

∑
k=1

Kc Ak
cnk

c

(
T̃k

c − T̃r
c

)
.



858 P. Jacq, P.-H. Maire and R. Abgrall / Commun. Comput. Phys., 16 (2014), pp. 841-891

Substituting the expression of the face-averaged temperatures (3.24) in terms of the point
temperatures yields

qc=−
1

3 |ωc |

3

∑
k=1

Kc Ak
cnk

c

(
Tp−Tr+k+2

)
.

Finally, to eliminate the point temperatures in the above expression, we introduce the
cell-averaged temperature

Tc=
1

4
(Tp+Tr+k+Tr+k+1+Tr+k+2).

Due to the cyclic numbering, this expression is valid for k = 1,··· ,3. Expressing Tr+k+2

in terms of the cell-averaged temperature and the remaining point temperatures leads to
write

Tp−Tr+k+2=4
(

T̄
(p,r+k,r+k+1)
c −Tc

)
,

where T̄
(p,r+k,r+k+1)
c is the sub-face temperature given by

T̄
(p,r+k,r+k+1)
c =

1

4
(2Tp+Tr+k+Tr+k+1).

Since the temperature field is linear with respect to the space variable, we point out
that the above expression is the exact value of the temperature field taken at the point

x̄
(p,r+k,r+k+1)
c located on the triangular face (p,r+k,r+k+1), refer to Fig. 5, and defined

by

x̄
(p,r+k,r+k+1)
c =

1

4
(2xp+xr+k+xr+k+1).

Observing the triangular face displayed in Fig. 5, we note that this point is the midpoint
of the median segment coming from vertex p.

Gathering the above results allows to rewrite the expression of the heat flux as

qc=−
4

3 |ωc |

3

∑
k=1

Kc Ak
cnk

c

(
T̄
(p,r+k,r+k+1)
c −Tc

)
.

It remains to simplify the above expression of the heat flux by employing notations re-
lated to the sub-face associated to point p and face k, displayed in blue color in Fig. 5.
It is clear that the area of the sub-face, Ak

pc, is equal to one-third of the face area, Ak
c ,

and thus Ak
c =3Ak

pc. In addition, the unit outward normal to the sub-face, nk
pc, coincides

with the unit outward normal to the face, nk
c . Finally, defining the sub-face temperature

Tk
pc≡ T̄

(p,r+k,r+k+1)
c leads to write the heat flux

qc=−
4

|ωc |

3

∑
k=1

Kc Ak
pcn

k
pc

(
Tk

pc−Tc

)
.
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xp

xr+k+1

xr+k

x̄
(p,r+k,r+k+1)
c

Figure 5: Triangular face (p,r+k,r+k+1) related to the tetrahedron displayed in Fig. 4. The sub-face related
to point p has been colored in blue. The three degrees of freedom related to the sub-face temperatures are
plotted by means of blue squares.

We dot-multiply the heat flux by the unit normal nl
pc to obtain the normal component of

the heat flux related to the sub-face l

ql
pc=−

4

|ωc |

3

∑
k=1

(
Kcnk

pc

)
·nl

pc Ak
pc

(
Tk

pc−Tc

)
.

This formula coincides with the one derived from the variational formulation, refer to
Eq. (3.17), provided that the volume weight satisfies wpc=

1
4 |ωc |, which ends the proof.

This shows that the flux approximation (3.17) is exact for linear temperature fields
with respect to the space variable. In addition, the sub-face temperatures coincide with
the pointwise values taken by the linear temperature field at the midpoint of the median
segment coming from each vertex of a triangular face. It is worth pointing out that this
results has been already obtained in [27] using a more theoretical framework.

Finally, for general polyhedral cells, the corner volume weight related to sub-cell ωpc

is defined by

wpc=
1

Pc
|ωc |, (3.25)

where Pc=|P(c) | is the number of vertices of cell ωc.

3.5 Elimination of the sub-face temperatures

Having defined the flux approximation in terms of the difference between the cell and
the sub-face temperatures, we shall express the sub-face temperatures in terms of the cell
temperatures of the cells c surrounding a specific point p, using the continuity conditions
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of the normal heat flux at cell interfaces. In order to have a simpler expression of the
equations we are going to introduce some new local notations. First of all, in this para-
graph we are dealing with quantities located around a point p, so in all the notations we
will omit to specify the subscript p. For each face f in the list F(p) of the faces imping-
ing at the node p we associate two tuples (c,i) and (d, j) which identify the neighboring
cells c and d of the face f and their local numbering i (resp. j) in the subset F(p,c) (resp.
F(p,d)) ofF(p). With this notation a sub-face temperature Ti

pc is denoted by T̄i
c and using

the continuity condition on the temperature is equal to T
j
pd which is denoted T̄

j
d and can

also be simply denoted by T̄ f . The bar notation help us to make the difference between
the cell centered unknown and the sub-face unknown. Similarly the area of the sub-face

f can be indifferently noted Ai
c, A

j
d or A f . The local conductivity tensor Kpc will now be

denoted by Kc so its components
(
Kpc

)
ij

can be written Kc
ij.

Using this notation Eq. (3.17), which defines the heat flux approximation, rewrites

qi
c =−αc

3

∑
k=1

Kc
ik Ak

c(T̄
k
c −Tc), (3.26)

where αc is the inverse of the volume weight. The continuity condition of the sub-face
fluxes across the face f ≡ (c,i)≡ (d, j) reads

Ai
cq

i
c+A

j
dq

j
d=0.

Replacing the sub-face fluxes by their approximation (3.26) into the above equation yields

−αc Ai
c

3

∑
k=1

Kc
ik Ak

c(T̄
k
c −Tc)−αd A

j
d

3

∑
k=1

Kd
jk Ak

d(T̄
k
d−Td)=0.

Let us point out that this equation holds for all the faces f impinging at node p, i.e.
for all f ∈F(p). Denoting Fp = |F(p)| the number of faces impinging at node p, the set
of all the above equations forms a Fp×Fp linear system, which writes under the compact
form

NT̄ =ST. (3.27)

Here, the matrix N is a Fp×Fp square matrix and T̄ ∈RFp is the vector of sub-face tem-
peratures. Denoting Cp = |C(p)| the number of cells surrounding node p, the matrix S is
a Fp×Cp rectangular matrix and vector T ∈RCp is the vector of cell temperatures. The
matrix N has five non-zero terms on each lines, its diagonal part writes

N f f =αc Ai
cK

c
ii A

i
c+αd A

j
dKd

jj A
j
d.

Regarding its extra-diagonal parts, two terms comes from the contribution of the sub-cell
ωpc. Let g be a generic face of cell c impinging at point p characterized by the index k
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in the local numbering, i.e., g≡ (c,k), then the extra-diagonal entries related to cell c and
faces i and k write

N f g=αc Ai
cK

c
ik Ak

c , for k∈ [1,3] and k 6= i.

The two remaining terms come from the sub-cell ωpd. Let g be a generic face of cell d
impinging at point p characterized by the index k in the local numbering, i.e., g≡ (d,k),
then the extra-diagonal entries related to cell d and faces j and k write

N f g=αd A
j
dKd

jk Ak
d, for k∈ [1,3] and k 6= j.

Let us remark that the matrix N has a symmetric structure, for g≡ (c,k), f ≡ (c,i) we

have Ng f = αc Ak
cKc

ki A
i
c and for g≡ (d,k), f ≡ (d, j) we have Ng f = αd Ak

dKd
kj A

j
d. We also

note that N is symmetric if and only if Kc (resp. Kd) is symmetric.
Finally, the matrix S has two non-zero terms on each row, one term for each neighbor-

ing cell c and d of the face f

S f c=αc

3

∑
k=1

Ai
cK

c
ik Ak

c ,

S f d=αd

3

∑
k=1

A
j
dKd

jk Ak
d.

It remains to investigate the properties of the matrices N and S, this is the topic of the
next section.

3.6 Properties of the matrices N and S

The main motivation of this paragraph is to demonstrate the invertibility of the matrix
N to ensure that the linear system (3.27) that solves the sub-face temperatures in terms
of the cell temperatures admits always a unique solution. To this end, let us show that N

is a positive-definite matrix. First, we introduce the matrix Lc of size 3×Fp defined by

Lc
ij =

{
1, if j≡ (c,i),

0, elsewhere.

Here, Lc is the rectangular matrix which associates the sub-face of cell c in its local num-
bering to its numbering around point p. Let us define the diagonal matrix A of size
Fp×Fp, which contains the area of the sub-faces, namely A f f = Ac

i for the face f ≡ (c,i).
Let us define Ac =LcA, the matrix which relates the area of sub-face of cell c in its local
numbering to its numbering around the point p. Employing this notation, it is straight-
forward to show that matrix N writes

N= ∑
c∈C(p)

αc(A
c)t

KcAc.
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We are going to show that NT̄ ·T̄ >0, for all T̄ ∈RFp . To this end, let us compute NT̄ ·T̄
employing the above decomposition of N

NT̄ ·T̄ = ∑
c∈C(p)

αc(A
c)t

KcAcT̄ ·T̄

= ∑
c∈C(p)

αcK
c(AcT̄)·(AcT̄).

Recalling that αc is non-negative and Kc is positive definite ensures that the right-hand
side of the above equation is always non-negative, which ends the proof. Thus, matrix N

is invertible and the sub-face temperatures are expressed in terms of the cell temperatures
by means of the relation

T̄ =
(

N−1S
)

T . (3.28)

Further, if the cell temperature field is uniform, then the sub-face temperatures are also
uniform and share the same constant value. This property follows from the relation sat-
isfies by the matrices N and S (

N−1S
)

1Cp =1Fp , (3.29)

Here, 1n, where n is an integer, is the vector of size n, whose entries are equal to 1. To
demonstrate the above relation, let us show that S1Cp =N1Fp by developing respectively
the left and the right-hand side of this equality. Substituting the non-zero entries of matrix
S leads to write the left-hand side

(
S1Cp

)
f
=S f c+S f d

=αc

3

∑
k=1

Ai
cK

c
ik Ak

c+αd

3

∑
k=1

A
j
dKd

jk Ak
d. (3.30)

Replacing the non-zero entries of matrix N allows to express the right-hand side as

(
N1Fp

)
f
=αc Ai

cK
c
ii A

i
c+αd A

j
dKd

jj A
j
d+

3

∑
k=1,k 6=i

αc Ai
cK

c
ik Ak

c+
3

∑
k=1,k 6=j

αd A
j
dKd

jk Ak
d.

Gathering the common terms in the above equation yields

(
N1Fp

)
f
=αc

3

∑
k=1

Ai
cK

c
ik Ak

c+αd

3

∑
k=1

A
j
dKd

jk Ak
d. (3.31)

The comparison between (3.30) and (3.31) shows that for all f ∈F(p),
(
N−1S

)
1Cp =1Fp ,

which ends the proof.
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3.7 Local diffusion matrix at a generic point

In this paragraph, we achieve the space discretization of the diffusion equation gather-
ing the results obtained in the previous sections. We start by recalling the semi-discrete
version of the diffusion equation (2.5)

mcCvc
d

dt
Tc+ ∑

p∈P(c)
∑

f∈F (p,c)

A
f
pcq

f
pc=mcrc.

We define the contribution of the sub-cell ωpc to the diffusion flux as

Qpc= ∑
f∈F (p,c)

A
f
pcq

f
pc.

Using the local numbering of the sub-faces surrounding point p yields to rewrite the
above expression as

Qpc=
3

∑
k=1

Ak
cqk

c .

Now, we replace the normal flux by its corresponding expression (3.26) to get

Qpc=−
3

∑
k=1

Ak
c

[
αc

3

∑
i=1

Kc
ki A

i
c(T̄

i
c−Tc)

]
.

Interchanging the order of the summations in the right-hand side yields

Qpc=−
3

∑
i=1

[
αc

3

∑
k=1

(Ai
cK

c
ki A

k
c)

]
(T̄i

c−Tc).

To obtain a more compact form of Qpc, we define the matrix S̃ whose entries write S̃ f c =

αc ∑
3
k=1(Ai

cK
c
ki A

k
c), where f ≡ (c,i). Employing this notation, the sub-cell contribution to

the diffusion flux reads
Qpc=− ∑

f∈F (p)

S̃t
c f (T̄

f−Tc).

Eliminating the sub-face temperatures by means of (3.28) and using the property (3.29)
leads to

Qpc=− ∑
d∈C(p)

G
p
cd(Td−Tc), (3.32)

where Gp is a Cp×Cp matrix defined at point p by

Gp= S̃tN−1S. (3.33)

Let us point out that the entries of Gp have the physical dimension of a conductivity.
Thus, it can be viewed as the effective conductivity tensor at point p. More precisely, it
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follows from (3.32) that the entry G
p
cd stands for the effective conductivity between cells

c and d through the point p. This node-base effective conductivity tensor will be the
cornerstone to assemble the global diffusion matrix over the computational grid.

Comment 3.6. If the conductivity tensor K is symmetric, it is straightforward to show

that S̃=S. Bearing this in mind, we claim that Gp is symmetric positive definite provided
that the conductivity tensor K is itself symmetric positive definite. To prove this result, it
is sufficient to observe that

GpT ·T =(S̃tN−1S)T ·T

=N−1(ST)·(S̃T),

where T∈RCp is the vector of cell temperatures. Since K is symmetric, one deduces that

S̃=S, in addition N is symmetric positive definite, which ends the proof.

3.8 Assembling of the global diffusion matrix

Taking into account the previous results, the semi-discrete scheme over cell c reads

mcCvc
d

dt
Tc− ∑

p∈P(c)
∑

d∈C(p)

G
p
cd(Td−Tc)=mcrc, (3.34)

where P(c) is the set of points of cell c and C(c) is the set of cells surrounding the point
p. This equation allows to construct the generic entries of the global diffusion matrix, D,
as follows

Dcc= ∑
p∈P(c)

∑
d∈C(p)

G
p
cd, (3.35a)

Dcd=− ∑
p∈P(c)

G
p
cd,c 6=d. (3.35b)

If CD denotes the total number of cells composing the computational grid, then matrix
D is a CD×CD square matrix. The vector of cell-centered temperatures, T ∈RCD , is the
solution of the system of differential equations

MCv
d

dt
T +DT =MR. (3.36)

Here, R ∈RCD is the source term vector, M and Cv are the diagonal matrices whose
entries are respectively the cell mass mc and the cell heat capacity Cvc.
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4 Time discretization

In this section, we briefly describe the time discretization of the system (A.10). We restrict
the presentation to the case of a linear heat equation knowing that in the non linear case
the interested reader might refer to [28]. First, let us prescribe the initial condition T (0)=
T

0, where T
0 is the vector of the cell-averaged initial condition. We solve the system

over the time interval [0,T] using the subdivision

0= t0
< t1

< ···< tn
< tn+1

< ···< tN =T.

The time step is denoted by ∆tn = tn+1−tn. The time approximation of a quantity at time
tn is denoted using the superscript n, for instance T

n =T (tn). Knowing that an explicit
time discretization of the diffusion operator necessitates a stability constraint on the time
step which is quadratic with respect to the smallest cell size, we prefer to use an implicit
time discretization. Further, we assume that the heat capacity and the conductivity tensor
do not depend on temperature. Integrating (A.10) over [tn,tn+1] yields the first-order in
time implicit discrete scheme

MCv
T n+1−T n

∆tn
+DT

n+1=MR
n+Σ

n. (4.1)

The updated cell-centered temperatures are obtained by solving the following linear
system (

MCv

∆tn
+D

)
T

n+1=
MCv

∆tn
T

n+MR
n+Σ

n. (4.2)

Let us recall that D is positive semi-definite. Knowing that MCv is a positive diagonal
matrix, we deduce that the matrix MCv

∆tn +D is positive definite. Thus, the linear system
(4.2) always admits a unique solution. Finally, in the absence of source term and assum-
ing periodic or homogeneous boundary conditions, we observe that the above implicit
time discretization is stable with respect to the discrete weighted L2 norm defined by

‖T ‖2
w2=(MCT ·T ),

where T is a vector of size CD. To prove this result, we dot-multiply (4.2) by T
n+1 and

obtain

MCvT
n+1 ·T n+1−MCvT

n ·T n+1=−∆tnDT
n+1 ·T n+1.

Due to the positive definiteness of matrix D the right-hand side of the above equation is
negative, hence

MCvT
n+1 ·T n+1≤MCvT

n ·T n+1.

Employing Cauchy-Schwarz inequality in the right-hand side of the above inequality
yields

MCvT
n ·T n+1≤‖T n‖w2‖T

n+1‖w2.
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Gathering the above results leads to

‖T n+1‖w2≤‖T
n‖w2,

which ends the proof.

Comment 4.1. The computation of the numerical solution requires to solve the sparse
linear system (4.2). This is achieved by employing the localized ILU(0) Preconditioned
BiCGStab algorithm, refer to [30, 39]. The parallel implementation of this algorithm and
its efficiency are discussed in Section 5. Knowing that the matrices encountered in this
work are all symmetric, we could have employed a classical conjugate gradient method
to solve the corresponding linear system. However, our numerical scheme being able to
cope with non-symmetric diffusion equations, refer to [28], we have chosen to implement
a more general solver to handle these problems.

5 Parallelization

When dealing with three-dimensional grids, the computational power needed to solve
the problems grows quickly. In fact two problems occur, the memory consumption be-
comes higher and the computational time becomes longer. These two problems can be
overcome with the parallelization of the scheme. The goal is to split the global prob-
lem into smaller problems that will run concurrently on different processors. In the dis-
tributed memory case, the more processors we add, the more memory we get. On the
other hand communications are then needed between the processors to solve the global
problem.

First, we have a look at the implementation of the sequential algorithm and iden-
tify the parts we need to parallelize in priority. Then, we describe the partitioning step
and the communication process. Finally, we present an experimental study to assess the
efficiency of our parallelization scheme.

5.1 Analysis of the problem

The sequential algorithm can be divided in two steps: assembling the matrix and solving
the system.

To build the global matrix we have to solve a local linear system at each vertex of
the mesh. This is a vertex-centered approach. The solving step is performed through the
use of iterative Krylov methods such as BiCGStab [39]. These methods need to perform
matrix-vector multiplications and dot products. Here, the matrix involved associates a
cell with its neighboring cells; hence the solving step is a cell-centered approach.

In a parallel computation we would like to split the problem into equally balanced
sub-problems, this is called partitioning. The problem we have to face with our algorithm
is that the optimal partition for the vertex-centered approach is different from the optimal
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partition for the cell-centered one. We thus have to make a choice, optimizing one step
while sacrificing the other.

If we have a look at the sequential timings we can see that the construction process
takes approximately 10% of the overall time and the solving step takes 90% of the time.
The Amdahl’s law [8] tells us that we have more to gain by optimizing the more time
consuming step, in our case the solving step, so we will focus on a cell-centered parti-
tioning.

5.2 Partitioning and communications

The main kernel of iterative Krylov methods is a matrix-vector multiplication. This is
why we have to efficiently parallelize the matrix-vector product Y = AX . We assume
that we have a partitioning of our problem, it means that every processor owns a specific
subset of the global problem. If I is a processor it will only know the subset X I of the
vector X and the subset Y I of the vector Y . This results in the following decomposition
for the vectors X and Y :

Y =




Y1
...

Y I
...

Y N




, X =




X1
...

X I
...

X N




.

Similarly, we decompose the matrix A and express it in terms of a block matrix with
AI J elements:

A=




A11 ··· A1N

. . .
... AI J

...
. . .

AN1 ··· ANN




.

With these notations the matrix-vector multiplication Y =AX may be expressed as:

Y I = ∑
J=1,···,N

AI J X J , ∀I∈{1,··· ,N} .

To compute subvector Y I processor I needs to access the bloc matrices AI J where J =
1,··· ,N. More precisely, processor I needs to access all the rows associated to its partition.
We say that the matrix is partitioned row-wise. Processor I also potentially needs to
know the vectors X J where J = 1,··· ,N, which is the whole X vector. As we mentioned
before, it only owns X I vector. To perform the global operation, we thus need to receive
the subvectors X J from the processors J (J 6= I). As matrix A is sparse, a block X J is
effectively needed if and only if AI J has non zero entries. Furthermore, AI J may also be
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sparse. Thus, only part of the elements of subvector X J may be needed on processor I.

We note X̂ I
J the corresponding pruned subvector (so-called “overlap”) and Y I←AI J X J

may be compacted into Y I←ÂI J X̂
I
J .

The algorithm for the parallel matrix-vector on processor I can then be written as
follows:

• For each processor J, send
ˆ

X
J
I to processor J.

• Compute Y I←AI I X I .

• For each processor J, receive X̂ I
J from processor J and compute Y I←Y I+ÂI JX̂

I
J .

In order to hide the communication process, we consider non-blocking communica-
tions, which occur while we compute the local matrix-vector multiplication Y I←AI I X I .

If the amount of computation for this operation is big enough the distant subvector X̂ I
J

may be transferred without impact on the elapsed time.
A simple example of this decomposition is displayed in Fig. 6(a). In this example, the

first processor in blue owns the first four rows of the matrix and the first six elements
of the vector, while the second processor in red owns the last four rows and the last
six elements of the vector. On the first processor the overlaps are the element 5 and 6
of the vector, while the overlaps of the second processor consist of the elements 3 and
4. These elements are not computed on the local processor but are received from the
other processor. The associated mesh and the corresponding sub-meshes obtained after
the decomposition are shown in Fig. 6(b), the grey cells represent the overlaps. The other
parallel operation to perform in our iterative solver is the inner product p=X ·Y=∑k XkY k.
With our decomposition it writes p = ∑J=1,···,N pJ where pJ = ∑k Xk

JY
k
J is the local inner

product corresponding to the sub-problem J. This is a global operation, every processor
has to compute its local inner product and exchange it with all the other processors. This
communication cannot be overlapped by computation, this could be a bottleneck in our
algorithms.

How should we distribute the rows of the matrix? As we said before we want the
load to be balanced between the processors, in our case it is the number of operations
in the matrix-vector operation or the number of non-zero elements in the matrix. We
also want to overlap the communications with computations, and the communication
time depends on the amount of data to exchange. This amounts to reduce the volume of
communication between processors. This problem is really complicated, that is why to
achieve these goals we use a graph partitioner called Scotch [33]. We process the graph
associated to the global matrix with this library which retrieves for each row the parti-
tion it belongs to. With these informations we can set up the communication scheme
explained earlier.

What are the changes needed by the scheme in parallel? When we add an element
in the overlap vector we add the corresponding cell in the local sub-mesh. So in every
sub-mesh an internal cell is surrounded by all its neighbors, we have all the information
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A=
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4
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6

7

8

(a) Matrix decomposition (b) Mesh decomposition

Figure 6: Example of matrix and mesh decomposition on two processors with overlaps construction.

to build the row corresponding to this cell in the matrix, so nothing has to be changed in
the scheme. The parallelism is only seen in the solving step.

We have implemented these methods in our development code but we can also use
the PetSC library [9–11]. This library implements scalable algorithms to solve scientific
applications modeled by partial differential equations. In this library the solving step and
the communication process are hidden to the user. The problem we faced is that with the
libraries available on our experimental platform we could not use some preconditioners
in parallel like ILU(0). Due to that, the iterative method does not converge very well in
parallel. This explains why the experiments we ran with PetSC were not very conclusive.

5.3 Experiments

In order to quantify the quality of the parallelization we define two metrics: the speedup
and the efficiency. If Tp denotes the time needed to solve the problem on p processors the
speedup is defined by

S(p)=
T1

Tp
.

This quantity represents how much faster the algorithm is on p processors than in se-
quential. Ideally on p processors we would like to be p times faster than in sequential,
thus the ideal speedup is defined by

Sideal(p)= p.

An other interesting metric is the efficiency. It is given by

E(p)=
T1

pTp
.
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(a) Structured hexahedral grid (b) Unstructured tetrahedral grid

Figure 7: Partitioning computed with the Scotch library (INRIA) [33] for 8 processors. One distinct color is
attributed to each processor.

It assesses how efficiently the processors are used with respect to the ideal case (E(p)=1).
We ran the experiments on the PLAFRIM (IMB/LABRI/INRIA) [1] platform. On each node

of this machine we have 2 Quad-core Nehalem Intel Xeon X5550 (8 CPU cores total per
node) running at 2,66 GHz. The nodes have 24Gb of RAM (DDR3 1333MHz) and are
connected with Infiniband QDR at 40Gb/s. To test the scalability of our method we ran
the tests on 1 to 64 CPU cores (using 1 to 8 nodes). We run the speedup tests on two kinds
of grids:

• a Cartesian hexahedral grid made of 512 000 cells, 531 441 nodes and with 13 481
272 non-zeros entries in the associated matrix;

• a unstructured tetrahedral grid made of 396 601 cells, 98 218 nodes and with 28 946
047 non-zeros entries in the associated matrix.

We specifically chose these meshes to illustrate the load balancing problem occurring
between the matrix construction and the solving step. On the first kind of mesh we have
a perfect load balancing while on the second one the load balancing of the construction
step can be bad, due to the unstructured feature of the grid. The partitioning of the
coarsest versions of these grids are displayed in Fig. 7(a) for the structured grid and in
Fig. 7(b) for the unstructured grid. On the speedup curve displayed in Fig. 8 we can see
that the more processors we add, the further away from the ideal speedup we get. This
highlights two different phenomena. First, in the conjugate gradient method we need to
compute some scalar products and vector norms which need collective communications.
This kind of communications does not scale very well so the more processors we add
the worse it gets. The other phenomenon is that by adding more processors, the local
matrices get smaller and we need to communicate more at the same time. So at some
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Figure 8: Speedup curve for 1 to 64 processors on structured and unstructured 3D meshes.

Figure 9: Efficiency curve for 1 to 64 processors on structured and unstructured three-dimensional meshes.

point the computation can not overlap the communications anymore and the speedup
gets worse.

On the efficiency curve displayed in Fig. 9 we can see that from 1 to 8 CPU cores the
efficiency quickly drops from 1 to 0.85, then between 8 to 64 CPU cores it decreases more
slowly. This reflect the topology of the platform we used for the tests. From 1 to 8 CPU
cores we are only using one node. On a single node the communication cost is negligible,
so we would expect the efficiency to stay close to 1. The quick drop shows the existence
of a bottleneck in the memory usage. This may come from the usage of unstructured
methods which uses a lots of memory indirection, some optimization around the matrix
numbering should reduce this effect. The decrease in efficiency observed with more than
8 CPU cores is due to the communications between the nodes.

Finally, we can comment the difference between the efficiency obtained on struc-
tured and unstructured meshes. We observe the same phenomenon on the two kinds
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of meshes. We observe that the efficiency is a bit better for the structured meshes. The
difference is due to the imbalance in the construction step. This imbalance could be low-
ered by adding information about the cost of the matrix construction into the graph sent
to the partitioner.

To conclude this paragraph we can claim that we developed a parallel implementa-
tion of the classical BiCGStab method. This method has some blocking points, the inner
products that can not be overlapped by computations, so it is not fully scalable. In [41] the
authors present the IBiCGStab method, a modified BiCGStab algorithm with an equiva-
lent numerical stability, in which these blocking points are cured. Only one global syn-
chronization point is needed per iteration instead of four in the original algorithm. This
is a more scalable method. In a future work we plan to investigate this modification to
improve the efficiency of our implementation.

6 Numerical results

The aim of this section is to assess the robustness and the accuracy of our finite volume
scheme against analytical test cases using various types of unstructured three-dimensional
grids. The tests cases have been chosen to highlight the different features of the scheme.
First, we describe the methodology employed for the convergence analysis defining the
related metrics. Then, we present the three-dimensional structured and unstructured
grids employed. Finally, we describe the set up of each test case, display the numerical
results obtained and discuss the quality of the corresponding convergence analysis.

In this section, the numerical solutions are obtained solving linear systems by means
of the localized ILU(0) Preconditioned BiCGStab algorithm [30, 39]. The relative error
tolerance to achieve the convergence is equal to 10−16.

6.1 Methodology

Let us recall that we are solving the generic diffusion equation

ρCv
∂T

∂t
−∇·(K∇T)=ρr, (x,t)∈D×[0,T ], (6.1a)

T(x,0)=T0(x), x∈D, (6.1b)

where r = r(x) is a source term. The analytical solutions of all the tests are stationary.
Thus, we are going to compute them starting with the initial condition T0(x)=0 and we
run the simulation until the steady state is reached. The density and the specific heat
capacity are specified such that ρ = 1 and Cv = 1. The boundary conditions, the source
term and the heat conductivity tensor K will be specified for each test case.

Bearing this in mind, we describe the procedure employed to perform the conver-
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gence analysis. First, we define the mesh resolution

h=

(
|D|

CD

) 1
d

,

where CD denotes the number of cells that paved the computational domain and d=3 is
the dimension of the space. Let T= T̂(x) be the steady analytical solution of the diffusion
equation (6.1a). Being given a computational grid characterized by h, we denote by T̂h

c

the value of the analytical solution evaluated at the centroid of the cell ωc, i.e., T̂h
c = T̂(xc),

where xc is the cell centroid. If Th
c denotes the cell averaged temperature computed by

the numerical scheme, we define the asymptotic numerical errors based on the discrete
L2 and L∞ norms

Eh
2 =

√√√√
CD

∑
c=1

(Th
c − T̂h

c )
2 |ωc |,

Eh
∞ = max

c=1···CD
|Th

c − T̂h
c | .

The asymptotic error for both norms is estimated by

Eh
α=Cαhqα+O(hqα+1) for α=2, ∞. (6.2)

Here, qα denotes the order of the truncation error and Cα is the convergence rate-constant
which is independent of h. Having computed the asymptotic errors corresponding to two
different grids characterized by mesh resolutions h1 and h2<h1, we deduce an estimation
of the order of truncation error as

qα =
logEh2

α −logEh1
α

logh2−logh1
. (6.3)

6.2 Computational grids

Here, we present the three-dimensional computational grids employed to run the test
cases. There are various types of grids: tetrahedral grids, hexahedral grids and hybrid
grids which are composed of tetrahedra, hexahedra and pyramids. The detailed descrip-
tion of these grids is summarized in the list below:

• Tetrahedral grids, displayed in Fig. 10(a) and Fig. 10(f), have been constructed using
Gmsh, which is a three-dimensional finite element mesh generator [17];

• Hexahedral Cartesian grid displayed in Fig. 10(b);

• Kershaw-type grid displayed in Fig. 10(c);
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(a) Tetrahedral grid made of 8222 cells (b) Cartesian hexahedral grid made of
1000 cells

(c) Kershaw-type grid made of 1000 cells (d) Randomly perturbed grid made of
1000 cells

(e) Hybrid grid made of 3432 tetrahedra,
100 pyramids and 500 hexahedra

(f) Tetrahedral grid of a truncated
sphere made of 6623 cells

Figure 10: Three-dimensional grids used for the test cases.
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• Smoothly deformed hexahedral grid resulting from the mapping defined on the
unit cube [0,1]3 by

x(ξ,η,θ)=ξ+a0 sin(2πξ)sin(2πη)sin(2πθ),

y(ξ,η,θ)=η+a0 sin(2πξ)sin(2πη)sin(2πθ),

z(ξ,η,θ)=θ+a0 sin(2πξ)sin(2πη)sin(2πθ),

where the amplitude of the deformation is a0=0.1. Observing that the deformation
cancels on the boundary surfaces of the unit cube, this grid has not been displayed
since it looks like the Cartesian grid;

• Randomly deformed hexahedral grid, displayed in Fig. 10(d), resulting from the
mapping defined on the unit cube [0,1]3 by:

x(ξ,η,θ)= ξ+a0hr1,

y(ξ,η,θ)=η+a0hr2,

z(ξ,η,θ)= θ+a0hr3,

where {ri}i=1,···,3 are random numbers in [−1,1], h is the characteristic mesh size
and a0=0.2 the amplitude of the deformation;

• Hybrid grid, displayed in Fig. 10(e), made of hexahedral cells, pyramidal cells and
tetrahedra.

Comment 6.1. We have introduced the hybrid grid because of its usefulness regarding
real-world applications. Let us point out that it is a convenient way to mesh a domain us-
ing both hexahedral and tetrahedra cells with the constraint of keeping a conformal grid.
In this case, a layer of pyramids ensures the transition between hexahedra and tetrahe-
dra. This kind of grid can be used in the context of the computation of a viscous flow
in the presence of a solid wall. Indeed, the pyramid cells allows to match the boundary
layer in the vicinity of the wall, paved by means of hexahedra, with the rest of the domain
paved using tetrahedra.

Comment 6.2. The tetrahedral grid displayed in Fig. 10(f) corresponds to a truncated
sphere with an internal radius Ri and an external radius Re. This grid is also characterized
by an interface located at Rm, which allows to separate two distinct materials.

6.3 Isotropic diffusion problem

This problem consists in finding the steady solution of (6.1) with r = 0 and an isotropic
conductivity tensor defined by K = κI, where I is the unit tensor of R3 and the scalar
conductivity is given by κ= 1. The computation domain is D= [0,1]3 and we apply the
following boundary conditions on the boundaries of D
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• Dirichlet boundary condition

T(x)=0, for x=0,

T(x)=1, for x=1.

• Neumann boundary condition

q(x)·n=0, for y=0, y=1, z=0 and z=1.

The steady analytical solution is T̂(x)= x. The aim of this simple test case is to assess the
ability of our scheme to preserve linear fields.

First, we compute the steady numerical solution using a tetrahedral grid made of
8222 cells, refer to Fig. 10(a). The corresponding asymptotic errors are equal to zero up to
machine precision. As expected, our finite volume scheme preserves linear solutions on
tetrahedral grids. We observe a similar behavior when computing the numerical solution
on the Cartesian hexahedral grid displayed in Fig. 10(b). Let us point that this result
confirms the conclusion already drawn for this type of numerical methods, in the context
of two-dimensional geometry, refer to [13,28]. The convergence analysis for smooth grids,
Kershaw grids (refer to Fig. 10(c)) and random grids (refer to Fig. 10(d)) are performed
computing the asymptotic errors and the corresponding orders of truncation error using
formulas (6.2) and (6.3). The results displayed in Table 1(a) show that the convergence
rate is almost of second-order in the L2 norm and a little bit less in the L∞ norm. In
Table 1(b), we observe a similar behavior for the convergence analysis corresponding
to the Kershaw grids. Proceeding with the convergence analysis for random grids as
before, we have displayed the corresponding results in Table 1(c). The convergence rate
is of first-order for the L2 norm and almost of first-order for the L∞ norm.

Comment 6.3. Let us point out that the last columns in the above tables represent the
number of iterations required by our ILU(0) Preconditioned BiCGStab algorithm to reach
the relative error tolerance required to achieve the convergence in solving the linear sys-
tems. This error tolerance has been set equal to 10−16 which is a very small tolerance.
This probably explains the relatively high number of iterations of our solver. It is worth
mentioning that for real life applications we shall set the error tolerance equal to 10−8.

Finally, the convergence analysis for the hybrid grids, refer to Fig. 10(e), is displayed
in Table 2. The corresponding data demonstrate that our numerical scheme exhibits a rate
of convergence located between first and second-order. Let us point out that the maxi-
mal error is always located in the layer of pyramids which allows to link the tetrahedral
and the hexahedral regions of the grid. This clearly shows that the loss of accuracy is the
consequence of the particular treatment applied to pyramids to derive the flux approxi-
mation, refer to Appendix B.
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Table 1: Isotropic diffusion problem, asymptotic errors in both L∞ and L2 norms and corresponding truncation
errors for hexahedral grids.

(a) Smooth grids.

h Eh
∞ qh

∞ Eh
2 q2

2 Iterations

1.00D-01 5.65D-03 1.60 2.18D-03 1.69 11

5.00D-02 1.87D-03 1.80 6.75D-04 1.90 22

2.50D-02 5.35D-04 1.92 1.81D-04 1.97 44

1.25D-02 1.41D-04 - 4.63D-05 - 101

(b) Kershaw grids.

h Eh
∞ qh

∞ Eh
2 q2

2 Iterations

1.00D-01 3.22D-02 1.94 8.23D-03 2.04 14

5.00D-02 8.39D-03 1.39 2.00D-03 1.69 37

2.50D-02 3.20D-03 2.09 6.20D-04 2.06 80

1.25D-02 7.53D-04 - 1.49D-04 - 116

(c) Random grids.

h Eh
∞ qh

∞ Eh
2 q2

2 Iterations

1.00D-01 2.09D-03 0.75 6.62D-04 1.00 11

5.00D-02 1.24D-03 0.81 3.31D-04 1.00 21

2.50D-02 7.07D-04 0.93 1.66D-04 1.00 42

1.25D-02 3.72D-04 - 8.29D-05 - 78

Table 2: Isotropic diffusion problem, asymptotic errors in both L∞ and L2 norms and corresponding truncation
errors for hybrid grids.

h Eh
∞ qh

∞ Eh
2 q2

2 Iterations

6.28D-02 2.06D-03 0.99 2.66D-04 1.49 14

3.12D-02 1.04D-03 1.00 9.39D-05 1.50 27

1.56D-02 5.19D-04 1.74 3.32D-05 2.59 60

1.04D-02 2.58D-04 - 1.17D-05 - 95

6.4 Isotropic diffusion problem with a discontinuous conductivity

Here, the computational domain, D, is the truncated sphere, centered at the origin and
characterized by the inner radius Ri=0.1 and the outer radius Re=1. An interface, located
at the radius Rm =0.5, splits the computational domain into two regions filled with two
distinct materials. The conductivity tensor is isotropic and piecewise constant, i.e., K=κI
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where κ=κ(r) with r=
√

x2+y2+z2. The scalar conductivity is given by

κ(r)=

{
κ1, if r∈ [Ri,Rm[,

κ2, if r∈]Rm,Re].

For numerical applications, we choose κ1 =10 and κ2 =1. Dirichlet boundary conditions
are prescribed at the inner and the outer boundary of the computational domain, i.e.,
T(Ri) = Ti = 0 and T(Re) = Te = 1. Due the radial symmetry of the problem, we con-
sider a computational domain restricted to 1

8 of the truncated sphere. The corresponding
coarsest tetrahedral grid is displayed in Fig. 10(f). Homogeneous Neumann boundary
conditions are prescribed at the remaining boundaries of the computational domain to
handle the symmetry of the problem.

The steady analytical temperature, T̂(r), field is obtained by solving the following
problem

1

r2

d

dr
(r2 dT

dr
)=0, r∈]Ri,Re[,

T(Ri)=Ti,

T(R−m)=T(R+
m), κ1

dT

dr
(R−m)=−κ2

dT

dr
(R+

m),

T(Re)=Te.

Let us remark that the second equation in the above system expresses the continuity con-
ditions of the temperature and the heat flux across the interface located at Rm. Employing
the previous numerical values, the analytical solution reads

T̂(r)=

{
− 1

18r +
5
9 , if r∈ [Ri,Rm],

− 5
9r +

14
9 , if r∈ [Rm,Re].

The steady analytical and numerical solutions are displayed in Fig. 11. We have plot-
ted the averaged temperature of all the cells versus the cell centroid radius. We ob-
serve that the numerical solution is almost superimposed to the analytical solution. This
clearly shows the ability of the scheme to preserve the radial symmetry on a highly

anisotropic unstructured grid, which is not aligned with the symmetry of the problem.
We investigate the convergence analysis for this problem using a sequence of four tetra-
hedral grids made of 902, 6623, 13549 and 37648 cells. The resulting asymptotic errors
and rate of convergence in both L∞ and L2 norms are presented in Table 3. We observe
that a second-order rate of convergence is asymptotically reached in L2 norm. It is in-
teresting to note the big gap in the maximum errors between the coarsest grid and the
second grid. This might be due to the discretization of the spherical boundaries. On the
coarsest grid, the mesh resolution is too poor to properly capture the curvilinear inner
and outer boundaries. When the grid is refined, the curvilinear feature of the boundaries
is better captured due to the increased mesh resolution.
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Figure 11: Isotropic diffusion problem with a discontinuous conductivity: Temperatures in all the cells with
respect to the radii of the cell centroid for a tetrahedral grid composed of 13549 tetrahedra; comparison with
the analytical solution.

Table 3: Isotropic diffusion problem with a discontinuous conductivity, asymptotic errors in both L∞ and L2

norms and corresponding truncation errors for tetrahedral grids.

h Eh
∞ qh

∞ Eh
2 q2

2 Iterations

1.20D-01 1.23D-01 3.19 2.16D-02 2.49 7

5.80D-02 1.22D-02 1.65 3.57D-03 2.25 18

4.54D-02 8.14D-03 1.90 2.05D-03 2.08 39

3.17D-02 4.12D-03 - 9.73D-04 - 59

6.5 Anisotropic diffusion problem with a highly heterogeneous conductivity
tensor

This paragraph consists in assessing our finite volume scheme against a test case which is
representative of anisotropic diffusion characterized by a highly heterogeneous conduc-
tivity tensor. This test case and its manufactured analytical solution are taken from [21].
Here, we solve the problem (6.1) over the computational domain D=[0,1]3. The conduc-
tivity tensor is defined by

K=Q




1 0 0
0 ε 0
0 0 η(1+x+y+z)


Qt.

where, Q=Q(x) is the rotation given by

Q=




cos(πx) −sin(πx) 0
sin(πx) cos(πx) 0

0 0 1


.

Here, ε and η are parameters which measure the degree of anisotropy of the conductivity
tensor. Indeed, the eigenvalues of the conductivity tensor are: 1, ε and η(1+x+y+z).
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Table 4: Anisotropic diffusion problem, asymptotic errors in both L∞ and L2 norms and corresponding truncation
errors for tetrahedral grids.

h Eh
∞ qh

∞ Eh
2 q2

2 Iterations

1.12D-01 3.01D-01 2.43 7.98D-02 2.55 10

4.95D-02 4.18D-02 1.94 1.01D-02 2.14 14

2.47D-02 1.08D-02 1.64 2.26D-03 1.99 32

1.23D-02 3.45D-03 - 5.70D-04 - 61

For numerical applications, we shall take ε=0.1 and η=10. The source term, r= r(x), is
computed such that the analytical steady solution of (6.1) is given by

T̂(x,y,z)=sin(πx)sin(πy)sin(πz).

We apply a homogeneous Dirichlet boundary condition on the boundaries of the compu-
tational domain, i.e., T(x,t)=0, ∀ x∈∂D. First, we compute the numerical solution using
a sequence of four tetrahedral grids. The coarsest grid has been displayed in Fig. 10(a).
The asymptotic errors in both L∞ and L2 norms and the corresponding truncation errors
are summarized in Table 4. They show that the convergence rate in L2 norm is of second-
order. Regarding the convergence analysis on hexahedral grids, we have also used a
sequence of four grids for the following types of grids: Cartesian, Kershaw, smooth and
random. These grids are showed respectively in Fig. 10(b), Fig. 10(c) and Fig. 10(d). Let
us recall that the smooth grid has not been displayed since the deformation cancels on
the boundaries of the computational domain. We start by giving in Table 5(a) the conver-
gence analysis data for a sequence of four Cartesian grids. These data demonstrate that
our scheme exhibits an almost second-order rate of convergence on Cartesian grids. The
same conclusion holds for the convergence analysis performed on smooth grids, refer
to Table 5(c). We observe that the rate of convergence in L2 norm are better than those
obtained for the rectangular grids, however the asymptotic errors on smooth grids are
approximately three times bigger than the ones corresponding to the Cartesian grids.
Next, we pursue our investigation using a sequence of four Kershaw grids. The related
convergence analysis is summarized in Table 5(b). This time, the rate of convergence in
both L∞ and L2 norms is lying between first and second-order. Finally, we compute the
numerical solution on a sequence of four random grids. The results of the convergence
analysis corresponding to this sequence of grids are given in Table 5(d). In comparison to
the above results, these ones are representative of an erratic behavior, which clearly does
not correspond to a second-order rate of convergence.

We achieve the convergence analysis of the present problem by studying the numeri-
cal solutions obtained employing a sequence of four hybrid grids, refer to Fig. 10(e). The
asymptotic errors and the convergence rates in both L∞ and L2 norms are displayed in
Table 6. The results demonstrate that the scheme is characterized by a rate of conver-
gence located between first and second-order. Once more, the maximal error is located
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Table 5: Anisotropic diffusion problem, asymptotic errors in both L∞ and L2 norms and corresponding truncation
errors for hexahedral grids.

(a) Cartesian grids.

h Eh
∞ qh

∞ Eh
2 q2

2 Iterations

1.00e-01 1.32D-02 1.68 4.86D-03 1.91 10

5.00D-02 4.13D-03 1.62 1.30D-03 1.95 21

2.50D-02 1.34D-03 1.69 3.35D-04 1.98 43

1.25D-02 4.15D-04 - 8.50D-05 - 112

(b) Kershaw grids.

h Eh
∞ qh

∞ Eh
2 q2

2 Iterations

1.00D-01 3.01D-02 1.15 7.80D-03 1.72 13

5.00D-02 1.36D-02 1.25 2.38D-03 1.55 28

2.50D-02 5.72D-03 1.65 8.13D-04 1.99 53

1.25D-02 1.82D-03 - 2.05D-04 - 109

(c) Smooth grids.

h Eh
∞ qh

∞ Eh
2 q2

2 Iterations

1.00D-01 6.03D-02 2.09 1.60D-02 2.12 16

5.00D-02 1.41D-02 1.68 3.69D-03 2.03 37

2.50D-02 4.41D-03 1.89 9.03D-04 2.00 87

1.25D-02 1.19D-03 - 2.26D-04 - 123

(d) Random grids.

h Eh
∞ qh

∞ Eh
2 q2

2 Iterations

1.00D-01 2.44D-02 1.41 7.35D-03 1.86 11

5.00D-02 9.17D-03 1.09 2.02D-03 1.56 21

2.50D-02 4.31D-03 0.86 6.85D-04 0.72 46

1.25D-02 2.37D-03 - 4.16D-04 - 94

Table 6: Anisotropic diffusion problem, asymptotic errors in both L∞ and L2 norms and corresponding truncation
errors for hybrid grids.

h Eh
∞ qh

∞ Eh
2 q2

2 Iterations

6.28D-02 4.67D-02 1.63 9.58D-03 2.01 18

3.12D-02 1.49D-02 1.47 2.34D-03 1.93 26

1.56D-02 5.38D-03 1.31 6.14D-04 1.83 65

1.04D-02 3.18D-03 - 2.95D-04 - 128
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in the layer of pyramids which allows to link the tetrahedral and the hexahedral regions
of the grid. Let us repeat that this loss of accuracy is the consequence of the particular
treatment applied to pyramids to derive the flux approximation, refer to Appendix B.

7 Conclusion

In this paper, we have described a cell-centered finite volume scheme, which aims at
solving anisotropic diffusion problems on three-dimensional unstructured grids. This
scheme is characterized by cell-centered unknowns, a local stencil and a symmetric pos-
itive definite matrix. The partition of grid cells (resp. faces) into sub-cells (resp. –faces)
allows to construct a sub-face fluxes approximation by means of a sub-cell-based vari-
ational formulation. The sub-face fluxes are locally expressed at each node in terms of
the surrounding cell-centered temperatures invoking continuity conditions of tempera-
ture and normal heat flux at each cell interface. Regarding its accuracy, the scheme pre-
serves linear fields with respect to the space variable over tetrahedral grids and exhibits
an almost second-order rate of convergence on smooth distorted hexahedral grids. The
parallel implementation of the scheme is discussed and its evaluation shows a satisfying
efficiency.

In future, we plan to develop an arbitrary Lagrangian Eulerian (ALE) formulation
of the present scheme to solve Stefan-like problems, i.e., phase change problems, over a
moving grid.
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A Properties of the semi-discrete scheme and practical issues

In this section, we describe briefly some interesting properties that characterize our finite
volume semi-discrete scheme. Firstly, we show that the scheme is characterized by a
positive semi-definite global diffusion matrix. Secondly, we demonstrate the L2-stability
of the space discretization. Then, we present the boundary conditions implementation.
Finally, we give some comments about the size of the local node-based sparse linear
systems satisfied by the sub-face temperatures.

A.1 Positive semi-definiteness of the global diffusion matrix

We demonstrate that the global diffusion matrix, D, is positive semi-definite, that is for
all T ∈RCD

DT ·T ≥0. (A.1)
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To prove this results, let us write the cth entry of vector DT

(DT )c= ∑
p∈P(c)

Qpc

= ∑
p∈P(c)

∑
f∈F (p,c)

A
f
pcq

f
pc.

Employing the above expression, the left-hand side of (A.1) reads

DT ·T =
CD

∑
c=1

∑
p∈P(c)

∑
f∈F (p,c)

A
f
pcq

f
pcTc.

Interchanging the order of summation lead to

DT ·T =
PD

∑
p=1

∑
c∈C(p)

∑
f∈F (p,c)

A
f
pcq

f
pcTc

=
PD

∑
p=1

Ip.

Here, PD is the total number of nodes of the computational grid and Ip =

∑c∈C(p)∑ f∈F (p,c)A
f
pcq

f
pcTc has been already defined by Eq. (3.19). Due to the fundamen-

tal inequality satisfied by the discrete sub-face normal flux approximation, refer to Sec-
tion 3.3, Ip is always positive, which ends the proof.

A.2 L2-stability of the semi-discrete scheme

In this paragraph, we prove the stability of our semi-discrete scheme in the absence of
source term (r=0) with respect to the discrete L2 weighted norm defined by

‖T ‖2
w2=

CD

∑
c=1

mcCcvT2
c , (A.2)

where CD is the total number of cells of the computational domain D. In the absence of
the source term, the semi-discrete scheme reads

MCv
dT

dt
+DT =0,

Dot-multiplying the above equation by T ∈RCD yields

MCv
dT

dt
·T +DT ·T =0.
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Assuming that the mass density and the heat capacity do not depend on time, the above
equation turns into

d

dt
(

1

2
MCvT ·T )=−DT ·T .

Recalling that the global diffusion matrix, D, is positive semi-definite and employing the
definition of the discrete L2 norm (A.2) leads to the inequality

d

dt

(
‖T ‖2

w2

)
≤0. (A.3)

Here, we have ignored the contributions of the boundary terms assuming for instance
periodic or homogeneous Neumann boundary conditions. This inequality shows that
the L2 norm of the semi-discrete solution remains bounded by the L2 norm of the initial
data. This implies the L2-stability of our semi-discrete finite volume scheme.

A.3 Boundary conditions

In this paragraph, we present a generic methodology to implement the boundary condi-
tions, which is crucial when dealing with real-word applications. It is worth mentioning
that the boundary terms discretization is derived in a consistent manner with the scheme
construction. To take into account the boundary terms, let us write the linear system
linking the sub-face temperatures with the cell temperature under the form

NT̄ =ST+B, (A.4)

where the extra term B is the vector containing the boundary conditions contribution,
which shall be defined in the next paragraphs.

Let us consider a sub-face f located on the boundary of the domain, in the next para-
graphs, we describe the modifications to bring to the matrices and boundary vector, de-
pending on the boundary conditions types under consideration.

A.3.1 Dirichlet boundary condition

On the boundary sub-face f≡(c,i), the temperature T̄∗ is imposed, we have T̄i
c= T̄ f = T̄∗.

We multiply this equation by Ai
c, thus Ai

cT̄ f =Ai
cT̄∗. Let us write this equation under the

system form (A.4). The diagonal term of the f th line of the system writes

N f f =Ai
c.

The corresponding extra-diagonal term is given by

N f g=0, ∀g 6= f .

Regarding the matrix S, we obtain

S f g=0, ∀g.

Finally, the f th component of the vector B reads

B f =Ai
cT̄∗.
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A.3.2 Neumann boundary condition

On the boundary sub-face f ≡ (c,i) the normal flux q∗ is prescribed, hence the continuity
condition rewrites

qi
c =q∗. (A.5)

Multiplying this equation by Ai
c and replacing qi

c by its expression (3.26) yields

−αc Ai
c

3

∑
k=1

Kc
ik Ak

c(T̄
k
c−Tc)=Ai

cq∗. (A.6)

The diagonal term of the f th line of matrix N reads

N f f =αc Ai
cK

c
ii A

i
c.

There are two non-zero extra-diagonal terms that come from the contribution of the sub-
cell c. If we note g≡ (c,k), for k 6= i, these two terms write under the form

N f g =αc Ai
cK

c
ik Ak

c .

The matrix S has only one non-zero term its f th line

S f c=αc

3

∑
k=1

Ai
cK

c
ik Ak

c .

Finally, the f th component of vector B is B f =−Ai
cq
∗.

A.3.3 Robin boundary condition

On the boundary sub-face f ≡ (c,i), the condition αT̄i
c+βqi

c = q∗R is prescribed. Let us
multiply this equation by Ai

c and replace qi
c by its expression (3.26) to obtain

αAi
cT̄i

c−βαc Ai
c

3

∑
k=1

Kc
ik Ak

c(T̄
k
c−Tc)=Ai

cq∗R. (A.7)

The diagonal term of matrix N reads

N f f =βαc Ai
cK

c
ii A

i
c−αAi

c.

This matrix has once again two non-zero extra-diagonal terms coming from the contribu-
tion of the sub-cell c. Denoting g≡ (c,k), for k 6= i, these two non-zero terms write

N f g=βαc Ai
cK

c
ik Ak

c .

The non-zero term of the f th line of matrix S is given by

S f c=βαc

3

∑
k=1

Ai
cK

c
ik Ak

c .

Finally, the f th component of vector B is B f =−Ai
cq
∗
R.

Let us remark that the Dirichlet boundary condition is recovered for α=1, β=0 and
q∗R =T∗ whereas, the Neumann boundary condition corresponds to the case α= 0, β= 1
and q∗R =q∗.
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A.3.4 Contribution to the global diffusion matrix

We achieve the discretization of the boundary conditions by listing the modifications that
we have to take into account in the assembling of the global diffusion matrix. Solving the
local system (A.4), which relates the sub-face temperatures and the cell temperatures,
yields the following expression of the sub-face temperature vector

T̄ =N−1ST+N−1B, (A.8)

where the modifications inherent to matrices N, S and vector B have been detailed in the
previous paragraphs. The above expression of the sub-face temperature vector, T̄ , turns
the contribution of the sub-cell ωpc to the diffusion flux, Qpc, into

Qpc=− ∑
d∈C(p)

G
p
cd(Td−Tc)−

(
S̃tN−1B

)
c
, (A.9)

where the effective conductivity tensor, Gp, is defined by (3.33). Finally, the global linear
system corresponding to our finite volume scheme becomes

MCv
dT

dt
+DT =MR+Σ, (A.10)

where Σ is the vector containing the boundary condition contributions, whose the cth

entry is given by Σc=
(
S̃tN−1B

)
c
. The definition of the other matrices and vectors of the

above system remain unchanged.

A.3.5 Comment about the size of the local node-based linear systems satisfied by the

sub-face temperatures

Let us recall that the pre-processing step for eliminating sub-face temperatures requires
solving a set of local sparse linear systems at nodes, refer to Section 3.5. The size of these
systems, which remains small compared to the size of global linear system, is equal to the
number of faces impinging at nodes. For instance, in a Cartesian structured grid the size
of these systems is constant and equal to 12x12 since at a given node the number of im-
pinging faces is equal to 12. In an unstructured tetrahedral grid the size of these systems
may vary a lot since the number of faces impinging at a node is a function of the grid con-
nectivity. To illustrate this point, we have counted the minimum and the maximum size
of these local node-based linear systems for a sequence of four tetrahedral grids which
have been used in the numerical tests to pave a truncated sphere, refer to Fig. 10(f) in
Section 6. We observe in Table 7 that the size of these systems remains small compared
to the size of the global system which is nothing but the number of grid cells. Indeed the
size of the local node-based linear systems ranges from 5 to 102 and the averaged size is
below 30.



P. Jacq, P.-H. Maire and R. Abgrall / Commun. Comput. Phys., 16 (2014), pp. 841-891 887

Table 7: Statistics about the size of the local node-based systems for a sequence of refined tetrahedral grids.

Number of grid cells Number of grid nodes Minimum size Maximum size Averaged size

902 189 7 66 21

6623 1219 7 96 27

13549 2447 7 102 28

37648 6543 5 90 30

B Modifications to take into account pyramid cells

Pyramid cells are required to construct a conformal partition of a computational domain
made of tetrahedral and hexahedral cells. Indeed, the pyramid cells allow to make the
transition between the tetrahedral zones and the hexahedral zones. In this case, we have
to slightly modify our finite volume scheme to take into account the fact that pyramids
are cells for which the number of faces incident to one vertex is strictly greater than 3. We
describe the needed modifications by considering a generic pyramid ωc and we denote
by p the vertex characterized by Fpc =4, where Fpc denotes the number of faces of cell c
impinging at point p, refer to Fig. 12. Knowing that Fpc=4 faces are incident to the vertex
p, the decomposition of a vector in terms of its normal components within sub-cell ωpc,
refer to Section 3.1, is not possible. Indeed, the number of equations, i.e., Fpc = 4, being
greater than the number of unknowns, i.e., the 3 Cartesian components of the vector
under consideration, we end up with an overdetermined system.

p

ωc

Figure 12: Sketch of a pyramid cell.

To overcome this difficulty, we subdivide the sub-cell ωpc into the Fpc=4 fictive sub-
cells ωpc f defined by

ωpc f =
⋃

e∈E (p, f )

I p f e, for f ∈F(p,c).

Here, E(p, f ) is the set of edges of face f impinging at point p. Namely, being given a
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face f incident to the vertex p, the sub-cell ωpc f is constructed by gathering the two iota
tetrahedra attached to the two edges of face f incident to point p. We observe that there
is one fictive sub-cell, ωpc f , per face impinging at vertex p. Each fictive sub-cell ωpc f

has 3 faces impinging at node p: the outer sub-face ∂ω
f
pc and two inner sub-faces which

result from the subdivision. Bearing this in mind, we can employ (3.26) to write the flux
approximation within each fictive sub-cell ωpc f . Having added the supplementary fictive
sub-cells, the number of sub-cells surrounding point p, which was equal to Cp, becomes
equal to C

△

p =Cp+Fpc−1. Here, without loss of generality, we suppose that there is only
one pyramid in the set of cells surrounding vertex p. Regarding the number of faces
incident to vertex p, it was equal to Fp and becomes equal to F

△

p = Fp+Fpc. Therefore,

at the vertex p, the vector of sub-face temperatures, T̄
△

, is of size F
△ and the vector of

cell-centered temperatures, T△, is of size C
△

p . Utilizing the flux approximation (3.26) and
enforcing the normal flux continuity across the cell interfaces surrounding vertex p in
the same manner than in Section 3.5 leads to the linear system satisfied by the sub-face
temperatures

N△T̄
△
=S△T△.

Here, N△ and S△ are respectively matrices of size F
△

p×F
△

p and F
△

p×C
△

p which are con-
structed in the same way than in Section 3.5. The matrix N△ is invertible, refer to Sec-
tion 3.6, and the solution of the above linear system writes

T̄
△=

(
N△

)−1
S△T△.

This formula allows to express the sub-face temperatures p in terms of the cell-centered
temperatures surrounding vertex p. Finally, using the same procedure than in Section 3.7,
the contribution of cell c to the diffusion flux at vertex p writes

Qpc=− ∑
d∈C△(p)

G
p,△
cd (T△

d −T△

c ), (B.1)

where C△(p) is the set of cells surrounding vertex p including the fictive sub-cells. The

C
△

p×C
△

p matrix Gp,△ is given by Gp,△=
(
S̃△
)t
(N△)−1

S△, refer to Section 3.7 for the def-

inition of S̃. We point out that the cell index, d, employed in (B.1), can refer to a fictive
sub-cell. More precisely, Qpc contains contributions coming from temperatures attached
to the fictive sub-cells. These supplementary degrees of freedom are eliminated equating
them to the cell temperature Tc. This amounts to express the vector of the cell-centered

temperatures including the temperatures of the fictive sub-cells, T△∈RC
△

p , in terms of the
initial vector of the cell-centered temperatures T∈RCp as follows

T△=PT . (B.2)

Here, P is a rectangular matrix of size C
△

p×Cp. Let i (resp. j) be the generic index of a
cell in the local numbering of the cells belonging to C△(p) (resp. C(p)), then according to
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(B.2), temperature T
△

i writes

T
△

i =
Cp

∑
j=1

PijTj.

For i=1,··· ,C△

p and j=1,··· ,Cp, the generic entry of P writes

Pij =





1, if i corresponds to a fictive sub-cell of c and j corresponds to cell c,

1, if i corresponds to cell c and j corresponds to cell c,

0, elsewhere.

Finally, substituting (B.2) into (B.1) leads to the expression of Qpc in terms of cell-
centered temperatures

Qpc=− ∑
d∈C(p)

G
p
cd(Td−Tc), (B.3)

where G
p
cd =PtGp,△P. It is worth pointing out that the definition of the global diffusion

matrix remains unchanged.

We have described the above modification in the particular case of a pyramid but
there is nothing to prevent us from applying it to general polyhedral cells.
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